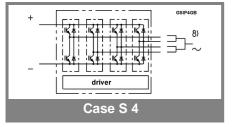

SKiiP 1242GB120-4D

SKiiP[®] 2

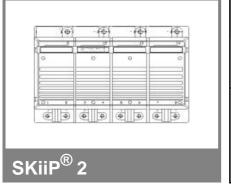
2-pack - integrated intelligent Power System

Power section


SKiiP 1242GB120-4D

Power section features

- · SKiiP technology inside
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Absolute	Maximum Ratings	$\Gamma_{\rm s}$ = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	1200 (900)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	1200 (900)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	8640	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	373	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s = 25$ °C unless otherwise specified								
	Conditions				min.	typ.	max.	Units
IGBT		.0				٠,٦٠	maxi	• · · · · · ·
V _{CEsat}	I _C = 1000 A,	T: = 25 ((125) °C		Ī	2,6 (3,1)	3,1	l v
V _{CEO}	T _i = 25 (125)		, -			,	1,5 (1,6)	V
r _{CE}	$T_i = 25 (125)$	°C				1,3 (1,8)	, ,	mΩ
I _{CES}	V _{GE} = 0 V, V		=0,			(60)	1,6	mA
OLO	$T_i = 25 (125)$		_0					
E _{on} + E _{off}	I _C = 1000 A,	V _{CC} = 6	00 V				300	mJ
	T _j = 125 °C,	V _{CC} = 90	00 V				529	mJ
R _{CC' + EE'}	terminal chip	, T _i = 12	5 °C			0,13		mΩ
L_{CE}	top, bottom	,				3,8		nΗ
C_{CHC}	per phase, A	C-side				5,6		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 1000 A,	$T_{i} = 25$ (125) °C			2,1 (2)	2,6	V
V_{TO}	$T_i = 25 (125)$					1,3 (1)	1,4 (1,1)	V
r_T	$T_i = 25 (125)$					0,8 (1)	1,1 (1,3)	mΩ
E _{rr}	$I_C = 1000 A,$	$V_{CC} = 6$	00 V				39	mJ
	$T_j = 125 ^{\circ}C,$	$V_{CC} = 90$	00 V				49	mJ
Mechani	cal data							
M_{dc}	DC terminals	s, SI Unit	ts		6		8	Nm
M _{ac}	AC terminals				13		15	Nm
W	SKiiP® 2 System w/o heat sink					3,5		kg
W	heat sink					8,5		kg
Thermal	characteri	stics (P16 heat	t sink; 2	75m ³ /h);	"_ " refer	ence to	
	ture senso					'		
$R_{th(j-s)l}$	per IGBT						0,023	K/W
$R_{th(j-s)D}$	per diode						0,063	K/W
$R_{th(s-a)}$	per module						0,033	K/W
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	2	18	3	0	1	0,13	0,001	1
$Z_{th(j-r)D}$	7	48	8	0	1	0,13	0,001	1
$Z_{th(r-a)}$	1,6	22	7	2,4	494	165	20	0,03

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

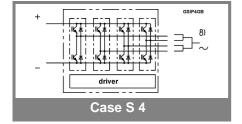
SKiiP 1242GB120-4D

Absolute	Maximum Ratings	_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	14	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

2-pack - integrated intelligent Power System

2-pack integrated gate driver

SKiiP 1242GB120-4D


Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 25/85/56

Characteristics					(T _a = 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units	
V_{S1}	supply voltage stabilized	14,4	15	15,6	V	
V_{S2}	supply voltage non stabilized	20	24	30	V	
I _{S1}	V _{S1} = 15 V	290+58	290+580*f/f _{max} +1,2*(I _{AC} /A)			
I _{S2}	V _{S2} = 24 V	220+420	220+420*f/f _{max} +0,85*(I _{AC} /A)			
V _{iT+}	input threshold voltage (High)			12,3	V	
V_{iT-}	input threshold voltage (Low)	4,6			V	
R _{IN}	input resistance		10			
t _{d(on)IO}	input-output turn-on propagation time			1,5	μs	
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs	
t _{pERRRESET}	error memory reset time	9			μs	
t_{TD}	top / bottom switch : interlock time		3,3		μs	
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage	1200			Α	
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA	
I _{A0max}	output current at pin 12/14			5	mA	
V _{0I}	logic low output voltage			0,6	V	
V _{0H}	logic high output voltage			30	V	
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		1500		Α	
I _{TRIPLG}	ground fault protection				Α	
T _{tp}	over temperature protection	110		120	°C	
U _{DCTRIP}	trip level of U _{DC} -protection	900			V	
30	(U _{analog OUT} = 9 V); (option)					

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

