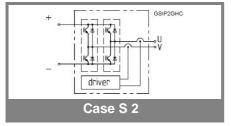

SKiiP 132GH120-212CTV

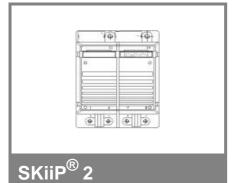
4-pack - integrated intelligent Power System

Power section


SKiiP 132GH120-212CTV

Features

- · SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 2 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP® 2 power section)
- UL recognized File no. E63532 (SKiiP® 2 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)


Absolute Maximum Ratings		s = 25 °C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V_{CES}		1200	V			
V _{CES} V _{CC} 1)	Operating DC link voltage	900	V			
V_{GES}		± 20	V			
I _C	T _s = 25 (70) °C	150 (112,5)	Α			
Inverse diode						
$I_F = -I_C$	T _s = 25 (70) °C	150 (112,5)	Α			
I _{FSM}	$T_i = 150 ^{\circ}\text{C}, t_p = 10 \text{ms}; \text{sin}.$	1440	Α			
I²t (Diode)	Diode, T _j = 150 °C, 10 ms	10	kA²s			
T_j , (T_{stg})		- 40 (- 25) + 150 (125)	°C			
V _{isol}	AC, 1 min. (mainterminals to heat sink)	3000	V			

Characte	Characteristics $T_s = 25$ °C unless otherwise specified								
Symbol	Conditions				min.	typ.	max.	Units	
IGBT									
V _{CEsat}	I _C = 125 A	., T _i = 25 (1	25) °C			2,6 (3,1)	3,1	V	
	$T_j = 25 (12)$ $T_j = 25 (12)$	25) [°] °C					1,5 (1,6)	V	
r_{CE}	$T_j = 25 (12)$	25) °C				10,5 (14)	12,6 (16,1)	mΩ	
I _{CES}	$V_{GE} = 0 V$, V _{CE} = V _{CE}	S,			(10)	0,4	mA	
	$T_i = 25 (12)$	25) °C							
E _{on} + E _{off}	I _C = 125 A		V				38	mJ	
011 011	•	C, V _{CC} = 90					66	mJ	
R _{CC' + EE'}	terminal cl	hip, T _i = 12	5 °C			0,5		mΩ	
L _{CE}	top, bottor	n ′				15		nΗ	
C _{CHC}	per phase	, AC-side				1,4		nF	
Inverse o	diode								
$V_F = V_{EC}$	I _F = 150 A	, T _i = 25 (12	25) °C			2,1 (1,9)	2,6	V	
V_{TO}	$T_i = 25 (12)$	25) °C				1,3 (1)	1,4 (1,1)	V	
	$T_j = 25 (12)$					5 (6)	6,8 (7,8)	mΩ	
E _{rr}	I _C = 125 A	$V_{CC} = 600$) V				6	mJ	
	T _j = 125 °0	$C, V_{CC} = 90$	00 V				8	mJ	
Mechani	cal data								
M_{dc}	DC termin	als, SI Unit	s		6		8	Nm	
M_{ac}	AC terminals, SI Units				13		15	Nm	
W	SKiiP® 2 System w/o heat sink					1,9		kg	
w	heat sink					4,7		kg	
Thermal	characte	eristics (l	P16 hea	t sink; 3	10 m ³ /h)	; " _r " refe	rence to		
temperat									
$R_{th(j-s)l}$	per IGBT						0,18	K/W	
$R_{th(j-s)D}$	per diode						0,375	K/W	
$R_{th(s-a)}$	per modul	е					0,044	K/W	
Z_{th}	R _i (mK/W) (max. values)					tau _i (s)			
	1	2	3	4	1	2	3	4	
$Z_{th(j-r)I}$	20	139	22		1	0,13	0,001		
$Z_{th(j-r)D}$	41	289	45		1	0,13	0,001		
$Z_{th(r-a)}$	14,2	19,3	6,8	3,7	262	50	5	0,02	

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

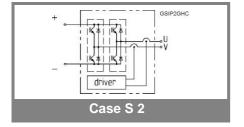
SKiiP 132GH120-212CTV

4-pack - integrated intelligent Power System

4-pack integrated gate driver

SKiiP 132GH120-212CTV

Gate driver features


- · CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 25/85/56 (SKiiP[®] 2 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V_{S1}	stabilized 15 V power supply	18	V		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{iH}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, r.m.s., 2s)	3000	Vac		
V _{isol12}	output 1 / output 2 (AC, r.m.s., 2s)	1500	Vac		
f_{max}	switching frequency	20	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 25 + 85	°C		

Characteristics (T _a				= 25 °C)	
Symbol	Conditions	min.	typ.	max.	Units
V_{S1}	supply voltage stabilized	14,4	15	15,6	V
V_{S2}	supply voltage non stabilized	20	24	30	V
I _{S1}	V _{S1} = 15 V	230+150	230+150*f/f _{max} +1,3*(I _{AC} /A)		
I _{S2}	V _{S2} = 24 V	170+130	170+130*f/f _{max} +1,0*(I _{AC} /A)		
V_{iT+}	input threshold voltage (High)	11,2			V
V_{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
t _{d(on)IO}	input-output turn-on propagation time		1,2		μs
t _{d(off)IO}	input-output turn-off propagation time		1,6		μs
t _{pERRRESET}	error memory reset time	9			μs
t_{TD}	top / bottom switch : interlock time		2,3		μs
I _{analogOUT}	8 V corresponds to max. current of 15 V supply voltage		150		Α
I _{Vs1outmax}	(available when supplied with 24 V)			50	mA
I _{A0max}	output current at pin 15/16/18/19			5	mA
V _{0I}	logic low output voltage			0,6	V
V _{0H}	logic high output voltage			30	V
I _{TRIPSC}	over current trip level (I _{analog OUT} = 10 V)		188		Α
I _{TRIPLG}	ground fault protection		43		Α
T _{tp}	over temperature protection	110		120	°C
U _{DCTRIP}	trip level of U _{DC} -protection	900			V
	(U _{analog OUT} = 9 V); (option)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

