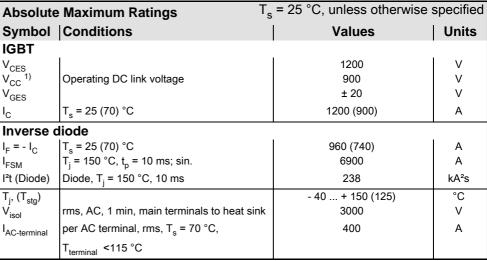
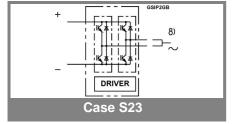

SKiiP 1203GB122-2DW

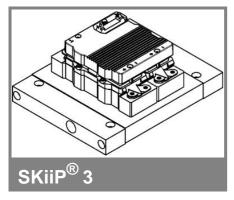

2-pack-integrated intelligent Power System

Power section SKiiP 1203GB122-2DW


Data

Power section features

- SKiiP technology inside
- SPT (Soft Punch Through) IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized File no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request



Characteristics T _s = 25 °C, unless otherwise spec						specified		
	ool Conditions				min.	typ.	max.	Units
IGBT						-71-		
V _{CEsat}	I _C = 600 A measured at	A, T _j = 25 (1 terminal	125) °C;			2,3 (2,5)	2,6	V
V _{CEO} r _{CE} I _{CES}	T_j = 25 (125) °C; at terminal T_j = 25 (125) °C; at terminal V_{GE} = 0 V, V_{CE} = V_{CES} , T_i = 25 (125) °C					1,1 (1) 1,9 (2,5) 2,4 (72)	1,3 (1,2) 2,3 (2,8)	V mΩ mA
E _{on} + E _{off}	I _C = 600 A, V _{CC} = 600 V					mJ		
	T _j = 125 °C, V _{CC} = 900 V				318			mJ
R _{CC+EE} , L _{CE}		terminal chip, T _j = 25 °C top, bottom				0,25 6		
C _{CHC}	per phase	e, AC-side				2		nF
Inverse diode								
$V_F = V_{EC}$		A, T _j = 25 (1 terminal	25) °C			1,95 (1,7)	2,1	٧
V_{TO}	T _i = 25 (1	25) °C				1,1 (0,8)	1,2 (0,9)	V
r _T	$T_i = 25 (1)$	25) °C				1,4 (1,5)	1,5 (1,8)	mΩ
Ė _{rr}	$I_{\rm C} = 600 A$	A, V _{CC} = 60	0 V			48		mJ
	T _j = 125 °	C, V _{CC} = 9	00 V			61		mJ
Mechani	cal data							
M_{dc}	DC termin	nals, SI Uni	ts		6		8	Nm
M _{ac}		nals, SI Uni			13		15	Nm
W	SKiiP® 3 System w/o heat sink			1,7			kg	
w	heat sink					4,3		kg
						c.); "s" re (acc. IEC		
$R_{th(i-s)I}$	per IGBT						0,026	K/W
$R_{th(j-s)D}$	per diode						0,05	K/W
Z _{th}	R _i (mK/W) (max. values)							
	1	2	3	4	1	2	3	4
$Z_{th(j-r)l}$	2,8	11,6	13,6	0	69	0,35	0,02	1
$Z_{\text{th(j-r)D}}$	4	6	26	26	50	5	0,25	0,04
$Z_{th(r-a)}$	5,5	4,8	1,1	0,6	48	15	2,8	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1203GB122-2DW

2-pack-integrated intelligent Power System

2-pack integrated gate driver SKiiP 1203GB122-2DW

Data

Gate driver features

- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)

- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		T _a = 25 °C, unless otherwise specified			
Symbol	Conditions	Values	Units		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{i}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, rms, 2 s)	3000	V		
V _{isolPD}	partial discharge extinction voltage, rms, $Q_{PD} \le 10 \text{ pC}$;	1170	V		
V _{isol12}	output 1 / output 2 (AC, rms, 2 s)	1500	V		
f _{sw}	switching frequency	15	kHz		
f_{out}	output frequency for I _{peak(1)} =I _C	15	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

Characte	ristics	(T _a =			= 25 °C)
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	278+20*f/kHz+0,00022*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
$t_{d(off)IO}$	input-output turn-off propagation time		1,3		μs
t _{pERRRESET}	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5 mA; 8 V corresponds to 15 V supply		1000		Α
	voltage for external components				
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	(I _{analog} OUT = 10 V)		1250		Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);		not implemented	I	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

