

PRELIMINARY DATA SHEET

SKY77518 TX–RX iPAC™ FEM for Dual-Band GSM/GPRS

Applications

- Dual-band cellular handsets encompassing
 - Class 4 GSM900
 - DCS1800
 - Class 12 GPRS multi-slot operation

Features

- High efficiency
- DCS 41%
- GSM900 46%
- Low transmit supply current
 - GSM900 1.3 A
 - DCS1800 0.9 A
- Internal ICC sense resistor for iPAC
- Closed loop iPAC
- 50 Ω matched Input/Output
- TX–VCO-to-antenna and antennato-Rx-SAW filter RF interface
- TX harmonics below -33 dBm
- PHEMT RF switches afford high linearity, low insertion loss, and less than 20 μA supply current in receive modes
- Small outline: 6 mm x 8 mm
- Low profile: 1.2 mm
- Compatible with multiple logic families
- Low APC current: 25 µA
- Gold plated, lead free contacts

NEW

Skyworks offers lead (Pb)-free "environmentally friendly" packaging that is RoHS compliant (European Parliament for the Restriction of Hazardous Substances).

Description

The SKY77518 is a transmit and receive front-end module (FEM) with Integrated Power Amplifier Control (iPAC[™]) for dual-band cellular handsets comprising GSM900 and DCS1800 operation. Designed in a low profile, compact form factor, the SKY77518 offers a complete Transmit VCO-to-Antenna and Antenna-to-Receive SAW filter solution. The FEM also supports Class 12 General Packet Radio Service (GPRS) multi-slot operation.

The module consists of a GSM900 PA block and a DCS1800 PA block, impedance-matching circuitry for 50 Ω input and output impedances, TX harmonics filtering, high linearity and low insertion loss PHEMT RF switches, diplexer and a Power Amplifier Control (PAC) block with internal current sense resistor. A custom BiCMOS integrated circuit provides the internal PAC function and decoder circuitry to control the RF switches. The two Heterojunction Bipolar Transistor (HBT) PA blocks are fabricated onto a single Gallium Arsenide (GaAs) die. One PA block supports the GSM900 band and the other PA block supports the DCS1800 band. Both PA blocks share common power supply pads to distribute current. The output of each PA block and the outputs to the two receive pads are connected to the antenna pad through PHEMT RF switches and a diplexer. The GaAs die, PHEMT die, Silicon (Si) die and passive components are mounted on a multi-layer laminate substrate. The assembly is encapsulated with plastic overmold.

Band selection and control of transmit and receive modes are performed using two external control pads. Refer to the functional block diagram in Figure 1 below. The band select pad (BS) selects between GSM and DCS modes of operation. The transmit enable (TX_EN) pad controls receive or transmit mode of the respective RF switch (TX = logic 1). Proper timing between transmit enable (TX_EN) and Analog Power Control (VRAMP) allows for high isolation between the antenna and TX-VCO while the VCO is being tuned prior to the transmit burst.

The SKY77518 is compatible with logic levels from 1.2 V to VCC for BS and TX_EN pads, depending on the level applied to the VLOGIC pad. This feature provides additional flexibility for the designer in the selection of FEM interface control logic.

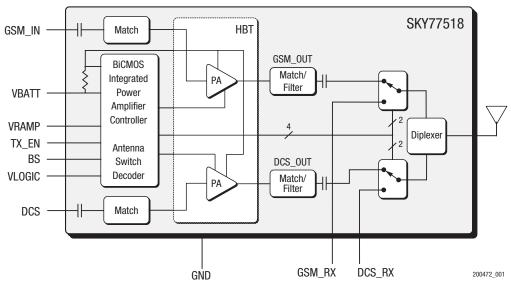


Figure 1. Functional Block Diagram

Electrical Specifications

The following tables list the electrical characteristics of the SKY77518 Front-End Module. The absolute maximum ratings and recommended operating conditions for the SKY77518 are listed in Table 1 and Table 2, respectively. Table 3 specifies the mode control logic and Table 4 contains the electrical characteristics of

the SKY77518 for modes GSM900 and DCS1800. Figure 2 presents an application schematic for the SKY77518.

The SKY77518 is a static-sensitive electronic device and should not be stored or operated near strong electrostatic fields. Detailed information on device dimensions, pad descriptions, packaging and handling can be found in later sections of this data sheet.

	•		
Parameter	Minimum	Maximum	Unit
Input Power (Pin)	—	15	dBm
Supply Voltage (Vcc), Standby VRAMP $\leq 0.3 \text{ V}$ VLOGIC $\leq 0.5 \text{ V}$	_	7	V
Control Voltage (VRAMP)	-0.5	Vcc_max - 0.2 V (See Table 4)	V
Storage Temperature	-55	+150	°C

Table 1. Absolute Maximum Ratings

Table 2. Recommended Operating Conditions

Parameter	Minimum	Typical	Maximum	Unit
Supply Voltage (Vcc)	2.7	3.3	5.5	V
Supply Current (Icc)	0		1.8	Α
Operating Case Temperature (TCASE) ¹				
1-Slot (12.5% duty cycle)	-15		+85	°C
2-Slot (25% duty cycle)	-15		+85	

¹ Case Operating Temperature refers to the temperature of the GROUND PAD on the underside of the package.

Table 3. SKY77518 Mode Control Logic

Mode	VI. opio	Input Control Bits		
Mode	VLOGIC	TX_En	BS	
STANDBY	0	X ¹	X ¹	
GSM_Rx	1	0	0	
DCS_Rx	1	0	1	
GSM_TX	1	1	0	
DCS_TX	1	1	1	

¹ X = don't care

General							
Parame	eter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
Supply voltage		Vcc	_	2.7	3.3	5.5	V
Power control impeda	ince	Zvramp	_		300		kΩ
VLOGIC control voltag	e LOW HIGH	Vlogic_low Vlogic_high	—	-0.1 1.2		0.5 Vcc	V
VLOGIC current		Ivlogic	$ \begin{array}{l} \text{VLOGIC} \leq 2.7 \text{ V} \\ \text{TX_EN} \leq 0.4 \text{ V} \\ \text{BS} \leq 0.4 \text{ V} \end{array} $	_	1	20	μA
Band Select control v	oltage LOW HIGH	Vbs_low Vbs_high	—	-0.1 70% Vlogic		30% Vlogic Vlogic	V
Band Select current		IBS	$\text{BS} \leq 2.7 \text{ V}$	—	—	20	μA
TX_EN control voltage	LOW HIGH	Vtx_en_low Vtx_en_high	—	-0.1 70% Vlogic	_	30% Vlogic Vlogic	V
TX_EN current		Itx_en	$TX_EN \le 2.7 V$	—	—	20	μA
Leakage current	Standby Mode	los	$\label{eq:VCC} \begin{array}{l} Vcc \leq 5.5 \ V \\ VLogic = VLogic_Low \\ VrAMP \leq 0.1 \ V \\ TX_EN \leq 0.4 \ V \\ BS \leq 0.4 \ V \\ BS \geq VLogic - 0.4 \ V \\ Tcase = +25 \ ^\circC \\ Pin \leq -60 \ dBm \end{array}$	_	2	30	μА
Leakage current	Receive Mode	lorx	$\begin{array}{l} \mbox{Vcc} \leq 5.5 \ \mbox{V} \\ \mbox{1.2 V} \leq \mbox{Vlogic} \leq 2.7 \ \mbox{V} \\ \mbox{VrAmP} \leq 0.1 \ \ \mbox{V} \\ \mbox{TX}_EN \leq 0.4 \ \ \mbox{VTX} \\ \mbox{BS} \leq 0.4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	_	15	30	μ, i

Table 4. SKY77518 Electrical Specifications¹ (1 of 5)

	GSM900	Node (f = 880 to 915 MHz and Pin = 0 t	o 6 dBm)			
Parameter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
Frequency range	f	_	880	_	915	MHz
Input power	Pin	_	0	_	6	dBm
Analog power control voltage	VRAMP	_	0.2	_	1.8	٧
Power Added Efficiency	PAE	Vcc = 3.3 V Pout = 33 dBm TX_EN = VTx_EN_HIGH VRAMP set for Pout = 33 dBm pulse width 577 μ s duty cycle 1:8 TCASE = +25 °C	41	46	_	%
Supply Current @ Rated Power	lcc_33 dBm	Vcc = 3.3 V Pout = 33 dBm $TX_EN = VTX_EN_HIGH$ VRAMP set for Pout = 33 dBm pulse width 577 μ s duty cycle 1:8 Tcase = +25 °C	_	1.32	1.48	A
2nd to 13th harmonics	2fo to 13fo	$\begin{array}{l} BW=3\ MHz\\ 5\ dBm\leqPout\leq33\ dBm \end{array}$	_	-40	-33	dBm
Output power	Роит	Vcc = 3.3 V $Tcase = +25 °C$ $PiN = 0 dBm$	33.0	33.7	_	
	POUT_MAX LOW VOLTAGE	$Vcc = 2.7 V$ $TX_EN = VTx_en_high$ $Tcase = -15 °C to +85 °C$ $PiN = 0 dBm$	30.5	32.2	_	dBm
	POUT_MAX HIGH VOLTAGE	Vcc = 4.8 V $TX_EN = VTx_en_high$ Tcase = -15 °C to +85 °C Pin = 0 dBm	30.5	34.5	_	
Input VSWR	Γin	Pout = 5 to 33 dBm VRAMP controlled	_	1.5:1	2.5:1	
Forward isolation ⁴	Pout_ rx	$\label{eq:Pin} \begin{array}{l} Pin = 6 \ dBm \\ V_{RAMP} \leq 0.1 \ V \\ V_{LOGIC} = V_{LOGIC_HIGH} \\ TX_EN = V_{TX_EN_LOW} \\ Mode = GSM_Rx \ (see Table 3) \end{array}$	_	-55	45	dDm
	Pout_enabled_tx	$\label{eq:Pin} \begin{array}{l} Pin=6 \ dBm \\ V_{RAMP} \leq 0.1 \ V \\ V_{LOGIC} = V_{LOGIC_HIGH} \\ TX_EN = V_{TX_EN_HIGH} \\ Mode = GSM_TX \ (see Table 3) \end{array}$	_	-25	0	dBm
Coupling of GSM900 TX output (f0) to GSM_Rx output pad ⁴	CGHI_TX-Rx_F0	$\begin{array}{l} 5 \mbox{ dBm} \leq \mbox{Pout} \leq 33 \mbox{ dBm} \\ Mode = \mbox{ GSM}_TX \mbox{ (see Table 3)} \end{array}$	_	6	11	dBm
Coupling of GSM900 TX output (2fo, 3fo) to DCS/PCS_Rx output pad	CGHI_TX-DCS_Rx	$\begin{array}{l} 5 \mbox{ dBm} \leq \mbox{Pout} \leq 33 \mbox{ dBm} \\ \mbox{Mode} = \mbox{GSM}\mbox{TX} \mbox{ (see Table 3)} \end{array}$	—	-45	-36	dBm

Table 4. SKY77518 Electrical Specifications¹ (2 of 5)

		GSM900 Mode (f = 880 to 915 MHz and Pוא = 0 to 6 dBm)	[continued]			
Paran	neter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
Spurious		Spur	All combinations of the following parameters: $V_{RAMP} = controlled^2$ $P_{IN} = min. to max.$ Vcc = 2.7 V to 5.5 V Load VSWR = 12:1, all phase angles	No parasitic oscillation > –36 dBm			m
Load mismatch		Load	All combinations of the following parameters: $VRAMP = controlled^2$ PIN = min. to max. Vcc = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles	No module damage or permanent degradation			radation
			At fo + 20 MHz (935 to 960 MHz) RBW = 100 kHz Vcc = $3.3 V$ $5 \text{ dBm} \le Pout \le 33 \text{ dBm}$ Tcase = $+25 \text{ °C}$		_	-82	
Rx Band Spurious	Rx_spur	At fo + 10 MHz (925 to 935 MHz) RBW = 100 kHz Vcc = $3.3 V$ TCASE = $+25 °C$ $5 dBm \le Pout \le 33 dBm$		-80	-76	dBm	
			At 1805 to 1880 MHz RBW = 100 kHz Vcc = $3.3 V$ TcASE = $+25 °C$ $5 dBm \le Pout \le 33 dBm$		-101	-84	
Power control dynar	nic range	PCdr		30	50	_	dB
Power control (Control level 5-15 VCC \geq 3.3 V) Control level 16-19	PCv	Роит 13 to 33 dBm, +25 °C Роит 13 to 33 dBm Роит 5 to 11 dBm, +25 °C Роит 5 to 11 dBm,	-1.0 -2.0 -2.0 -3.5		+1.0 +2.0 +2.0 +3.5	dB
Power control slope		PCs	5 to 33 dBm	_		150	dB/V
GSM900 RECEIVE (f = 925 to 960 MHz) Mode = GSM_Rx							
Paran	neter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
Frequency range		f	—	925	_	960	MHz
Insertion Loss, ANT	to GSM_Rx ⁴	IL GSM_Rx	—		1.0	1.3	dB
VSWR ANT, GSM_R	x ⁴	Гіл, Гоит	_	_	1.2:1	1.5:1	

|--|

	DCS1800 M	ode (f = 1710 to 1785 MHz and Pin = 0 to	6 dBm)			
Parameter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
Frequency range	f	_	1710	_	1785	MHz
Input power	Pin	_	0		6	dBm
Analog power control voltage	VRAMP	—	0.2	_	1.8	V
Power Added Efficiency	PAE	$Vcc = 3.3 V$ $Pout = 31 dBm$ $TX_EN = VTx_EN_HIGH$ $VrAMP set for Pout = 31 dBm$ $pulse width 577 \ \mu s$ $duty cycle 1:8$ $TcAse = +25 \ ^{\circ}C$	35	41	_	%
Supply Current @ Rated Power	lcc_31 dBm	Vcc = 3.3 V Pout = 31 dBm TX_EN = Vtx_EN_HIGH VRAMP set for Pout = 31 dBm pulse width 577 µs duty cycle 1:8 TcASE = $+25 \text{ °C}$	_	0.93	1.04	A
2nd to 7th harmonics	2fo to 7fo	$\begin{array}{l} BW = 3 \text{ MHz}, \\ 0 \text{ dBm} \leq \text{Pout} \leq 31 \text{ dBm} \end{array}$	_	-40	-33	dBm
Output power	Роит	Vcc = 3.3 V $Tcase = +25 °C$ $PiN = 0 dBm$	31.0	32.0	_	
	POUT _MAX LOW VOLTAGE	Vcc = 2.7 V $TX_EN = VTx_en_HiGH$ Tcase = -15 °C to +85 °C PiN = 0 dBm	28.5	30.5	_	dBm
	POUT _MAX HIGH VOLTAGE	Vcc = 5.5 V TX_EN = VTX_EN_HIGH TCASE = -15 °C to +85 °C PIN = 0 dBm	28.5	33.0	_	
Input VSWR	Гіл	Pout = 0 to 31 dBm VRAMP controlled	_	1.5:1	2.5:1	_
Forward isolation 4	Pout Rx	$\label{eq:Pin} \begin{array}{l} Pin = 6 \; dBm \\ V_{RAMP} \leq 0.1 \; V \\ V_{LOGIC} = \; VTx_En_HIGH \\ TX_EN = \; VTx_En_LOW \\ Mode=DCS_Rx \; (see Table 3) \end{array}$	_	-60	-50	dBm
	Pout_enabled_tx	$\label{eq:Pin} \begin{array}{l} Pin = 6 \ dBm \\ V_{RAMP} \leq 0.1 \ V \\ V_{LOGIC} = V_{LOGIC_HIGH} \\ TX_EN = V_{TX_EN_HIGH} \\ Mode = DCS_TX \ (see Table 3) \end{array}$	_	-35	-5	авт
Coupling of DCS TX output to Receive RF output pad ⁴	CDCS_TX-Rx_F0	$\begin{array}{l} 0 \ dBm \leq Pou\tau \leq 31 \ dBm \\ Mode = DCS_TX \ (see \ Table \ 3) \end{array}$	_	6	9	dBm

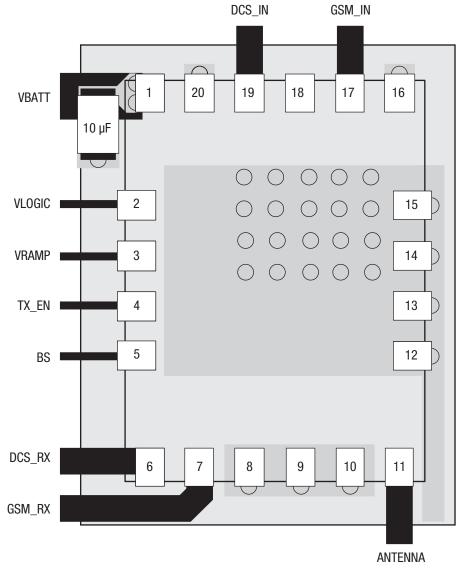
Table 4. SKY77518 Electrical Specifications ¹ (4 of 5)

DCS1800 Mode (f = 1710 to 1785 MHz and Pאו = 0 to 6 dBm) [continued]						
ameter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
	Spur	All combinations of the following parameters: $V_{RAMP} = controlled^{3}$ $P_{IN} = min. to max$ Vcc = 2.7 V to 5.5 V Load VSWR = 12:1, all phase angles	No parasitic oscillation > –36 dBm			m
	Load	All combinations of the following parameters: $V_{RAMP} = controlled^{3}$ $P_{IN} = min. to max.$ Vcc = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles	No module damage or permanent degradation			adation
	Ry coup	At fo + 20 MHz (1805 to 1880 MHz) RBW = 100 kHz Vcc = $3.3 V$ TCASE = $+25 °C$ $0 dBm \le Pout \le 31 dBm$	_	-83	-78	dBm
	TIA_SPUR	925 to 960 MHz RBW = 100 kHz Vcc = $3.3 V$ TCASE = $+25 °C$ 0 dBm $\leq Pout \leq 31 dBm$	_		-87	ubiii
namic range	PCdr		35	50	_	dB
$\begin{array}{l} \mbox{Control level 0-8} \\ \mbox{Vcc} \geq 3.3 \ \mbox{V} \end{array}$		Роит 14 to 30 dBm, +25 °C Роит 14 to 30 dBm	-2.0 -2.5		2.0 2.5	
Control level 9-13	PCv	Роит 4 to 12 dBm, +25 °C Роит 4 to 12 dBm	-2.5 -3.5		2.5 3.5	dB
Control level 14-15				—		
pe	PCs	0 to 30 dBm			150	dB/V
DCS 1800 RECEIVE (f =1805 to 1880 MHz) Mode = DCS_Rx						
ameter	Symbol	Test Condition	Minimum	Typical	Maximum	Units
	f	—	1805		1880	MHz
IT to DCS_Rx ⁴	IL DCS_Rx	—	_	1.2	1.5	dB
Rx ⁴	ΓιΝ, ΓΟυτ	_	_	1.2:1	1.5:1	
	amic range Control level 0-8 Vcc ≥ 3.3 V Control level 9-13 Control level 14-15 De ameter T to DCS_Rx ⁴	ameter Symbol ameter Spur Spur Load Load Rx_spur amic range PCDR Control level 0-8 Vcc ≥ 3.3 V PCDR Control level 9-13 PCV Control level 14-15 PCS De PCs DCS 1800 F ameter Symbol IT to DCS_Rx ⁴ IL DCS_Rx	ameter Symbol Test Condition Spur All combinations of the following parameters: VRAMP = controlled ³ PN = min. to max Vcc = 2.7 V to 5.5 V Load VSWR = 12:1, all phase angles Load All combinations of the following parameters: VRAMP = controlled ³ PN = min. to max. Vcc = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles Load All combinations of the following parameters: VRAMP = controlled ³ PN = min. to max. Vcc = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles At fo + 20 MHz (1805 to 1880 MHz) RBW = 100 KHz Vcc = 3.3 V TCASE = +25 °C 0 dBm < Pour ≤ 31 dBm	ameter Symbol Test Condition Minimum All combinations of the following parameters: Vex.WP = controlled ³ PN = min. to max Vcc = 2.7 V to 5.5 V Load VSWR = 12:1, all phase angles No Load All combinations of the following parameters: Vex.WP = controlled ³ PN = min. to max. Vcc = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles No mod Rx_SPUR All combinations of the following parameters: Vex.WP = 20:1, all phase angles No mod Rx_SPUR At fo + 20 MHz (1805 to 1880 MHz) RBW = 100 KHz Vcc = 3.3 V TossE = +25 °C 0 dBm ≤ Pour ≤ 31 dBm — amic range PCor 0 dBm ≤ Pour ≤ 31 dBm — 205 to 960 MHz RBW = 100 KHz Vcc = 3.3 V TossE = +25 °C — — control level 0-8 Vcc ≥ 3.3 V POUT 14 to 30 dBm, +25 °C — — control level 14-15 PCv Pour 14 to 2 dBm, +25 °C — — Determiner PCs 0 to 30 dBm — — DCS 1800 RECEIVE (f =1805 to 1880 MHz) Mode = DCS_Rx Minimum — f — — 1805 —	ameter Symbol Test Condition Minimum Typical All combinations of the following parameters: VNAMP = controlled ³ PN = min. to max Voc = 2.7 V to 5.5 V Load VSWR = 12:1, all phase angles No parasitic oscill Load All combinations of the following parameters: VNAMP = controlled ³ PN = min. to max. Voc = 2.7 V to 5.5 V Load VSWR = 12:1, all phase angles No module damage or parameters: VIC = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles Load All combinations of the following parameters: VIC = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles No module damage or parameters: VIC = 3.3 V To ast = +25 °C 0 dBm < Pour ≤ 31 dBm	ameter Symbol Test Condition Minimum Typical Maximum All combinations of the following parameters: VNAMP = controlled ³ PN = min. to max Vcc = 2.7 V to 5.5 V Load VSWR = 12.1, all phase angles No parasitic oscillation > -36 dB Load All combinations of the following parameters: VAMP = controlled ³ PN = min. to max Vcc = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles No module damage or permanent degr Load VAMP = controlled ³ PN = min. to max Vcc = 2.7 V to 5.5 V Load VSWR = 20:1, all phase angles No module damage or permanent degr Rx_SPUR At to + 20 MHz (1805 to 1880 MHz) BBW = 100 kHz Vcc = 3.3 V Tose = +25 °C 0 dBm < Pourt \$ 31 dBm

Table 4. SKY77518 Electrical Specific	ations ¹ (5 of 5)
---------------------------------------	------------------------------

¹ Unless specified otherwise:

TCASE = -20 °C to max. operating temperature (see Table 2)


 $\textrm{RL}=\textrm{50}~\Omega$

pulsed operation with pulse width \leq 1154 μs and duty cycle \leq 2:8 Vcc = 2.7 V to 5.5 V.

 2 Icc = 0A to xA, where x = current at POUT = 33 dBm, 50 Ω load, and Vcc = 3.3 V.

 3 ICC = 0A to xA, where x = current at POUT = 31 dBm, 50 Ω load, and VCC = 3.3 V

 4 $\,$ Terminate all unused RF ports with 50 Ω loads

NOTES:

1. The value of 10 μF cap is dependent on the noise level on the phone board.

2. Ensure sufficient number of vias to supply battery current to Vbatt.

3. VBATT trace width should be ≥ 1 mm.

4. Ground terminal of bypass capacitor connected to ground plane with vias.

5. Layer 2 should be solid ground plane under SKY77518 and any RF trace interconnect.

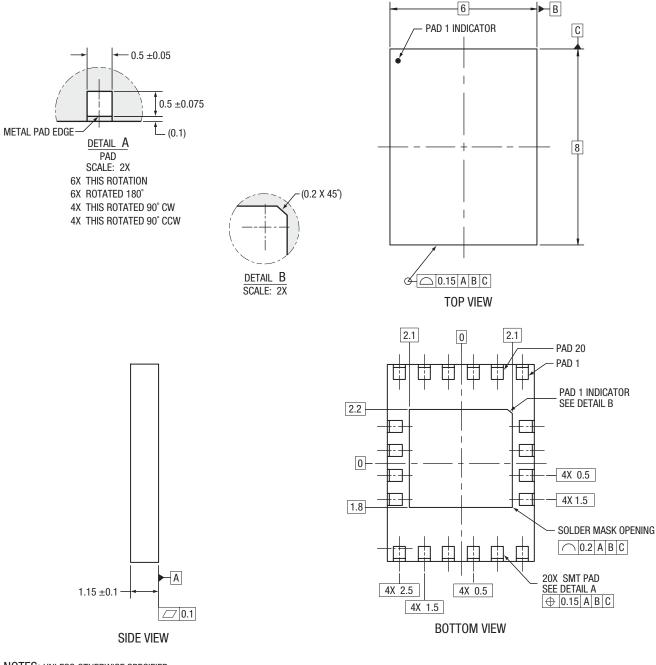
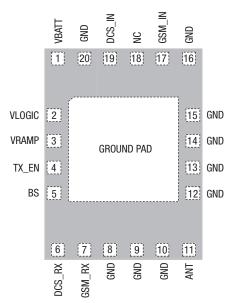

200472_002

Figure 2. SKY77518 Application Schematic Diagram

Package Dimensions and Pad Descriptions

Figure 3 is a mechanical diagram of the pad layout for the SKY77518, a 20-pad leadless dual-band FEM module. Figure 4 illustrates the device pad configuration and the pad numbering convention, which starts with pad 1 at the upper left, as indicated,

and increments counter-clockwise around the package. Table 5 lists the pad names and the associated signal descriptions. Figure 5 interprets typical case markings.


NOTES: UNLESS OTHERWISE SPECIFIED.

- 1. Dimensioning and Tolerancing in accordance with ASME Y14.5-1994.
- 2. Pads are solder mask defined on 3 edges.

3. All dimensions are in millimeters.

200472_003

Figure 3. SKY77518 FEM Package Dimensions - 20-Pad Leadless (All Views)

Pin layout as seen from top view looking through the package. 200472_004

Figure 4. SKY77518 FEM Package Pad Configuration – 20-Pad Leadless (Top View)

Table 5. Sl	KY77518 F	Pad Names	and Signal	Descriptions
-------------	-----------	-----------	------------	--------------

Pad	Name	Description
1	VBATT	Battery input voltage
2	VLOGIC	Control logic level selection/Standby control
3	VRAMP	Analog power control voltage input
4	TX_EN	TX / RX select (mode control)
5	BS	Band Select (mode control)
6	DCS_RX	DCS Receive RF Output (1805-1880 MHz)
7	GSM_RX	GSM Receive RF Output (920-960 MHz)
8-10	GND	RF and DC Ground
11	ANT	RF_IN / RF_OUT to Antenna
12-16	GND	RF and DC Ground
17	GSM_IN	RF input 880–915 MHz
18	NC	No Connect
19	DSC_IN	RF input 1710–1785 MHz
20	GND	RF and DC Ground
GND PADS	GROUND GRID	Ground Pads, module underside

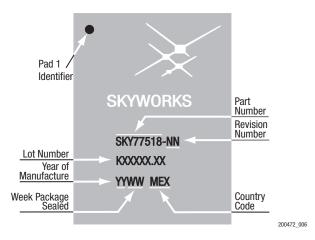


Figure 5. Typical Case Markings

Package and Handling Information

Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems related to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77518 is capable of withstanding an MSL3/250 °C solder reflow. Care must be taken when attaching this product, whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 250 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 250 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: *PCB Design and SMT Assembly/Rework*, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the JEDEC *Joint Industry Standard J-STD-020*.

Figure 6 provides a recommended phone board layout footprint for the FEM to help the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50-ohm terminals.

Production quantities of this product are shipped in the standard tape-and-reel format. For additional packaging details, refer to Skyworks Application Note: *Tape and Reel Information – RF Modules*, Document Number 101568.

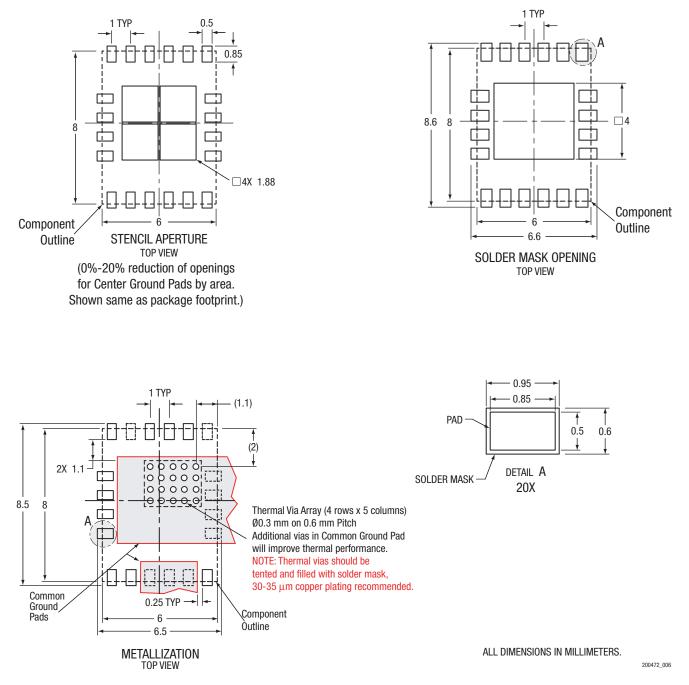
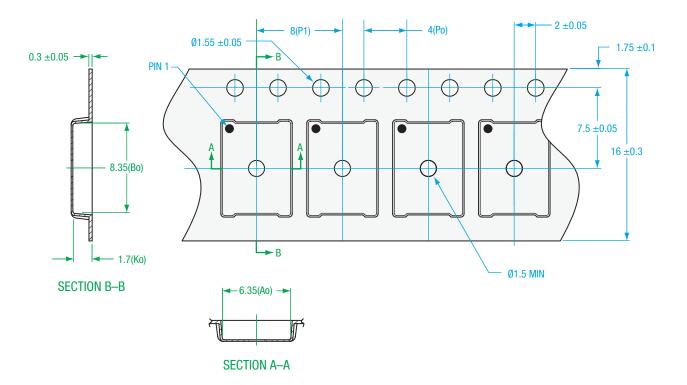



Figure 6. Phone PCB Layout Footprint for 6 x 8 mm, 20-Pad Package with Grid-Bottom Solder Mask – SKY77518 Specific.

NOTES:

- 1. CARRIER TAPES MUST MEET ALL REQUIREMENTS OF SKYWORKS GP01–D232 PROCUREMENT SPEC FOR TAPE AND REEL SHIPPING.
- (2) CARRIER TAPE SHALL BE BLACK CONDUCTIVE POLYSTYRENE.
- 3. COVER TAPE SHALL BE TRANSPARENT CONDUCTIVE PRESSURE SENSITIVE ADHESIVE (PSA) MATERIAL W/13.3 mm WIDTH.
- 4. ESD-SURFACE RESISTIVITY SHALL BE ≤ 1 X 10¹⁰ OHMS/SQUARE PER EIA, JEDEC TNR SPECIFICATION.
- 5. Po/P1, 10 PITCHES CUMULATIVE TOLERANCE ON TAPE: ±0.2 mm.
- 6. Ao & Bo MEASUREMENT POINT TO BE 0.3 mm FROM BOTTOM POCKET.
- 7. ALL DIMENSIONS ARE IN MILLIMETERS.
- 8. PART NO.: eC3-MCM0608-16-8-F1-L REV. 0. PLEASE INDICATE ON PURCHASE ORDER.
- 9. NUMBER OF PARTS per 13 inch (DIAMETER) x 16 mm wide REEL: 2500.

ePAK CARRIER TAPE

CARRIER TAPE_OVERMOLD MCM_6x8x1.4 mm BODY SIZE_GP01-D232-081B 101568_011

Figure 7. Tape and Reel Dimensional Diagram for 6 x 8 x 1.2 mm Package SKY77518 Specific

Electrostatic Discharge Sensitivity

The SKY77518 is a Class I device. The ESD testing was performed in compliance with IEC 61000-4-2 requirements.

Various failure criteria can be utilized when performing ESD testing. Many vendors employ relaxed ESD failure standards that fail devices only after "the pad fails the electrical specification limits" or "the pad becomes completely non-functional".

Skyworks employs stringent criteria, rejecting devices as soon as the pad begins to show any degradation on a curve tracer.

To avoid ESD damage, both latent and visible, it is very important that the product assembly and test areas follow the Class-1 ESD handling precautions listed in Table 6.

	Wright Strong		
	Wrist Straps		
Personnel Grounding	Conductive Smocks, Gloves and Finger Cots		
	Antistatic ID Badges		
Facility	Relative Humidity Control and Air Ionizers		
raciiity	Dissipative Floors (less than 10 ⁹ to GND)		
	Dissipative Table Tops		
	Protective Test Equipment (Properly Grounded)		
Protective Workstation	Grounded Tip Soldering Irons		
	Conductive Solder Suckers		
	Static Sensors		
	Bags and Pouches (Faraday Shield)		
	Protective Tote Boxes (Conductive Static Shielding)		
Protective Packaging and Transportation	Protective Trays		
	Grounded Carts		
	Protective Work Order Holders		

Table 6. Precautions for Handling GaAs IC-Based Proc	ducts to Avoid Induced Damage
--	-------------------------------

Ordering Information

Model Number	Manufacturing Part Number	Product Revision	Package	Operating Temperature
SKY77518	SKY77518		6x8MCM-20	–15 °C to +100 °C

Revision History

Revision	Level	Date	Description
P1		November 9, 2005	Initial Issue – Preliminary Information

References

Application Note: PCB Design and SMT Assembly/Rework, Document Number 101752 Application Note: Tape and Reel Information – RF Modules, Document Number 101568 Standard SMT Reflow Profiles: JEDEC Standard J–STD–020 Application Note: BiCMOS iPAC[™] Front-End Modules, Document Number 200129

©2005, Skyworks Solutions, Inc. All Rights Reserved

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products. These materials are provided by Skyworks as a service to its customers and may be used for informational purposes only. Skyworks assumes no responsibility for errors or omissions in these materials. Skyworks may make changes to its products, specifications and product descriptions at any time, without notice. Skyworks makes no commitment to update the information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from future changes to its product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as may be provided in Skyworks' Terms and Conditions of Sale for such products, Skyworks assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF SKYWORKSTM PRODUCTS INCLUDING WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. SKYWORKS FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THESE MATERIALS.

SkyworksTM products are not intended for use in medical, lifesaving or life-sustaining applications. Skyworks' customers using or selling SkyworksTM products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

The following are trademarks of Skyworks Solutions, Inc.: Skyworks™, the Skyworks symbol, and "Breakthrough Simplicity"™. Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

Additional information, posted at www.skyworksinc.com, is incorporated by reference.