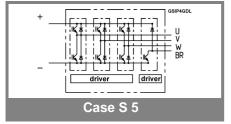

SKiiP 132GDL120-4DU

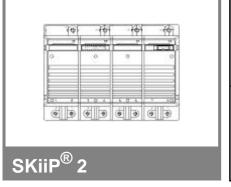
SKiiP[®] 2

7-pack - integrated intelligent Power System


Power section - 3 phase bridge SKiiP 132GDL120-4DU

Power section features

- SKiiP technology inside
- · CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- 1) with assembly of suitable MKP capacitor per terminal


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT			•			
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	150 (112,5)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	150 (112,5)	Α			
I _{FSM}	$T_j = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	1440	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	10	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 15 0 (125)	°C			
V_{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characteristics $T_s = 25$						C unless	otherwise s	specified
	Conditions				s min.	typ.	max.	Units
IGBT	Conditio	113			1111111.	ιyp.	IIIax.	Ullita
V _{CEsat}	I _C = 125 A,	T = 25 /1	25\ °C		I	2,6 (3,1)	3,1	V
V _{CEO}	$T_i = 25 (125)$		23) 0			,	1,5 (1,6)	V
r _{CE}	$T_i = 25 (125)$						12,6 (16,1)	mΩ
	$V_{GE} = 0 \text{ V},$					(10)	0.4	mA
I _{CES}	-		ES [,]			(10)	0,4	ША
	T _j = 25 (125		0.17				00	
$E_{on} + E_{off}$	I _C = 125 A,						38	mJ
	T _j = 125 °C						66	mJ
R _{CC' + EE'}	terminal chi	J	5 °C			0,5		mΩ
L _{CE}	top, bottom					15		nΗ
C _{CHC}	per phase,	AC-side				1,4		nF
Inverse o	diode							
$V_F = V_{EC}$	I _F = 150 A,	$T_i = 25 (1$	25) °C			2,1 (1,9)	2,6	V
V_{TO}	$T_i = 25 (125)$					1,3 (1)	1,4 (1,1)	V
r _T	$T_{j} = 25 (125)$					5 (6)	6,8 (7,8)	$m\Omega$
E _{rr}	I _C = 125 A,	$V_{CC} = 60$	0 V				6	mJ
	T _j = 125 °C	, V _{CC} = 90	00 V				8	mJ
Mechani	cal data							
M _{dc}	DC termina	ls, SI Uni	ts		6		8	Nm
M _{ac}	AC terminals, SI Units				13		15	Nm
w	SKiiP® 2 System w/o heat sink					3,5		kg
w	heat sink					8,5		kg
Thermal	characte	ristics (P16 hea	t sink; 2	75 m ³ /h):	"_" refe	rence to	
	ture sense			,	,	r		
R _{th(i-s)I}	per IGBT						0,18	K/W
R _{th(j-s)D}	per diode						0,375	K/W
R _{th(s-a)}	per module						0,036	K/W
Z _{th}	R _i (mK/W) (max. values)				tau _i (s)			
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	20	139	22	0	1	0,13	0,001	1
$Z_{th(j-r)D}$	41	289	45	0	1	0,13	0,001	1
Z _{th(r-a)}	1,7	24	7,6	2,6	494	165	20	0,03

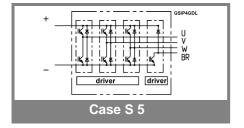
This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 132GDL120-4DU

Absolute Maximum Ratings		_a = 25 °C unless otherwise specified		
Symbol	Conditions	Values	Units	
V_{S1}	stabilized 15 V power supply	18	V	
V_{S2}	unstabilized 24 V power supply	30	V	
V_{iH}	input signal voltage (high)	15 + 0,3	V	
dv/dt	secondary to primary side	75	kV/μs	
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac	
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac	
f _{sw}	switching frequency	20	kHz	
f _{out}	output frequency for I=I _C ;sin.	1	kHz	
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C	

7-pack - integrated intelligent Power System

7-pack integrated gate driver - 3 phase bridge SKiiP 132GDL120-4DU


Gate driver features

- · CMOS compatible inputs
- · Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- · Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformer
- IEC 60068-1 (climate) 40/85/56

Characte		$(T_a = 25)$			
Symbol	Conditions	min.	typ.	max.	Units
V _{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	410+280	410+280*f/f _{max} +3,6*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	300+200*f/f _{max} +2,6*(I _{AC} /A)			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
$t_{d(on)IO}$	input-output turn-on propagation time			1,5	μs
t _{d(off)IO}	input-output turn-off propagation time			1,4	μs
t _{pERRRESET}	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		2,3		μs
I _{analogOUT}	8 V corresponds to		150		Α
1	max. current of 15 V supply voltage (available when supplied with 24 V)			50	mA
Vs1outmax	output current at pin 13/20/22/24/26			5	mA
A _{0max}	·				V
V _{0I}	logic low output voltage			0,6	•
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		188		Α
I _{TRIPLG}	ground fault protection		43		Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

