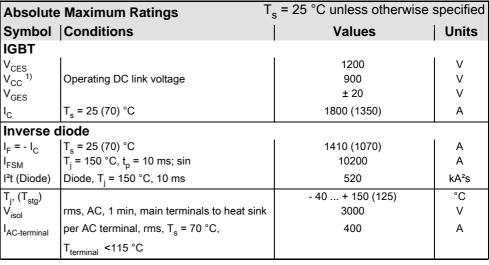
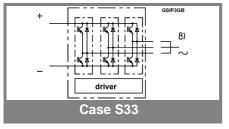

SKiiP 1813GB123-3DL

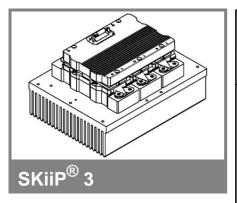

2-pack-integrated intelligent Power System

Power Section SKiiP 1813GB123-3DL

Data


Power section features

- SKiiP technology inside
- Trench IGBTs
- CAL HD diode technology
- Integrated current sensor
- · Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP® 3 System)
- IEC 60068-1 (climate) 40/125/56
- UL recognized file no. E63532
- with assembly of suitable MKP capacitor per terminal
- 8) AC connection busbars must be connected by the user; copper busbars available on request


Characte	eristics	T _s = 25 °	T _s = 25 °C unless otherwise specified				
Symbol	Conditions	min.	min. typ. max.				
IGBT		·					
V _{CEsat}	I_C = 900 A, T_j = 25 (125) °C; measured at terminal		1,7 (1,9)	2,1	V		
V_{CEO}	T _i = 25 (125) °C; at terminal		0,9 (0,8)	1,1 (1)	V		
r _{CE}	T _i = 25 (125) °C; at terminal		0,9 (1,3)	1,3 (1,6)	mΩ		
I _{CES}	$V'_{GE} = 0 \text{ V, } V_{CE} = V_{CES},$ $T_i = 25 (125) ^{\circ}C$		3,6 (108)		mA		
$E_{on} + E_{off}$	I _C = 900 A, V _{CC} = 600 V		331		mJ		
	T _j = 125 °C, V _{CC} = 900 V		585		mJ		
R _{CC+EE} ,	terminal chip, T _i = 25 °C		0,17		mΩ		
L _{CE}	top, bottom		4		nΗ		
C _{CHC}	per phase, AC-side		5,1		nF		
Inverse	diode						
$V_F = V_{EC}$	I _F = 900 A, T _j = 25 (125) °C measured at terminal		1,5 (1,5)	1,8	V		
V_{TO}	T _i = 25 (125) °C		0,9 (0,7)	1,1 (0,9)	V		
r _T	T _i = 25 (125) °C		0,7 (0,9)	0,8 (1)	mΩ		
E _{rr}	I _C = 900 A, V _{CC} = 600 V		63		mJ		
	$T_j = 125 ^{\circ}\text{C}, V_{CC} = 900 ^{\circ}\text{V}$		84		mJ		
Mechani	ical data						
M _{dc}	DC terminals, SI Units	6		8	Nm		
M _{ac}	AC terminals, SI Units	13		15	Nm		
W	SKiiP® 3 System w/o heat sink		2,4		kg		
w	heat sink		7,5		kg		
Thermal characteristics (PX 16 heat sink with fan SKF 16B-230-1); "s" reference to heat sink; "r" reference to built-in temperature sensor (acc. IEC 60747-15)							
$R_{th(j-s)l}$	per IGBT			0,02	K/W		
0 5/.							

100141-13	')							
$R_{th(j-s)l}$	per IGB1	Γ					0,02	K/W
$R_{th(j-s)D}$	per diode	е					0,038	K/W
Z _{th}	R _i (mK/V	V) (max. valı	ues)			tau	_i (s)	
	1	2	3	4	1	2	3	4
$Z_{th(j-r)I}$	3,4	9,6	7	0	363	0,18	0,04	1
$Z_{\text{th(j-r)D}}$	12	12	18	20	30	5	0,25	0,04
Z _{th(r-a)}	2,1	20	5,5	1,4	210	85	11	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

SKiiP 1813GB123-3DL

2-pack-integrated intelligent Power System

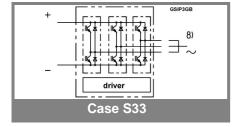
2-pack integrated gate driver SKiiP 1813GB123-3DL

Data

Gate driver features

- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and

DC-bus voltage (option)


- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protection against under voltage
- Interlock of top/bottom switch
- · Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 60068-1 (climate) 40/85/56
- UL recognized file no. 242581

Absolute Maximum Ratings		T _a = 25 °C unless otherwise specified			
Symbol	Conditions	Values	Units		
V_{S2}	unstabilized 24 V power supply	30	V		
V_{i}	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/μs		
V_{isollO}	input / output (AC, rms, 2)	3000	V		
V _{isoIPD}	partial discharge extinction voltage, rms, Q _{PD} ≤10 pC;	1170	V		
V _{isol12}	output 1 / output 2 (AC, rms, 2 s)	1500	V		
f _{sw}	switching frequency	10	kHz		
f _{out}	output frequency for I _{peak(1)} =I _C	10	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

Characte	eristics	(T _a = 25 °C			
Symbol	Conditions	min.	typ.	max.	Units
V_{S2}	supply voltage non stabilized	13	24	30	V
I _{S2}	V _{S2} = 24 V	278+37*f/kHz+0,00015*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)			12,3	V
V_{iT-}	input threshold voltage (Low)	4,6			V
R _{IN}	input resistance		10		kΩ
C_{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,3		μs
$t_{d(off)IO}$	input-output turn-off propagation time		1,3		μs
$t_{pERRRESET}$	error memory reset time		9		μs
t_{TD}	top / bottom switch interlock time		3,3		μs
I _{analogOUT}	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		1800		Α
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level				
	(I _{analog} OUT = 10 V)		2250		Α
T_tp	over temperature protection	110		120	°C
U _{DCTRIP}	U_{DC} -protection ($U_{analog OUT} = 9 V$);	i	not mplemented	d	V
	(option for GB types)				

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

