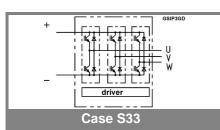

SKiiP 803GD061-3DUW ...

6-pack-integrated

intelligent power system

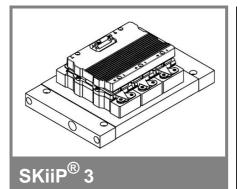

Power section

SKiiP 803GD061-3DUW

Preliminary Data

Features

- SKiiP technology inside
- Low loss IGBTs
- CAL diode technology
- Integrated current sensor
- Integrated temperature sensor
- Integrated heat sink
- IEC 60721-3-3 (humidity) class 3K3/IE32 (SKiiP[®] 3 System)
- IEC 68T.1 (climate) 40/125/56 (SKiiP[®] 3 power section)
- UL recognized File no. É63532 (SKiiP[®] 3 power section)
- with assembly of suitable MKP capacitor per terminal (SEMIKRON type is recommended)



Absolute	Maximum Ratings	$_{\rm s}$ = 25°C unless otherwise specified				
Symbol	Conditions	Values	Units			
IGBT						
V _{CES} V _{CC} ¹⁾	Operating DC link voltage	600 400	V V			
V _{GES} I _C	T _s = 25 (70) °C	± 20 800 (600)	V A			
Inverse diode						
I _F = - I _C I _{FSM}	$T_s = 25 (70) °C$ $T_i = 150 °C, t_p = 10 ms; sin$	620 (470) 6000	A A			
I ² t (Diode)	Diode, $T_j = 150$ °C, 10 ms	180	kA²s			
T _j , (T _{stg}) V _{isol}	rms, AC, 1min	- 40 + 150 (125) 2500	°C V			
^I AC-terminal	per AC terminal, rms, T _s = 70 °C, T _{terminal} <115 °C	400	A			

Characteristics T _s = 25°C unless otherwise specifi							specifie	
Symbol	Conditions			min.	typ.	max.	Units	
IGBT								
V _{CEsat}	I _C = 300 A, measured at te	T _j = 25 (* erminal	125) °C;			1,5 (1,6)	1,8	V
V _{CEO}	T _j = 25 (12					0,8 (0,7)	1 (0,9)	V
r _{CE}	T _j = 25 (125) °C; at terminal				2,4 (3,1)	2,7 (3,4)	mΩ	
I _{CES}	V _{GE} = 0 V, T _i = 25 (12		ES'			1,2 (36)		mA
E _{on} + E _{off}	$I_{\rm C} = 300 {\rm A}_{\rm C}$	$V_{\rm CC} = 30$	00 V			27		mJ
	T _j = 125 °C	C, V _{CC} = 4	00 V			39		mJ
R _{CC+EE}	terminal ch	ip, T _j = 2	5 °C		0,5			mΩ
L _{CE}	top, bottom	1				12		nH
C _{CHC}	per phase,	AC-side				1		nF
Inverse o								
V _F = V _{EC}	I _F = 300 A, measured at te	T _j = 25 (1 erminal	125) °C			1,3 (1,2)	1,5	V
V _{TO}	T _j = 25 (12	5) °C				0,8 (0,6)	1 (0,8)	V
r _T	T _i = 25 (12	5) °C				1,5 (1,9)	1,7 (2)	mΩ
E _{rr}	$I_{\rm C} = 300 {\rm A}_{\rm C}$	$V_{\rm CC} = 30$	00 V			5		mJ
	T _j = 125 °C	C, V _{CC} = 4	00 V			6		mJ
Mechani	cal data							
M _{dc}	DC termina				6		8	Nm
M _{ac}	AC terminals, SI Units			13		15	Nm	
W	SKiiP [®] 3 System w/o heat sink				2,4		kg	
W	heat sink					5,2		kg
						c.); "s" re		
SINK; "r" R _{th(i-s)l}	per IGBT		iit-in tem	iperatur	e sensor 	(acc. IEC	0,051) K/W
r∿th(j-s)I R _{th(j-s)D}	per diode						0,001	K/W
Z _{th}	R _i (mK/W) (max. values)			tau _i (s)				
ui	1	2	3	4	1	2	3	4
Z _{th(j-r)I}	4,2	20,4	23,4	0	69	0,35	0,02	1
Z _{th(j-r)D}	7,8	12	53,1	53,1	50	5	0,25	0,04
Z _{th(r-a)}	4,6	4,7	1,1	0,6	48	15	2,8	0,4

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

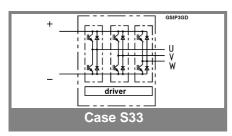
SKiiP 803GD061-3DUW ...

6-pack-integrated intelligent power system

6-pack integrated gate driver SKiiP 803GD061-3DUW

Preliminary Data

Gate driver features


- CMOS compatible inputs
- Wide range power supply
- Integrated circuitry to sense phase current, heat sink temperature and DC-bus voltage (option)
- Short circuit protection
- Over current protection
- Over voltage protection (option)
- Power supply protected against under voltage
- Interlock of top/bottom switch
- Isolation by transformers
- Fibre optic interface (option for GB-types only)
- IEC 68T.1 (climate) 40/85/56 (SKiiP[®] 3 gate driver)

Absolute Maximum Ratings					
Symbol	Conditions	Values	Units		
V _{S2}	unstabilized 24 V power supply	30	V		
V _i	input signal voltage (high)	15 + 0,3	V		
dv/dt	secondary to primary side	75	kV/µs		
V _{isolIO}	input / output (AC, rms, 2s)	2500	V		
VisoIPD	partial discharge extinction voltage, rms, $Q_{PD} \leq 10 \text{ pC}$;	960	V		
V _{isol12}	output 1 / output 2 (AC, rms, 2s)	1500	V		
f	switching frequency	20	kHz		
$T_{op} (T_{stg})$	operating / storage temperature	- 40 + 85	°C		

Characte	ristics	(T _a = 2			= 25°C)
Symbol	Conditions	min. typ. max.			Units
V _{S2}	supply voltage non stabilized	13	24	27	V
I _{S2}	V _{S2} = 24 V	375+30*f/kHz+0,00111*(I _{AC} /A) ²			mA
V _{iT+}	input threshold voltage (High)	11,2			V
V _{iT-}	input threshold voltage (Low)			5,4	V
R _{IN}	input resistance		10		kΩ
C _{IN}	input capacitance		1		nF
t _{d(on)IO}	input-output turn-on propagation time		1,1		μs
t _{d(off)IO}	input-output turn-off propagation time		1,1		μs
t _{pERRRESET}	error memory reset time		9		μs
t _{TD}	top / bottom switch interlock time		3,3		μs
I analogOUT	max. 5mA; 8 V corresponds to 15 V supply voltage for external components		600		A
I _{s1out}	max. load current			50	mA
I _{TRIPSC}	over current trip level (I _{analog} OUT = 10 V)	110	750	100	A
T _{tp}	over temperature protection	110	400	120	°C
U _{DCTRIP}	U _{DC} -protection (U _{analog OUT} = 9 V); (option for GB types)		400		V

For electrical and thermal design support please use SEMISEL. Access to SEMISEL is via SEMIKRON website http://www.semikron.com.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee, expressed or implied is made regarding delivery, performance or suitability.

