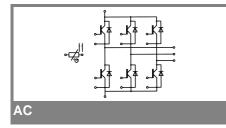
SKiiP 25AC125V10

3-phase bridge inverter

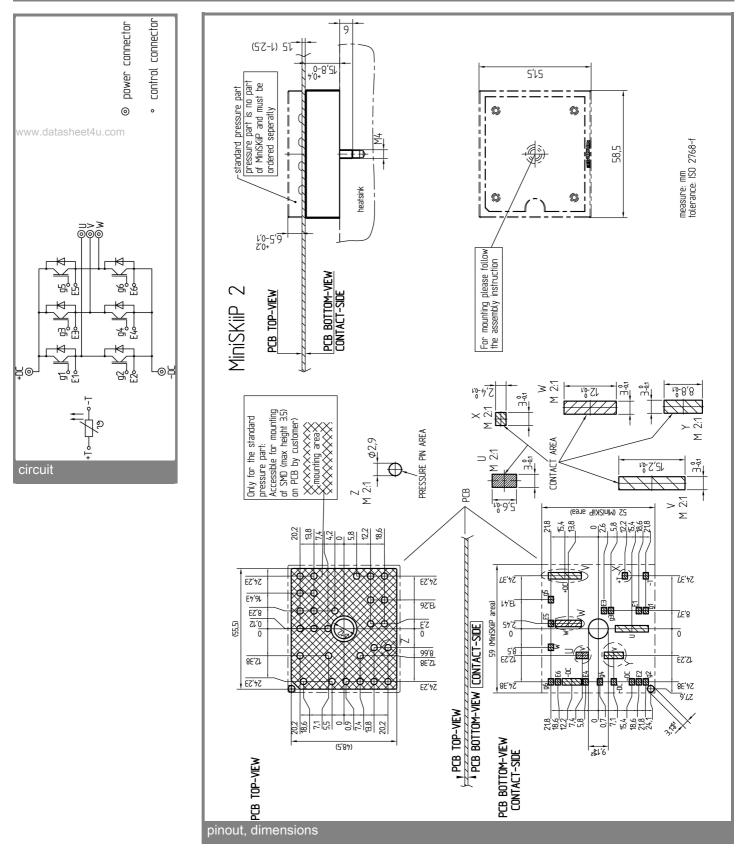
SKiiP 25AC125V10

Target Data

Features


- Ultrafast NPT IGBTs
- Robust and soft freewheeling diodes in CAL technology
- Highly reliable spring contacts for electrical connections
- UL recognised file no. E63532

Typical Applications


- Inverter up to 20 kVA
- Typical motor power 11 kW

Absolute Maximum Ratings		$T_s = 25 \text{ °C}$, unless otherwise specified						
Symbol	Conditions	Values	Units					
IGBT - Inverter								
V _{CES}		1200	V					
I _C	T _s = 25 (70) °C	52 (39)	А					
I _{CRM}	$T_s = 25 (70) \ ^{\circ}C, t_p \le 1 \ ms$	104 (78)	А					
V _{GES}		± 20	V					
Т _ј		- 40 + 150	°C					
Diode - Inverter								
I _F	T _s = 25 (70) °C	67 (50)	А					
I _{FRM}	$T_s = 25 (70) \ ^{\circ}C, t_p \le 1 \ \text{ms}$	134 (100)	А					
T _j		- 40 + 150	°C					
I _{tRMS}	per power terminal (20 A / spring)	100	А					
T _{stg}	$T_{op} \leq T_{stg}$	- 40 + 125	°C					
V _{isol}	AC, 1 min.	2500	V					

Characteristics		T _s = 25 °C	T_s = 25 °C, unless otherwise specified				
Symbol	Conditions	min.	typ.	max.	Units		
IGBT - Inverter							
V _{CEsat}	I _C = 50 A, T _i = 25 (125) °C		3,5 (4,1)	3,9 (4,5)	V		
V _{GE(th)}	$V_{GE} = V_{CE}, I_{C} = 2 \text{ mA}$	4,5	5,5	6,5	V		
V _{CE(TO)}	T _j = 25 (125) °C		1,5 (1,8)	1,7 (2)	V		
r _T	T _j = 25 (125) °C		40 (46)	44 (50)	mΩ		
C _{ies}	V _{CE} = 25 V, V _{GE} = 0 V, f = 1 MHz		3,1		nF		
C _{oes}	V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		0,4		nF		
C _{res}	V_{CE} = 25 V, V_{GE} = 0 V, f = 1 MHz		0,4		nF		
R _{th(j-s)}	per IGBT		0,5		K/W		
t _{d(on)}	under following conditions		100		ns		
t, Ú	V_{CC} = 600 V, V_{GE} = ± 15 V		60		ns		
t _{d(off)}	I _C = 50 A, T _j = 125 °C		400		ns		
t _f	$R_{Gon} = R_{Goff} = 12 \Omega$		20		ns		
Eon	inductive load		5,9		mJ		
E _{off}			3,1		mJ		
Diode - Ir	nverter						
V _F = V _{EC}	I _F = 50 A, T _i = 25 (125) °C		2 (1,8)	2,5 (2,3)	V		
V _(TO)	T _i = 25 (125) °C		1,3 (1)	1,5 (1,2)	V		
r _T	T _j = 25 (125) °C		14 (16)	20 (22)	mΩ		
R _{th(j-s)}	per diode		0,7		K/W		
I _{RRM}	under following conditions		40		Α		
Q _{rr}	I _F = 50 A, V _R = 600 V		8		μC		
Err	V _{GE} = 0 V, T _i = 125 °C		2		mJ		
	di _F /dt = 800 Å/µs						
Tempera	ture Sensor				•		
R _{ts}	3 %, T _r = 25 (100) °C		1000(1670)		Ω		
Mechanie	cal Data						
m			65		g		
M _s	Mounting torque	2		2,5	Nm		

SKiiP 25AC125V10

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.