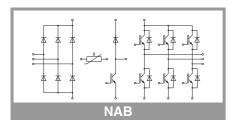


MiniSKiiP[®] 1

Converter-Inverter-Brake (CIB)

SKiiP 12NAB12T4V1

Features*


- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532

Typical Applications

- Inverter up to 12 kVA
- Typical motor power 5,5 kW

- Max. case temperature limited to $T_{C}{=}125^{\circ}C$
- Product reliability results valid for $T_j \leq 150^{\circ}C$ (recommended $T_{j,op}=-40...+150^{\circ}C$)
- T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information

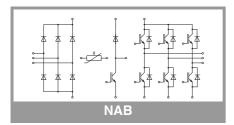
Absolute	e Maximum Rating	S			
Symbol	Conditions		Values	Unit	
Inverter -	IGBT				
V _{CES}	T _j = 25 °C		1200	V	
lc	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	28	Α	
	T _j = 175 °C	T _s = 70 °C	23	Α	
I _C	λ _{paste} =2.5 W/(mK)	T _s = 25 °C	31	А	
	T _j = 175 °C	T _s = 70 °C	26	А	
I _{Cnom}			15	А	
I _{CRM}			45	А	
V _{GES}			-20 20	V	
t _{psc}	$V_{CC} = 800 V$ $V_{GE} \le 15 V$ $V_{CES} \le 1200 V$	$T_j = 150 \ ^\circ C$	10	μs	
Tj			-40 175	°C	
Chopper	- IGBT		-		
V _{CES}	T _i = 25 °C		1200	V	
lc	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	28	Α	
	T _j = 175 °C	T _s = 70 °C	23	А	
lc	λ _{paste} =2.5 W/(mK)	T _s = 25 °C	31	Α	
	T _j = 175 °C	T _s = 70 °C	26	Α	
I _{Cnom}			15	А	
ICRM			45	А	
V _{GES}			-20 20	V	
t _{psc}	$V_{CC} = 800 V$ $V_{GE} \le 15 V$ $V_{CES} \le 1200 V$	T _j = 150 °C	10	μs	
Tj		1	-40 175	°C	
Inverse -	Diode				
V _{RRM}	T _i = 25 °C		1200	V	
IF	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	23	Α	
	T _j = 175 °C	T _s = 70 °C	18	Α	
l _F	λ _{paste} =2.5 W/(mK)	T _s = 25 °C	25	Α	
	T _j = 175 °C	T _s = 70 °C	20	Α	
I _{FRM}			45	А	
I _{FSM}	t _p = 10 ms, sin 180°	°, T _i = 150 °C	65	Α	
Tj			-40 175	°C	
	eling - Diode				
V _{RRM}	T _i = 25 °C		1200	V	
I _F	λ _{paste} =0.8 W/(mK)	T _s = 25 °C	23	А	
	$T_j = 175 \text{°C}$	T _s = 70 °C	18	Α	
lF	λ _{paste} =2.5 W/(mK)	T _s = 25 °C	25	Α	
	$T_j = 175 ^{\circ}C$	T _s = 70 °C	20	A	
I _{FRM}		1	45	A	
I _{FSM}	t _p = 10 ms, sin 180°	°, T _i = 150 °C	65	A	
Tj	$r_p = 10 \text{ ms}, \text{ sm 100}, r_j = 150 \text{ C}$		-40 175		

MiniSKiiP[®] 1

Converter-Inverter-Brake (CIB)

SKiiP 12NAB12T4V1

Features*


- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532

Typical Applications

- Inverter up to 12 kVA
- Typical motor power 5,5 kW

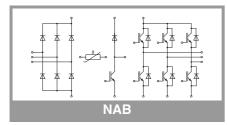
- Max. case temperature limited to $T_{C}{=}125^{\circ}C$
- Product reliability results valid for $T_j \le 150^{\circ}C$ (recommended $T_{j,op} = -40...+150^{\circ}C$)
- T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information

Absolute	Maximum Rating	S						
Symbol	Conditions			Values		Unit		
Rectifier	- Diode							
V _{RRM}	T _j = 25 °C			1600		V		
I _F λ _{paste} =0.8 W/(m		T _s = 25 °C		39				
	T _j = 150 °C	T _s = 70 °C		29				
I _F	λ _{paste} =2.5 W/(mK)	T _s = 25 °C		42				
	T _j = 150 °C	T _s = 70 °C		Α				
I _{FSM}	t _p = 10 ms	T _j = 25 °C		220				
	sin 180°	T _j = 150 °C		Α				
i²t	t _p = 10 ms	T _j = 25 °C		242				
	sin 180°	T _j = 150 °C		200				
Tj				-40 150		°C		
Module								
I _{t(RMS)}	$T_{terminal} = 80 \ ^{\circ}C,$			18		Α		
T _{stg}	module without TIN	module without TIM -40 125				°C		
V _{isol}	AC sinus 50 Hz, 1	min		2500		V		
Characte	victios							
	1		min	tun	mov	Unit		
Symbol	Conditions		min.	typ.	max.	Unit		
Inverter -	$I_{\rm C} = 15 \rm A$		1	1.05	0.10	V		
V _{CE(sat)}	$V_{GE} = 15 \text{ K}$	T _j = 25 °C		1.85	2.10	V		
	chiplevel	T _j = 150 °C		2.25	2.45	V		
V _{CE0}	chiplevel	T _j = 25 °C		0.80	0.90	V		
	chiplevel	T _j = 150 °C		0.70	0.80	V		
r _{CE}	V _{GE} = 15 V	T _j = 25 °C		70	80	mΩ		
	chiplevel	T _j = 150 °C		103	110	mΩ		
$V_{\text{GE(th)}}$	$V_{GE} = V_{CE}, I_C = 1 \text{ m}$	A	5			V		
I _{CES}	$V_{GE} = 0 V, V_{CE} = 12$	200 V, T _j = 25 °C			1	mA		
Cies	V _{CE} = 25 V	f = 1 MHz		0.90		nF		
C _{oes}	$V_{GE} = 25 V$ $V_{GE} = 0 V$	f = 1 MHz		0.08		nF		
C _{res}		f = 1 MHz		0.06		nF		
Q _G	V _{GE} = - 8 V+ 15 V	1		85		nC		
R _{Gint}	T _j = 25 °C	1		0		Ω		
t _{d(on)}	$V_{CC} = 600 V$	T _j = 150 °C		15		ns		
t _r	I _C = 15 A - R _{G on} = 16 Ω	T _j = 150 °C		25		ns		
Eon	$R_{\rm G off} = 16 \Omega$	T _j = 150 °C		1.4		mJ		
t _{d(off)}		T _j = 150 °C		260		ns		
t _f		T _j = 150 °C	1	75		ns		
E _{off}	V _{GE} = +15/-15 V	T _j = 150 °C		1.3		mJ		
R _{th(j-s)}	per IGBT, $\lambda_{paste}=0.1$	8 W/(mK)	1	1.3		K/W		
R _{th(j-s)}	per IGBT, λ _{paste} =2.			1.1				

MiniSKiiP[®] 1

Converter-Inverter-Brake (CIB)

SKiiP 12NAB12T4V1


Features*

- Trench 4 IGBTs
- · Robust and soft switching freewheeling diodes in CAL technology
- · Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532

Typical Applications

- Inverter up to 12 kVA
- Typical motor power 5,5 kW

- · Max. case temperature limited to T_C=125°C
- · Product reliability results valid for Tj≤150°C (recommended T_{j.op}=-40...+150°C) • MiniSKiiP "Technical Explanations"
- and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information

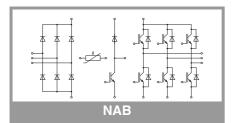
Charact	eristics					
Symbol	Conditions		min.	typ.	max.	Unit
Chopper	- IGBT					
V _{CE(sat)}	I _C = 15 A	T _i = 25 °C		1.85	2.10	V
- ()	V _{GE} = 15 V	T _i = 150 °C		2.25	2.45	v
V	chiplevel	-		-		_
V _{CE0}	chiplevel	$T_j = 25 °C$		220 210 0.80 0.90 0.70 0.80 70 80 103 110 5.8 6.5 1 0.90 0.08 0 0.90 0.08 0.06 85 0 15 25 1.4 260 75 1.3 1.3 1.3 1.1 2.38 2.71 2.44 2.77 1.30 1.50	V	
		T _j = 150 °C				V
r _{CE}	V _{GE} = 15 V chiplevel	$T_j = 25 °C$		-		mΩ
N/		T _j = 150 °C	-			mΩ
V _{GE(th)}	$V_{GE} = V_{CE}, I_C = 1 \text{ m}$		5	5.8		V
	$V_{GE} = 0 V, V_{CE} = 12$			0.00	I	mA
Cies	V _{CE} = 25 V	f = 1 MHz	_			nF
Coes	V _{GE} = 0 V	f = 1 MHz				nF
Cres		f = 1 MHz				nF
Q _G	V _{GE} = - 8 V+ 15 V					nC
R _{Gint}	$T_j = 25 \ ^{\circ}C$ $V_{CC} = 600 \ V$	T 150 %C		-		Ω
t _{d(on)}	$V_{CC} = 600 V$ $I_{C} = 15 A$	T _j = 150 °C				ns
t _r	$-R_{G on} = 16 \Omega$	T _j = 150 °C T _i = 150 °C				ns
Eon	$R_{G off} = 16 \Omega$,				mJ
t _{d(off)}		T _j = 150 °C				ns
t _f		T _j = 150 °C		75		ns
E _{off}	V _{GE} = +15/-15 V	T _j = 150 °C		1.3		mJ
R _{th(j-s)}	per IGBT, λ _{paste} =0.8	3 W/(mK)		1.3		K/W
R _{th(j-s)}	per IGBT, λ_{paste} =2.5 W/(mK)			1.1		K/W
Inverse -	Diode					
$V_F = V_{EC}$	I _F = 15 A	T _i = 25 °C		2.38	2.71	V
	$V_{GE} = 0 V$	T _i = 150 °C		2 44	2 77	v
N/	chiplevel					-
V _{F0}	chiplevel	$T_j = 25 \degree C$	_			V
	chiplevel	T _j = 150 °C		0.90	1.10	-
r _F		$T_j = 25 \degree C$		72	81	mΩ
		$T_j = 150 ^{\circ}C$		103	111	mΩ
	$I_F = 15 \text{ A}$ di/dt _{off} = 1180 A/µs	T _j = 150 °C		28		A
Q _{rr}	$-V_{GE} = -15 V$			2.6		μC
Err	$V_{CC} = 600 V$	T _j = 150 °C		1.1		mJ
R _{th(j-s)}	per Diode, $\lambda_{\text{paste}}=0$.			1.92		K/V
R _{th(j-s)}	per Diode, $\lambda_{\text{paste}}=2$.	5 W/(mK)		1.66		K/W
	eling - Diode		_			-
$V_{\rm F} = V_{\rm EC}$	$I_{\rm F} = 15 \rm A$	T _j = 25 °C		2.38	2.71	V
	V _{GE} = 0 V chiplevel	T _j = 150 °C		2.44	2.77	V
V _{F0}		T _i = 25 °C	-	1.30	1.50	v
10	chiplevel	$T_i = 150 ^{\circ}C$	-	0.90	1.10	V
r _F		$T_i = 25 \text{ °C}$		72	81	mΩ
1F	chiplevel	$T_i = 150 \text{ °C}$	_	103	111	mΩ
	I _F = 15 A	$T_i = 150 \text{ °C}$		28		A
I _{RRM} Q _{rr}	di/dt _{off} = 1180 A/µs	$T_i = 150 \text{ °C}$	-	2.6		μC
	– V _{GE} = -15 V	1 _j =100 0				
Err	$V_{CC} = 600 V$	T _j = 150 °C		1.1		mJ
R _{th(j-s)}	per Diode, $\lambda_{\text{paste}}=0$.			1.92		K/W
R _{th(j-s)}	per Diode, λ _{paste} =2.	5 W/(mK)	1	1.66		K/W

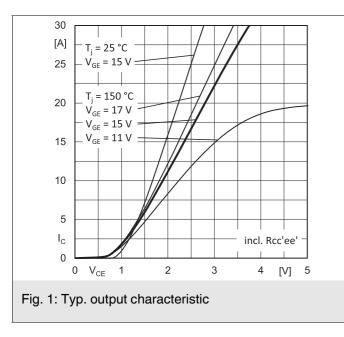
MiniSKiiP[®] 1

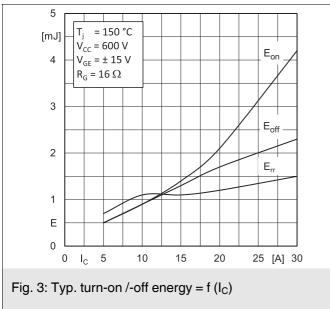
Converter-Inverter-Brake (CIB)

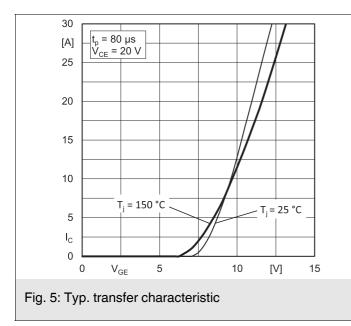
SKiiP 12NAB12T4V1

Features*


- Trench 4 IGBTs
- Robust and soft switching freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognized: File no. E63532


Typical Applications


- Inverter up to 12 kVA
- Typical motor power 5,5 kW


- Max. case temperature limited to $T_{C}{=}125^{\circ}C$
- Product reliability results valid for $T_j \le 150^{\circ}C$ (recommended $T_{i,oo} = -40...+150^{\circ}C$)
- T_{j,op}=-40...+150°C)
 MiniSKiiP "Technical Explanations" and "Mounting Instructions" are part of the data sheet. Please refer to both documents for further information

Characte	ristics					
Symbol	Conditions	min.	typ.	max.	Unit	
Rectifier -	Diode					
$V_{F} = V_{EC}$	I _F = 8 A	T _j = 25 °C		1.00	1.21	V
	chiplevel	T _j = 125 °C		0.90	1.10	V
V _{F0}	chiplevel	T _j = 25 °C		0.88	0.98	V
		T _j = 125 °C		0.73	0.83	V
r _F	chiplevel	T _j = 25 °C		15	29	mΩ
		T _j = 125 °C		21	34	mΩ
I _R	T _j = 145 °C, V _{RRM}				1.1	mA
R _{th(j-s)}	per Diode, λ _{paste} =0.8 W/(mK)			1.5		K/W
R _{th(j-s)}	per Diode, λ_{paste} =2.5 W/(mK)			1.29		K/W
Module	·					
Ms	to heat sink		2		2.5	Nm
W			30			g
L _{CE}		-			nH	
Temperat	ure Sensor					•
R ₁₀₀	T _r =100°C (R ₂₅ =1000Ω)			1670 ± 3%		Ω
R _(T)	$\begin{array}{l} R_{(T)}{=}1000\Omega[1{+}]\\ ,A=7.635{}^{*}10{}^{-}\\ B=1.731{}^{*}10{}^{-5}\end{array}$					

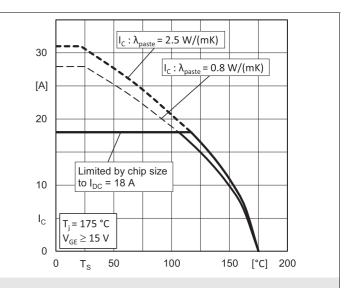
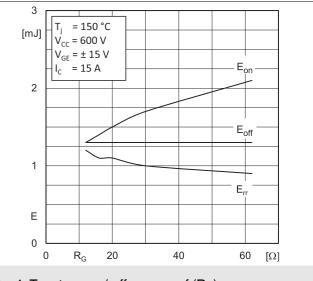
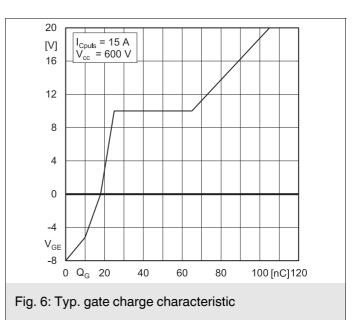
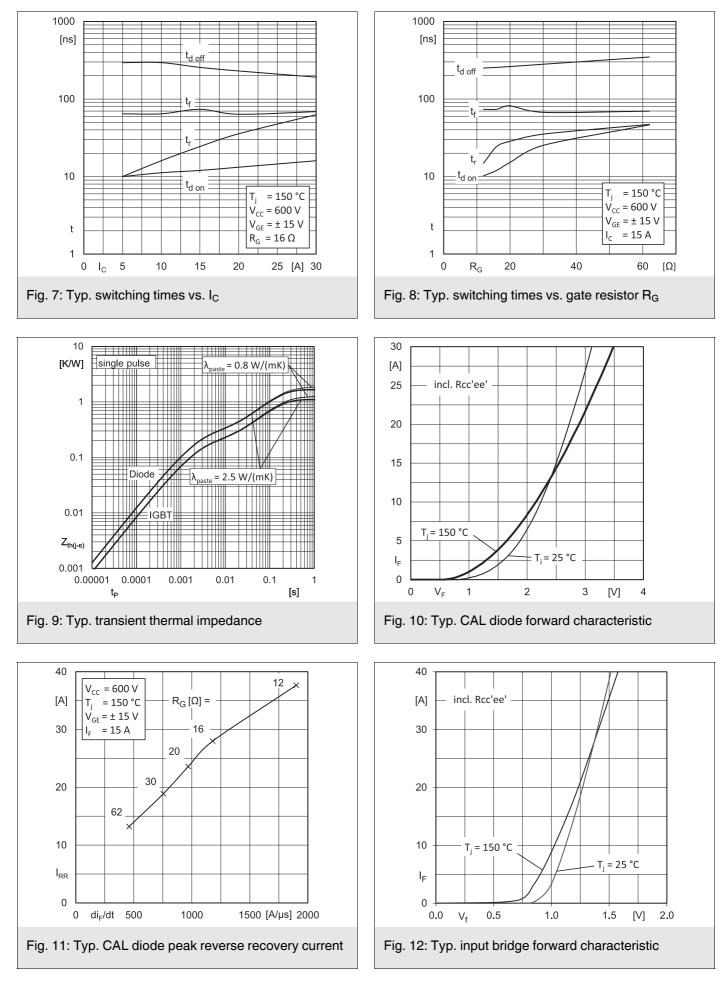
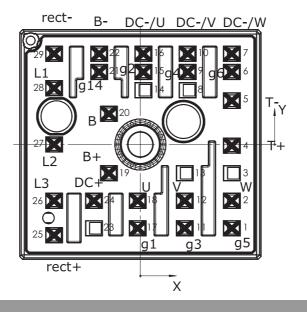
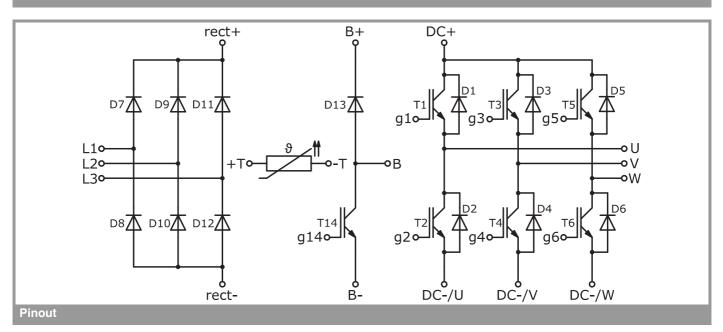


Fig. 2: Typ. rated current vs. temperature Ic = f(Ts)


Fig. 4: Typ. turn-on /-off energy = $f(R_G)$



Pin out								
Pin	X	Y	Function	Pin	X	Y	Function	
1	15,93	-14,60	g5	16	0,53	15,80	DC-/U	
2	15,93	-9,80	W	17	-0,48	-14,6	g1	
3	15,93	-5,00		18	-0,48	-9,80	U	
4	15,93	-0,20	T+	19	-5,48	-5,00	B+	
5	15,93	7,63	Т-	20	-5,48	5,35	В	
6	15,93	12,63	g6	21	-7,18	12,63	g14	
7	15,93	15,80	DC-/W	22	-7,18	15,80	В-	
8	8,23	9,45		23	-8,08	-14,60		
9	8,23	12,63	g4	24	-8,08	-9,80	DC+	
10	8,23	15,80	DC-/V	25	-15,03	-15,80	rect+	
11	7,73	-14,60	g3	26	-15,03	-9,80	L3	
12	7,73	-9,80	V	27	-15,03	0	L2	
13	7,73	-5,00		28	-15,03	9,80	L1	
14	0,53	9,45		29	-15,03	15,80	rect-	
15	0,53	12,63	g2					

all values in mm

Pinout and Dimensions

This is an electrostatic discharge sensitive device (ESDS) due to international standard IEC 61340.

***IMPORTANT INFORMATION AND WARNINGS**

The specifications of SEMIKRON products may not be considered as guarantee or assurance of product characteristics ("Beschaffenheitsgarantie"). The specifications of SEMIKRON products describe only the usual characteristics of products to be expected in typical applications, which may still vary depending on the specific application. Therefore, products must be tested for the respective application in advance. Application adjustments may be necessary. The user of SEMIKRON products is responsible for the safety of their applications embedding SEMIKRON products and must take adequate safety measures to prevent the applications from causing a physical injury, fire or other problem if any of SEMIKRON products become faulty. The user is responsible to make sure that the application design is compliant with all applicable laws, regulations, norms and standards. Except as otherwise explicitly approved by SEMIKRON in a written document signed by authorized representatives of SEMIKRON, SEMIKRON products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. No representation or warranty is given and no liability is assumed with respect to the accuracy, completeness and/or use of any information herein, including without limitation, warranties of non-infringement of intellectual property rights of any third party. SEMIKRON does not assume any liability arising out of the applications or use of any product; neither does it convey any license under its patent rights, copyrights, trade secrets or other intellectual property rights, nor the rights of others. SEMIKRON makes no representation or warranty of non-infringement or alleged non-infringement of intellectual property rights of any third party which may arise from applications. Due to technical requirements our products may contain dangerous substances. For information on the types in question please contact the nearest SEMIKRON sales office. This document supersedes and replaces all information previously supplied and may be superseded by updates. SEMIKRON reserves the right to make changes.