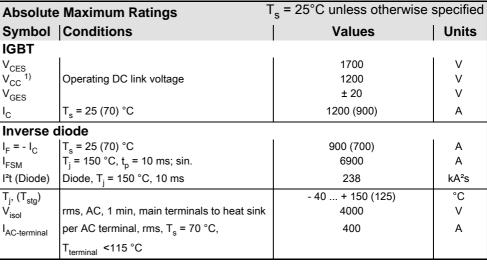
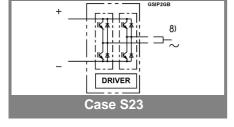

SKiiP 1203GB172-2DW

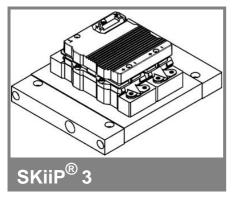

2-pack-integrated intelligent Power System

Power section SKiiP 1203GB172-2DW


Data

Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request



Characteristics				$T_s = 25^{\circ}C$ unless otherwise specified				
Symbol	Conditions				min.	typ.	max.	Units
IGBT								
V _{CEsat}	I _C = 600 A measured at	A, T _j = 25 (1 terminal	25) °C;			1,9 (2,2)	2,4	V
V_{CEO}	T _i = 25 (1	25) °C; at to	erminal			1 (0,9)	1,2 (1,1)	V
r _{CE}	T _i = 25 (125) °C; at terminal					1,5 (2,1)	1,9 (2,5)	mΩ
I _{CES}	$V'_{GE} = 0 \text{ V, } V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}C$					2,4 (144)		mA
E _{on} + E _{off}	$I_{\rm C}^{\rm J}$ = 600 A, $V_{\rm CC}$ = 900 V				mJ			
	T _i = 125 °C, V _{CC} = 1200 V					mJ		
R _{CC+EE}	terminal chip, T _j = 25 °C				mΩ			
L _{CE}	top, bottom				nH			
C _{CHC}	per phase	e, AC-side				2		nF
Inverse diode								
$V_F = V_{EC}$	I _F = 600 A measured at	A, T _j = 25 (1 terminal	25) °C			2 (1,8)	2,15	V
V_{TO}	T _i = 25 (1	25) °C				1,1 (0,8)	1,2 (0,9)	V
r _T	$T_i = 25 (1)$					1,5 (1,7)	1,6 (1,8)	mΩ
Ė _{rr}	$I_{\rm C}^{'} = 600 A$	A, V _{CC} = 90	0 V			72		mJ
	T _j = 125 °	C, V _{CC} = 12	200 V			86		mJ
Mechanical data								
M_{dc}		nals, SI Uni			6		8	Nm
M _{ac}		nals, SI Unit			13	1,7	15	Nm
W	SKiiP® 3 System w/o heat sink					kg		
W	heat sink					4,3		kg
Thermal characteristics (NWK 40; 8l/min; 50%glyc.); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)								
R _{th(j-s)I}	per IGBT			•		•	0,026	K/W
R _{th(j-s)D}	per diode						0,05	K/W
Z _{th}	R _i (mK/W) (max. values)							
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	2,8	11,6	13,6	0	69	0,35	0,02	1
$Z_{th(j-r)D}$	4	6	26	26	50	5	0,25	0,04
$Z_{th(r-a)}$	5,5	4,8	1,1	0,6	48	15	2,8	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1203GB172-2DW

2-pack-integrated intelligent Power System

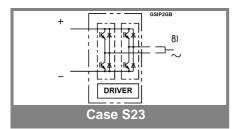
2-pack integrated gate driver SKiiP 1203GB172-2DW

Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56)
- UL recognized file no. 242581

Absolute Maximum Ratings		T _a = 25°C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{i}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isoIIO}	input / output (AC, rms, 2s)	4000	V	
V _{isolPD}	partial discharge extinction voltage, rms, $Q_{PD} \le 10 \text{ pC}$;	1500	V	
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V	
f _{sw}	switching frequency	14	kHz	
f _{out}	output frequency for I _{peak(1)} =I _C	14	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

Characte	eristics	(T _a = 25°C)			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	320+23*f/kHz+0,00022*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
t _{d(off)IO}	input-output turn-off propagation time		1,3		μs
$t_{pERRRESET}$	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1000		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC} T_{tp} U_{DCTRIP}	over current trip level (I _{analog} OUT = 10 V) over temperature protection U _{DC} -protection (U _{analog OUT} = 9 V);	110	1250 not	120	A °C V
	(option for GB types)		implemented		

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

