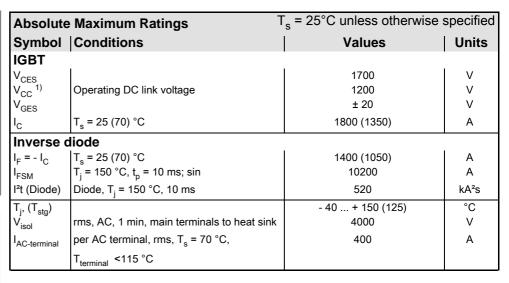

## SKiiP 1803GB172-3DW



SKiiP® 3

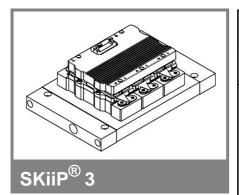

## 2-pack-integrated intelligent Power System

### Power section SKiiP 1803GB172-3DW


Data

#### **Power section features**

- SKiiP technology inside
- Trench IGBTs
- CAL diode technology
- · Integrated current sensor
- Integrated teperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP<sup>®</sup> 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request




| Characteristics                  |                                                                                  |                                                   |           | T <sub>s</sub> = 25°C unless otherwise specified |                      |                      |           |        |  |
|----------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------|-----------|--------------------------------------------------|----------------------|----------------------|-----------|--------|--|
| Symbol                           | mbol  Conditions                                                                 |                                                   |           |                                                  | min.                 | typ.                 | max.      | Units  |  |
| IGBT                             |                                                                                  |                                                   |           |                                                  |                      |                      |           |        |  |
| V <sub>CEsat</sub>               | $I_C = 900 \text{ A}, T_j = 25 (125) ^{\circ}\text{C};$ measured at terminal     |                                                   |           |                                                  |                      | 1,9 (2,2)            | 2,4       | ٧      |  |
| $V_{CEO}$                        | $T_i = 25 (12)$                                                                  | 5) °C; at t                                       | erminal   |                                                  |                      | 1 (0,9)              | 1,2 (1,1) | V      |  |
| $r_{CE}$                         | $T_{j} = 25 (12)$                                                                |                                                   |           |                                                  |                      | 1 (1,4)<br>3,6 (216) | 1,3 (1,7) | mΩ     |  |
| I <sub>CES</sub>                 | $V_{GE} = 0 \text{ V}, V_{CE} = V_{CES},$<br>$T_{i} = 25 (125) ^{\circ}\text{C}$ |                                                   |           |                                                  |                      | mA                   |           |        |  |
| $E_{on} + E_{off}$               | $I_{\rm C} = 900  \text{A},  V_{\rm CC} = 900  \text{V}$                         |                                                   |           |                                                  |                      | mJ                   |           |        |  |
|                                  | T <sub>j</sub> = 125 °C                                                          | T <sub>j</sub> = 125 °C, V <sub>CC</sub> = 1200 V |           |                                                  |                      | 863                  |           |        |  |
| R <sub>CC+EE</sub>               | terminal ch                                                                      | ip, T <sub>i</sub> = 25                           | 5 °C      |                                                  | 0,17                 |                      |           | mΩ     |  |
| L <sub>CE</sub>                  | top, bottom                                                                      | 1                                                 |           |                                                  | 4                    |                      |           | nΗ     |  |
| C <sub>CHC</sub>                 | per phase, AC-side                                                               |                                                   |           |                                                  | 3                    |                      |           | nF     |  |
| Inverse o                        | Inverse diode                                                                    |                                                   |           |                                                  |                      |                      |           |        |  |
| $V_F = V_{EC}$                   | I <sub>F</sub> = 900 A,<br>measured at to                                        | T <sub>j</sub> = 25 ( <i>*</i><br>erminal         | 125) °C   |                                                  |                      | 2 (1,8)              | 2,15      | V      |  |
| $V_{TO}$                         | T <sub>i</sub> = 25 (12                                                          | 5) °C                                             |           |                                                  |                      | 1,1 (0,8)            | 1,2 (0,9) | V      |  |
| r <sub>T</sub>                   | $T_i = 25 (125) ^{\circ}C$                                                       |                                                   |           |                                                  |                      | 1 (1,1)              | 1,1 (1,2) | mΩ     |  |
| Ė <sub>rr</sub>                  | $I_{\rm C} = 900  \text{A},  V_{\rm CC} = 900  \text{V}$                         |                                                   |           |                                                  |                      | 108                  | , ,       | mJ     |  |
|                                  | T <sub>j</sub> = 125 °C, V <sub>CC</sub> = 1200 V                                |                                                   |           |                                                  |                      | 128                  |           | mJ     |  |
| Mechani                          | cal data                                                                         |                                                   |           |                                                  |                      |                      |           |        |  |
| $M_{dc}$                         | DC terminals, SI Units                                                           |                                                   |           |                                                  | 6                    |                      | 8         | Nm     |  |
| M <sub>ac</sub>                  | AC terminals, SI Units                                                           |                                                   |           |                                                  | 13                   |                      | 15        | Nm     |  |
| W                                | SKiiP® 3 System w/o heat sink                                                    |                                                   |           |                                                  |                      | 2,4                  |           | kg     |  |
| W                                | heat sink                                                                        |                                                   |           |                                                  |                      | 5,2                  |           | kg     |  |
|                                  |                                                                                  |                                                   |           |                                                  |                      | c); "s" ref          |           |        |  |
|                                  | 1                                                                                | e to bui                                          | it-in tem | perature                                         | sensor               | (acc.IEC             |           |        |  |
| R <sub>th(j-s)I</sub>            | per IGBT                                                                         |                                                   |           |                                                  |                      |                      | 0,017     | K/W    |  |
| R <sub>th(j-s)D</sub>            | per diode                                                                        |                                                   |           |                                                  |                      | 1-                   | 0,033     | K/W    |  |
| $Z_{th}$                         | R <sub>i</sub> (mK/W) (max. values)<br>1 2 3 4                                   |                                                   |           |                                                  | tau <sub>i</sub> (s) |                      |           | 4      |  |
| 7                                | 1,4                                                                              | 2<br>6,8                                          | 3<br>7,8  | 0                                                | 69                   | 2<br>0,35            | 0,02      | 4<br>1 |  |
| $Z_{th(j-r)l}$<br>$Z_{th(j-r)D}$ | 2,6                                                                              | 4                                                 | 17,7      | 17,7                                             | 50                   | 5                    | 0,02      | 0,04   |  |
| $Z_{th(r-a)}$                    | 4,6                                                                              | 4,7                                               | 1,1       | 0,6                                              | 48                   | 15                   | 2,8       | 0,4    |  |
| 11(1-a)                          | 1                                                                                | •                                                 | *         | •                                                |                      |                      | -         | •      |  |



This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

## SKiiP 1803GB172-3DW



# 2-pack-integrated intelligent Power System

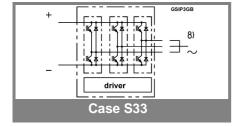
2-pack integrated gate driver SKiiP 1803GB172-3DW

Data

#### Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

| Absolute            | Maximum Ratings                                                       | a = 25°C unless otherwise specified |       |  |
|---------------------|-----------------------------------------------------------------------|-------------------------------------|-------|--|
| Symbol              | Conditions                                                            | Values                              | Units |  |
| $V_{S2}$            | unstabilized 24 V power supply                                        | 30                                  | V     |  |
| $V_{i}$             | input signal voltage (high)                                           | 15 + 0,3                            | V     |  |
| dv/dt               | secondary to primary side                                             | 75                                  | kV/μs |  |
| $V_{isollO}$        | input / output (AC, rms, 2s)                                          | 4000                                | V     |  |
| V <sub>isoIPD</sub> | partial discharge extinction voltage,<br>rms, Q <sub>PD</sub> ≤10 pC; | 1500                                | V     |  |
| V <sub>isol12</sub> | output 1 / output 2 (AC, rms, 2s)                                     | 1500                                | V     |  |
| f <sub>sw</sub>     | switching frequency                                                   | 9                                   | kHz   |  |
| f <sub>out</sub>    | output frequency for I <sub>peak(1)</sub> =I <sub>C</sub>             | 9                                   | kHz   |  |
| $T_{op} (T_{stg})$  | operating / storage temperature                                       | - 40 <b>+</b> 85                    | °C    |  |

| Characte               | eristics                                         | (T <sub>a</sub> = 25°C                                 |                    |      |       |
|------------------------|--------------------------------------------------|--------------------------------------------------------|--------------------|------|-------|
| Symbol                 | Conditions                                       | min.                                                   | typ.               | max. | Units |
| $V_{S2}$               | supply voltage non stabilized                    | 13                                                     | 24                 | 30   | V     |
| I <sub>S2</sub>        | V <sub>S2</sub> = 24 V                           | 380+34*f/kHz+0,00015*(I <sub>AC</sub> /A) <sup>2</sup> |                    |      | mA    |
| V <sub>iT+</sub>       | input threshold voltage (High)                   |                                                        |                    | 12,3 | V     |
| $V_{iT-}$              | input threshold voltage (Low)                    | 4,6                                                    |                    |      | V     |
| R <sub>IN</sub>        | input resistance                                 |                                                        | 10                 |      | kΩ    |
| C <sub>IN</sub>        | input capacitance                                |                                                        | 1                  |      | nF    |
| t <sub>d(on)IO</sub>   | input-output turn-on propagation time            |                                                        | 1,3                |      | μs    |
| $t_{d(off)IO}$         | input-output turn-off propagation time           |                                                        | 1,3                |      | μs    |
| t <sub>pERRRESET</sub> | error memory reset time                          |                                                        | 9                  |      | μs    |
| $t_{TD}$               | top / bottom switch interlock time               |                                                        | 3,3                |      | μs    |
| I <sub>analogOUT</sub> | max. 5mA; 8 V corresponds to 15 V supply         |                                                        | 1500               |      | Α     |
|                        | voltage for external components                  |                                                        |                    |      |       |
| I <sub>s1out</sub>     | max. load current                                |                                                        |                    | 50   | mA    |
| I <sub>TRIPSC</sub>    | over current trip level                          |                                                        |                    |      |       |
|                        | $(I_{analog} OUT = 10 V)$                        |                                                        | 1875               |      | Α     |
| $T_tp$                 | over temperature protection                      | 110                                                    |                    | 120  | °C    |
| U <sub>DCTRIP</sub>    | $U_{DC}$ -protection ( $U_{analog OUT} = 9 V$ ); |                                                        | not<br>implemented | i    | V     |
|                        | (option for GB types)                            |                                                        |                    |      |       |

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

