

DATA SHEET

SKY12334-362LF: GaAs 5 Bit Digital Attenuator, 5-Bits, 0.5 dB LSB with Serial-to-Parallel Driver 0.7–4 GHz

Features

- Broadband 700 MHz to 4 GHz
- Attenuation range: 15.5 dB
- Least significant bit attenuation: 0.5 dB
- Low insertion loss: 1 dB @ 900 MHz
- Positive voltage operation (5 V)
- Integrated silicon serial-to-parallel driver
- QFN 4 x 4 mm leadless package
- Available lead (Pb)-free, RoHS-compliant, and Green[™], MSL-1 @ 260 °C per JEDEC J-STD-020

Description

The SKY12334-362LF is a GaAs FET IC 5-bit digital attenuator with a Si serial-to-parallel driver packaged in a 24-pin leadless exposed pad plastic package. It is particularly well suited for applications in which high attenuation accuracy, low insertion loss, and low intermodulation products are required. Typical applications include base station, wireless and wireless local loop gain control circuits.

Skyworks Green[™] products are RoHS (Restriction of Hazardous Substances)-compliant, conform to the EIA/EICTA/JEITA Joint Industry Guide (JIG) Level A guidelines, are halogen free according to IEC-61249-2-21, and contain <1,000 ppm antimony trioxide in polymeric materials.

Functional Diagram

Electrical Specifications

V_{CC} = 3–5 V, V_{CTL} = 0/3 V, 5 V, T = 25 °C, P_{INPUT} = 0 dBm, Z₀ = 50 Ω , unless otherwise noted

Parameter	Condition	Frequency	Min.	Тур.	Max.	Unit
Insertion loss		0.7–1.4 GHz		1.2	1.5	dB
		1.4–2.3 GHz		1.3	2.0	dB
		2.3–2.7 GHz		1.8	2.3	dB
		2.7–4.0 GHz		2.0	2.7	dB
Attenuation range				15.5		dB
Attenuation accuracy	Attenuation referred to insertion loss	0.7–0.9 GHz	\pm (0.5 + 5% of Atten. Setting) Max.		dB	
	All attenuation states	0.9–2.2 GHz	$\pm (0.3 + 40)$	% of Atten. S	etting) Max.	dB
		2.2–4.0 GHz	$\pm (0.5 + 5)$	% of Atten. S	etting) Max.	dB
Return loss	RF1 and RF2, all atten. states	0.7–1.4 GHz	12	14		dB
		1.4–2.3 GHz	15	18		dB
		2.3–2.7 GHz	12	15		dB
		2.7–4.0 GHz	10	13		dB

Operating Characteristics

V_{CC} = 3–5 V, V_{CTL} = 0/3 V, 5 V, T = 25 °C, P_{INPUT} = 0 dBm, Z₀ = 50 Ω , unless otherwise noted

Parameter	Condition	Frequency	Min.	Тур.	Max.	Unit
Switching characteristics:						
On/rise time	50% V _{CTL} to 90% RF or 10/90% RF			1200		ns
Off/fall time	50% V _{CTL} to 10% RF or 90/10% RF			500		ns
Input power for 0.1 dB compression	$V_{CC} = V_{CTL} = 5 V$	0.7–3.8 GHz		25		dBm
	$V_{CC} = V_{CTL} = 3 V$	0.7–3.8 GHz		23		dBm
put power for 1.0 dB compression $V_{CC} = V_{CTL} = 5 V$		0.7–3.8 GHz		32		dBm
	$V_{CC} = V_{CTL} = 3 V$	0.7–3.8 GHz		30		dBm
Input Intermodulation Intercept Point (IIP3)	For two tone input power, 0 dBm/tone,					
	1 MHz spacing.					
	$V_{CC} = V_{CTL} = 5 V$	0.7–3.8 GHz		42		dBm
	$V_{CC} = V_{CTL} = 3 V$	0.7–3.8 GHz		42		dBm

DC Characteristics

Parameter	Condition	Symbol	Min.	Тур.	Max.	Unit
Input voltage high		$V_{IH}(1) V_{CC} = +3 V$	2.3		3	V
		$V_{CC} = +5 V$	3.5		5	V
Input voltage low		$V_{IL}(0) V_{CC} = +3 V$	0		1.0	V
		$V_{CC} = +5 V$	0		1.5	V
Input leakage current		և		0.5		μA
Quiescent current		I _{CC}		500		μA
Supply voltages (V _{CC})		V _{CC}	3	5	5.5	V

Absolute Maximum Ratings

Characteristic	Value
RF input power @ 5 V	30 dBm
Supply voltage (V _{CC})	6 V
Control voltage	-0.2 V, +8 V
Operating temperature	-40 °C to +85 °C
Storage temperature	-65 °C to +150 °C

Performance is guaranteed only under the conditions listed in the specifications table and is not guaranteed under the full range(s) described by the Absolute Maximum specifications. Exceeding any of the absolute maximum/minimum specifications may result in permanent damage to the device and will void the warranty.

CAUTION: Although this device is designed to be as robust as possible, ESD (Electrostatic Discharge) can damage this device. This device must be protected at all times from ESD. Static charges may easily produce potentials of several kilovolts on the human body or equipment, which can discharge without detection. Industry-standard ESD precautions must be employed at all times.

Electrical Specifications

V_{CC} = 5 V, V_{CTL} = 0/5 V, T = 25 °C, P_{INPUT} = 0 dBm, Z_0 = 50 Ω , C_{BLK} = 47 pF unless otherwise noted

Electrical Specifications

 V_{CC} = 5 V, V_{CTL} = 0/5 V, T = 25 °C, P_{INPUT} = 0 dBm, Z_0 = 50 Ω , C_{BLK} = 47 pF unless otherwise noted

Normalized Attenuation: Major States

Attenuation Bit Error: Major States

Worst Case Attenuation Step Error Between Successive Attenuation States

Attenuation Bit Error vs. Attenuation State

Description

Pin Out (Top View)

DC blocking caps required on RF1 and RF2 ports. Recommend 47 to 300 pF.

RF2 or RF1 ports needs to be pulled up to V_{CC} voltage. Recommend 5 k Ω .

 $C_{BP} = C_{BYPASS} = 0.01 \ \mu F.$

Truth Table

"X" = Don't Care

Reset		Serial Data Input						
	8 dB	4 dB	2 dB	1 dB	0.5 dB	Attenuation		
1	1	1	1	1	1	Insertion Loss		
1	1	1	1	1	0	0.5 dB		
1	1	1	1	0	1	1 dB		
1	1	1	0	1	1	2 dB		
1	1	0	1	1	1	4 dB		
1	0	1	1	1	1	8 dB		
1	0	0	0	0	0	15.5 dB		
0	Х	Х	Х	Х	Х	15.5 dB		
V _{CC} = 5 V "0" = 0-0.5 "1" = 3.5-5	V V	V _{CC} = 3 V "0"= 0-4 "1"= 2.3	/ 0.5 V 3 V					

"X" = Don't Care

	1	Gnd	Ground
	2	RF1	RF input/output must be DC blocked
	3	Gnd	Ground
-	4	Gnd	Ground
	5	Serial output	Data input delayed by 8 clock cycles
	6	Gnd	Ground
-	7	Reset	Reset clears shift registers
	8	Clock	Serial clock input
	9	Latch enable	On rising edge of pulse, shifts 5 most recent bits clocked in to set attenuation state
	10	Gnd	Ground
	11	Serial input	input data
	12	Gnd	Ground
	13	Gnd	Ground
	14	V _{CC}	Fixed bias for SPI
	15	Gnd	Ground
	16	Gnd	Ground
	17	RF2	RF input/output must be DC blocked
	18	Gnd	Ground
	19	Gnd	Ground
s	20	Gnd	Ground
	21	Gnd	Ground
	22	Gnd	Ground

Pin Table Pin #

23

24

Gnd

Gnd

Ground Ground

Name

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com 201031 Rev. B • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 8, 2009

			V _{CC} = 5 V			V _{CC} = 3 V		
Parameter	Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Serial input setup time	ts		5			5		ns
Hold time from serial input to shift clock	th		5			5		ns
Setup time from shift clock to latch enable	tlsup	40			100			ns
Propagation delay, latch enable to C0.5 through C8	tpd			30			70	ns
Setup time from reset to shift clock	-	20			50			ns
Clock freq	fclk			30			10	MHz

Latch Enable	Clock	Reset	Function
Х	Х	L	Shift register cleared
Х	>	Н	Shift register clocked
>	Х	Н	Contents of shift register transferred to digital attenuator

Serial data (SDA) is shifted into the register on the rising edge of the clock (SCK), least significant bit (LSB) first. The attenuator will change states on the rising edge of the latch enable (LE) signal, according to the most recent 5 bits of shifted data accepted since the previous falling edge of the LE signal.

The part includes a serial data output pin that can be used to provide the serial data input to a cascaded attenuator. The serial data output is the serial input data delayed by 8 clock cycles.

Power-up sequence:

0. Connect ground

- 1. Apply V_{CC}
- 2. Set all inputs (SCK, SDA, LE)

Power-down sequence should be the reverse of above.

Example for Setting 0.5 dB State

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com 201031 Rev. B • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • May 8, 2009

7

Evaluation Circuit Board

Park Marking

Skyworks Solutions, Inc. • Phone [781] 376-3000 • Fax [781] 376-3100 • sales@skyworksinc.com • www.skyworksinc.com May 8, 2009 • Skyworks Proprietary Information • Products and Product Information are Subject to Change Without Notice. • 201031 Rev. B

-362 QFN 4 x 4 mm 24-Lead Outline

Detail B

1. Dimensioning and tolerancing per ASME Y14.5m - 1994.

- Dimensions are in inches and (millimeters). Controlling dimension is millimeters.
- 3. Coplanarity applies to the exposed heat sink slug
- as well as the terminals.

4. Plating requirement per source control drawing (SCD) 2504.

-362 QFN 4 x 4 mm 24-Lead Suggested Land Pattern

Recommended Solder Reflow Profiles

Refer to the "<u>Solder Reflow Information</u>" Application Note, document number 200164.

Tape and Reel Information

Refer to the "<u>Discrete Devices and IC Switch/Attenuators</u> <u>Tape and Reel Package Orientation</u>" Application Note, document number 200083.

Copyright © 2009, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks, the Skyworks symbol, and "Breakthrough Simplicity" are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.