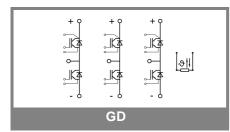
SKiM 380GD176DM

Trench IGBT Modules

v.DataSheet4U.com

SKiM 380GD176DM

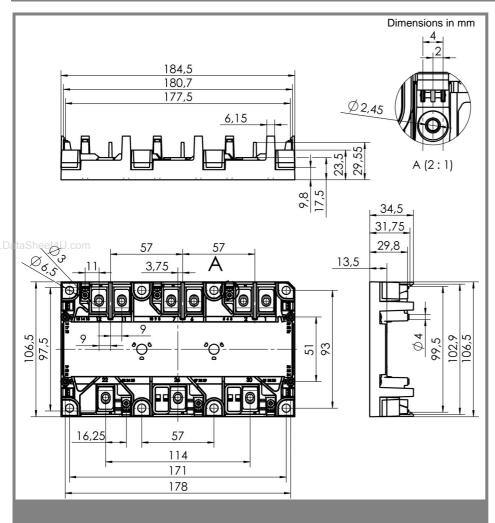

Target Data

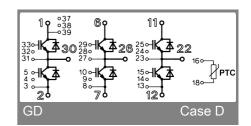
Features

- Homogeneous Si
- Trench = Trenchgate Technology
- Low inductance case
- Isolated by AIN DCB (Direct Copper Bonded) ceramic plate
- Pressure contact technology for thermal contacts
- V_{CEsat} with positive temperature coefficient
- High short circuit capability, limiting to $6x I_C$
- Integrated temperature sensor
- Spring contact system to attach driver PCB to to the auxiliary terminals

Typical Applications

- AC inverter drives mains 575 -750 V AC
- public transport (auxiliary syst.)




Absolute Maximum Ratings		T_c = 25 °C, unless otherwise specified							
Symbol	Conditions	Values	Units						
IGBT									
V _{CES}		1700	V						
I _C	T _s = 25 (70) °C	425 (325)	А						
I _{CRM}	t _p = 1 ms	750	А						
V _{GES}		± 20	V						
T _j (T _{stg})		-40 150 (125)	°C						
T _{cop}	max. case operating temperature	125	°C						
V _{isol}	AC, 1 min.	3300	V						
Inverse diode									
I _F	T _s = 25 (70) °C	380 (285)	А						
I _{FRM}	t _p = ms	750	А						
I _{FSM}	t _p = 10 ms; sin.; T _j = 150 °C	3300	А						

Characteristics T _c = 25 °C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units	
IGBT						
V _{GE(th)}	$V_{GE} = V_{CE}$; I _C = 18 mA	5,15	5,8	6,45	V	
I _{CES}	$V_{GE} = 0; V_{CE} = V_{CES};$ T _j = 25 °C			0,3	mA	
V _{CEO}	T _i = 25 (125) °C			1,2 (1,1)	V	
r _{CE}	T _j = 25 (125) °C			3,3 (4,8)	mΩ	
V _{CEsat}	I _{Cnom} = 375 A; V _{GE} = 15 V,	1,6	2 (2,4)	2,45	V	
	T _j = 25 (125) °C on chip level					
C _{ies}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		33		nF	
C _{oes}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		1,4		nF	
C _{res}	V _{GE} = 0; V _{CE} = 25 V; f = 1 MHz		1,1		nF	
L _{CE}				20	nH	
R _{CC'+EE'}	resistance, terminal-chip T_c = 25 (125) °C		0,9 (1,1)		mΩ	
t _{d(on)}	V _{CC} = 1200 V				ns	
tr	I _{Cnom} = 375 A				ns	
t _{d(off)}	$R_{Gon} = R_{Goff} = \Omega$				ns	
t _f	T _j = 125 °C				ns	
E _{on} (E _{off})	V _{GE} ± 15 V		225 (150)		mJ	
E _{on} (E _{off})	with SKHI 65; T _j = 125 °C				mJ	
	V _{CC} = 1200 V; I _C = 375 A					
Inverse d	liode					
$V_F = V_{EC}$	I _{Fnom} = 375 A; V _{GE} = 0 V; T _i = 25 (125) °C				V	
V _{TO}	T _i = 25 (125) °C				V	
r _T	T _j = 25 (125) °C				mΩ	
I _{RRM}	I _F = 375 A; T _j = 25 °C				Α	
Q _{rr}	V _{GE} = 0 V di/dt = A/µs				μC	
E _{rr}	R _{Gon} = R _{Goff} =				mJ	
Thermal	characteristics					
R _{th(j-s)}	per IGBT			0,09	K/W	
R _{th(j-s)}	per FWD			0,14	K/W	
	ture Sensor					
R _{TS}	T = 25 (125) °C		1 (1,67)		kΩ	
tolerance	T = 25 (125) °C		3 (2)		%	
Mechanic	al data				1	
M ₁	to heatsink (M5)	2		3	Nm	
M ₂	for terminals (M6)	4		5	Nm	
W				460	g	

1

SKiM 380GD176DM

This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

This technical information specifies semiconductor devices but promises no characteristics. No warranty or guarantee expressed or implied is made regarding delivery, performance or suitability.