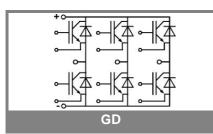
SKiM 180GD176D

SKiM[®] 4

IGBT Modules

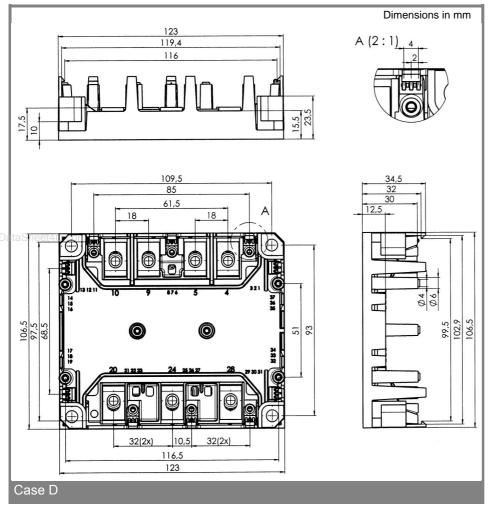
SKiM 180GD176D

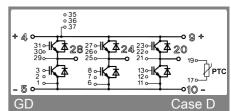

Target Data

Features

- Homogeneous Si
- Trench = Trenchgate Technology
- Low inductance case
- Isolated by Al₂O₃ DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, self limiting to 6x I_C
- Integrated temperature sensor
- Spring contact system to attach driver PCB to the auxiliary terminals

Typical Applications


- AC inverter drives mains 575 -750 V AC
- public transport (auxiliary syst.)



Absolute Maximum Ratings		T_c = 25 °C, unless otherwise specified					
Symbol	Conditions	Values	Units				
IGBT							
V _{CES}		1700	V				
I _C	T _s = 25 (70) °C	180 (130)	Α				
I _{CM}	T _s = 25 (70) °C, t _p = 1 ms	360 (260)	А				
V _{GES}	- r	± 20	V				
T _j (T _{stg})		- 40 +150 °C (125)	°C				
T _{cop}	max. case operating temperature	125	°C				
V _{isol}	AC, 1 min.	3300	V				
Inverse diode							
I _F	T _s = 25 (70) °C	140 (100)	А				
$I_{FM} = -I_{CM}$	T _s = 25 (70) °C, t _p = 1 ms	360 (260)	А				
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	1450	А				

Characteristics T		T _c = 25 °C,	c_c = 25 °C, unless otherwise specified			
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	V _{GE} = V _{CE} ; I _C = 8 mA	5,15	5,8	6,45	V	
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ T _i = 25 °C			0,3	mA	
V _{CEO}	T _i = 25 (125) °C		1 (0,9)	1,2 (1,1)	V	
r _{CE}	T _j = 25 () °C		5 (7,5)	6,3	mΩ	
V _{CEsat}	I _C = 200 A; V _{GE} = 15 V,		2 (2,4)	2,45	V	
	T _j = 25 (125) °C on chip level					
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz				nF	
C _{oes}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz				nF	
C _{res}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz				nF	
L _{CE}					nH	
R _{CC'+EE'}	resistance, terminal-chip T _c = 25 °C		1,1		mΩ	
t _{d(on)}	V _{CC} = 1200 V				ns	
t _r	I _C = 200 A				ns	
t _{d(off)}	$R_{Gon} = R_{Goff} = \Omega$				ns	
t _f	$T_j = 125 \text{ °C}$				ns	
E _{on} (E _{off})	V _{GE} ± 15 V		120 (80)		mJ	
E _{on} (E _{off})	with SKHI 64; T _j = 125 °C				mJ	
	V _{CC} = 1200 V; I _C = 200 A					
Inverse d	liode					
$V_F = V_{EC}$	I _F = 200 A; V _{GE} = 0 V; T _i = 25 (125) °C				V	
.,						
V _{TO}	$T_{j} = 25 (125) °C$				V	
r _T	$T_{j} = 25 (125) °C$				mΩ A	
I _{RRM}	$I_F = 200 \text{ A}; T_j = 125 \text{ °C}$ $V_{GF} = 0 \text{ V di/dt} = A/\mu \text{s}$				μC	
Q _{rr}	02					
E _{rr}	R _{Gon} = R _{Goff} =				mJ	
	characteristics	1		0.05	1.000	
R _{th(j-s)}	per IGBT			0,25	K/W	
R _{th(j-s)}	per FWD			0,45	K/W	
•	ture Sensor					
R _{TS}	T = 25 (100) °C		1 (1,67)		kΩ	
tolerance	T = 25 (100) °C		3 (2)		%	
Mechanic	cal data	-				
M ₁	to heatsink (M5)	2		3	Nm	
M ₂	for terminals (M6)	4		5	Nm	
w				310	g	

SKiM 180GD176D

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.