SKIIP 03AC066V1

MiniSKiiP[®]0

3-phase bridge inverter

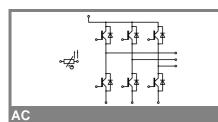
SKiiP 03AC066V1

Target Data

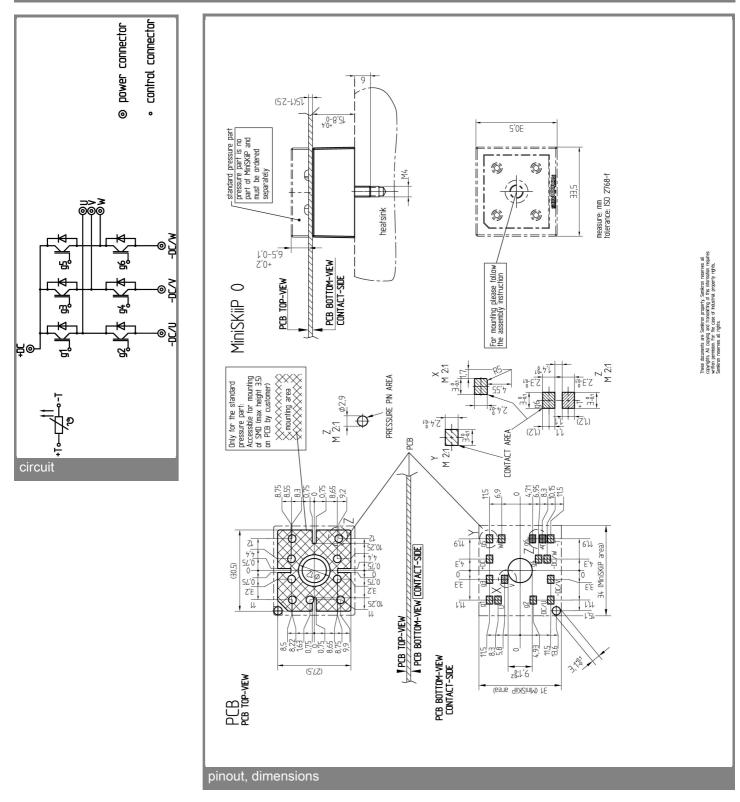
Features

- Trench IGBTs
- · Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 5,6 kVA
- Typical motor power 3,0 kW

Remarks


- Case temperature limited to T_C = 125°C max.
- Product reliability results are valid for $T_i = 150^{\circ}C$
- SC data: $t_p \le 6 \ \mu s$; $V_{GE} \le 15 \ V$; T_j = 150°C; V_{CC} = 360 V V_{CEsat} , V_F = chip level value

Absolute Maximum Ratings		T_S = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT - Inverter							
V _{CES}		600	V				
I _C	T _s = 25 (70) °C ,T _i = 150 °C	24 (17)	А				
I _C	T _s = 25 (70) °C ,T _j = 150 °C	27 (21)	А				
I _{CRM}	$t_p = 1 \text{ ms}$	30	А				
V _{GES}		± 20	V				
Т _ј		-40+175	°C				
Diode - Inverter							
I _F	T _s = 25 (70) °C ,T _i = 150 °C	24 (16)	А				
I _F	T _s = 25 (70) °C ,T _i = 175 °C	28 (21)	А				
I _{FRM}	t _p = 1 ms	30	А				
Т _ј		-40+175	°C				
I _{tRMS}	per power terminal (20 A / spring)	20	A				
T _{stg}	$T_{op} \leq T_{stg}$	-40+125	°C				
V _{isol}	AC, 1 min.	2500	V				

Characteristics T _S = 25 °C, unless otherwise specifie								
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Inverter								
V _{CEsat}	I _{Cnom} = 15 A ,T _j = 25 (150) °C	1,1	1,45 (1,65)	1,85 (2,05)	V			
V _{GE(th)}	$V_{GE} = V_{CE}$, $I_C = 1 \text{ mA}$		5,8		V			
V _{CE(TO)}	T _j = 25 (150) °C		0,9 (0,85)	,	V			
r _T	T _j = 25 (150) °C		40 (56,7)	60 (80)	mΩ			
C _{ies}	$V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz$		0,86		nF			
C _{oes}	$V_{CE} = 25 \text{ V}, V_{GE} = 0 \text{ V}, \text{ f} = 1 \text{ MHz}$		0,18		nF			
C _{res}	V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		0,12		nF			
R _{CC'+EE'}	spring contact-chip T _s = 25 (150)°C				mΩ			
R _{th(j-s)}	per IGBT		1,8		K/W			
t _{d(on)}	under following conditions		20		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		30		ns			
t _{d(off)}	I _{Cnom} = 15 A, T _j = 150 °C		155		ns			
t _f	$R_{Gon} = R_{Goff} = 22 \Omega$		40		ns			
$E_{on}(E_{off})$	inductive load		0,6 (0,5)		mJ			
Diode - Inverter								
$V_F = V_{EC}$	I _{Fnom} = 15 A ,T _i = 25 (150) °C		1,4 (1,4)	1,7 (1,7)	V			
V _(TO)	T _i = 25 (150) °Ć		1 (0,9)	1,1 (1)	V			
r _T	T _j = 25 (150) °C		26,7 (33,3)	40 (46,7)	mΩ			
R _{th(j-s)}	per diode		2,5		K/W			
I _{RRM}	under following conditions		20		А			
Q _{rr}	I _{Fnom} = 15 A, V _R = 300 V		1,8		μC			
E _{rr}	V _{GE} = 0 V, T _j = 150 °C		0,5		mJ			
	di _F /dt = 930 A/µs							
Temperat	Temperature Sensor							
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω			
Mechanical Data								
m			21,5		g			
M _s	Mounting torque	2		2,5	Nm			

SKIIP 03AC066V1

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.