

PRELIMINARY DATA SHEET

SKY77910-11 Tx-Rx FEM for Quad-Band GSM / GPRS / EDGE w/ Eight Linear TRx Switch Ports, Dual-Band TD-SCDMA, and TDD LTE Band 39

Applications

- Cellular handsets encompassing Quad-Band GSM/EDGE, Dual-Band TD-SCDMA, and TDD LTE
 - Class 4 GSM850/900
 - Class 1 DCS1800/PCS1900
 - Class 12 GPRS multi-slot operation
 - Linear EDGE operation
 - TD-SCDMA Bands 34/39
 - TDD LTE Band 39

Features

- Small, low profile package
- 5.5 mm x 5.3 mm x 0.8 mm
- 38-pad configuration
- Fully programmable MIPI® RFFE control
- · Eight low insertion loss / high linearity TRx switch ports
- Integrated noise suppression notch filter for WiFi coexistence
- Built-in IEC-compliant antenna ESD protection
- Integrated broadband directional coupler
- High Efficiency (inclusive of coupler)
 - 40% GSM850 36% DCS1800
 - 40% GSM900 36% PCS1900
- Wide GMSK input power range: -1 dBm to 6 dBm
- Tx-VCO-to-antenna and antenna-to-Rx-SAW filter RF interface
- Tx harmonics below -40 dBm
- Current limiting and over-voltage protection for ruggedness and extended battery life
- ullet Input/Output ports internally matched to 50 Ω load
- High impedance control inputs: 20 μA, maximum
- Power control circuitry built-in for improved TRP variation

Description

The design of the SKY77910-11 Transmit / Receive Front End Module (FEM) offers a complete transmit VCO-to-Antenna and Antenna-to-receive SAW filter solution for advanced cellular handsets comprising quad-band GSM, and linear 2.5G operation. Developed in a very low profile (0.8 mm) and compact form factor, the FEM supports Class 12 General Packet Radio Service (GPRS), EDGE multi-slot operation, and TD-SCDMA and TDD LTE linear transmission. Eight transmit / receive (TRx) ports and an integrated directional coupler enables broadband 3G/4G RF switch-through.

The module consists of a CMOS Power Amplifier (PA) Controller, a low band (LB) PA block supporting GSM850/900 bands, a high band (HB) PA block supporting DCS1800/PCS1900, TD-SCDMA bands 34/39, and TDD LTE band 39, input and output ports internally matched to 50 ohm impedance loads, Tx harmonic filtering, RF switching, and a directional coupler at the antenna output. The custom low-current PA controller includes the Mobile Industry Processor Interface (MIPI) and decoder circuitry to control the RF switch.

Internal matching of all RF ports to a 50 ohm load reduces the number of external components on the phone board. The Heterojunction Bipolar Transistor (HBT) PA blocks, fabricated in GaAs, share common power supply pads to distribute current. Extremely low leakage current of the SKY77910-11 maximizes handset standby time. The PA outputs and the eight TRx pads connect to the antenna pad through a high-linearity, low-loss switch. The TRx ports feature a 0 volts DC offset level that eliminates external blocking capacitors. An integrated directional coupler precludes any external coupler requirement. The GaAs die, the switch die, the CMOS controller, and the passive components mount onto a multi-layer laminate substrate and the entire assembly is encapsulated with plastic overmold. MIPI controls the RF signal flows including mode control and selection of LB or HB PA or TRx port.

In GMSK modes, the PA controller provides envelope amplitude control as a function of VRAMP and reduces sensitivity to input drive, temperature, power supply, and process variations. Skyworks' Finger-Based Integrated Power Amplifier Control (FB-iPAQ) minimizes output power variation into mismatch. Proper timing of MIPI commands and VRAMP input ensures high isolation between the antenna and Tx-VCO while the VCO is being tuned prior to the transmit burst.

In EDGE and TD-SCDMA / TDD LTE linear modes, VRAMP voltage and MIPI-based bias settings optimize PA linearity and efficiency.

1

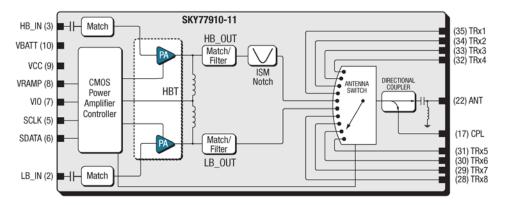


FIGURE 1. SKY77910-11 FUNCTIONAL BLOCK DIAGRAM

Electrical Specifications

The following tables list the electrical specifications of the SKY77910-11 Front-End Module. Table 1 lists the absolute maximum ratings and Table 2 lists the recommended operating conditions. Table 5 through Table 11 provide the electrical specifications of the SKY77910-11 for GMSK, EDGE, TD-SCDMA,

and TDD LTE transmission, and TRx port modes including control logic descriptions for the various modes.

203313_001

The SKY77910-11 is a static-sensitive electronic device and should not be stored or operated near strong electrostatic fields. Detailed information on device dimensions, pad descriptions, packaging and handling can be found in later sections of this data sheet.

Parameter		Symbol	Minimum	Nominal	Maximum	Unit
Input Power		Pin	_	_	15	dBm
Supply Voltage ≤ 1 µs (measured to GND)		VBATT	_	_	6	V
DC Continuous During Burst ²		Іватт	_	_	2.5	Α
GMSK Burst Duty Cycle		Dв	_	_	50	%
Voltage Standing Wave Ratio		VSWR	_	_	20:1	V
Power Control Voltage		VRAMP	-0.3	_	3.0	V
MIPI Supply Voltage		VIO	_	_	2.0	V
MIPI Data and Clock Voltage		VMIPI	_	_	2.0	V
Temperatures	Operating	TCASE	-30	_	+100	°C
	Storage	Тѕтс	-40	_	+150	
Moisture Sensitivity Level		MSL	_	_	3	
Reflow Solder Temperature (J-STD-020B)		TSOLDER	260	_	_	°C

¹ Exposure to maximum rating conditions for extended periods may reduce device reliability. There is no damage to device with only one parameter set at the limit at a time and all other parameters set at or below their nominal value.

² Applied voltage must be current-limited to specified range.

Table 2. SKY77910-11 Recommended Operating Conditions 1 Unless otherwise specified: 50 Ω system; terminate all RF ports with 50 Ω during test.

Param	eter	Symbol	Minimum	Typical ²	Maximum	Unit
Supply Voltage ³	upply Voltage ³ GMSK		3.0	3.5	4.6	V
EDGE/TD-SCDMA/TDD LTE			3.0	3.6	4.6	
		Vcc	2.5	_	4.6	
GMSK Input Power		Pin	-1	3	6	dBm
Operating Case Temperature ⁴	GMSK/EDGE 1–4 Slots (12.5%–50% duty cycle) ⁵	TCASE	-20	+25	+85	°C
	TD-SCDMA/TDD LTE		-20	+25	+85	

¹ Extreme Test Conditions (ETC) are defined by the applicable min/max values of the parameters.

TABLE 3. SKY77910-11 INTERFACE SPECIFICATIONS *Unless otherwise specified: ETC per Table 2.*

Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Units
Supply Current	I BATT		0	_	2.3	Α
GMSK/EDGE Burst Duty Cycle	Dв		12.5	_	50	%
Resistance of VRAMP	R_vramp	DC resistance to ground	_	_	5	MΩ
Capacitance of VRAMP	C_VRAMP	Capacitance to ground	_	_	2	pF
MIPI Supply Voltage	VIO	VRAMP < 1.45 V	1.65	1.8	1.95	V
MIPI Signal Levels	VMIPI_LOW		0		0.2 x VIO	
	VMIPI_HIGH		0.8 x VIO		VIO	
Power Control Voltage	VRAMP		0.2	_	2.0	V
Standby Current	I_STANDBY	Standby mode NTC VIO = 0 V	_	5	20	μА
TRx Mode Current	I_TRX	Any TRx Mode	_	150	300	μА

² Nominal Test Condition (NTC) is defined by the applicable typical values.

 $^{^{3}\,}$ VBATT and VCC should be connected unless DC/DC is used and VCC can be separately supplied.

 $^{^{4}\,}$ Case Operating Temperature refers to the temperature at the GROUND PAD on the underside of the package.

 $^{^{\}rm 5}~$ Max. output power must be reduced by 6 dB to support 3-slot and 4-slot operation.

TABLE 4. SKY77910-11 MIPI RFFE REGISTER MAP (1 OF 2)

T	IABLE 4. SKY//91U-11 MIPI KFFE KEGISTER MAP (1 0F 2)							
Bit Position	Description	Default Value		Notes				
		Reg	jister 0, Address 0x00 (Mode Control)					
7	(Reserved)	0	(Reserved. Set to 0)					
6	(Reserved)	0	(Reserved. Set to 0)					
5	Gain Control	0	0 = nominal Gain, 1 = lower Gain (HB	only)				
4:0	Mode Control	00000	0x00 = Standby	0x0B = LB EDGE/Linea	ır Tx			
			0x01 = TRx3	0x0C = Isolation				
			0x02 = TRx2	0x0D = TRx6				
			0x03 = TRx1	0x0E = HB GMSK Tx				
			0x04 = TRx7	0x0F = HB EDGE/Linea	r Tx			
			0x05 = TRx4					
			0x06 = Isolation					
			0x07 = Isolation					
			0x08 = TRx8					
			0x09 = TRx5					
			0x0A = LB GMSK Tx					
				Other = Reserved – Do	Not Use			
-		Re	gister 1, Address 0x01 (Bias Control)	·				
7:4	PA stage 3 bias	1000	0000 = 250 μA					
			0001 = 500 μA	0110 = 1750 μΑ	1011 = 3000 μΑ			
			0010 = 750 μΑ	0111 = 2000 μΑ	1100 = 3250 μA			
			0011 = 1000 μA	1000 = 2250 μA	1101 = 3500 μΑ			
			0100 = 1250 μΑ	1001 = 2500 μA	1110 = 3750 μΑ			
			0101 = 1500 μΑ	$1010 = 2750 \mu\text{A}$	1111 = 4000 μΑ			
3:0	PA stage 1-2 bias	1000	0000 = 250 μΑ					
			$0001 = 500 \mu\text{A}$	$0110 = 1750 \mu\text{A}$	1011 = 3000 μΑ			
			0010 = 750 μΑ	0111=2000 μA	1100 = 3250 μΑ			
1			0011 = 1000 μΑ	$1000 = 2250 \mu\text{A}$	1101 = 3500 μΑ			
			0100 = 1250 μΑ	$1001 = 2500 \mu\text{A}$	1110 = 3750 μΑ			
			0101 = 1500 μΑ	$1010 = 2750 \mu\text{A}$	1111 = 4000 μA			
		R	egister 2, Address 0x02 (Reserved)					
7:0	(Reserved)	0x00	(Reserved)					
•		R	egister 3, Address 0x03 (Reserved)					
7:0	(Reserved)	0x00	(Reserved)					
,		R	egister 4, Address 0x04 (Reserved)					
7:0	(Reserved)	0x00	(Reserved)					
		R	egister 5, Address 0x05 (Reserved)					
7:0	(Reserved)	0x00	(Reserved)					
		R	egister 6, Address 0x06 (Reserved)					
7:0	(Reserved)	0x00	(Reserved)					

TABLE 4. SKY77910-11 MIPI RFFE REGISTER MAP (2 of 2)

TABLE 4. SKY77910-11 MIPI RFFE REGISTER MAP (2 of 2)									
Bit Position	Description	Default Value	Notes						
		Reg	gister 26, Address 0x1A (RFFE Status)						
7:0	SOFTWARE RESET	0	Reset all configurable registers to default values except for USID, GROUP_SID, and PM_TRIG. T RFFE_STATUS register shall reset after it is read. 0: normal operation; 1: software reset.	he					
6	COMMAND_FRAME_PARITY_ERR	0	Command Sequence received with parity error – discard command. The RFFE_STATUS register reset after it is read.	er shall					
5	COMMAND_LENGTH_ERR	0	Command length error. The RFFE_STATUS register shall reset after it is read.						
4	ADDRESS_FRAME_PARITY_ERR	0	Address frame with parity error. The RFFE_STATUS register shall reset after it is read.						
3	DATA_FRAME_PARITY_ERR	0	Data frame with parity error. The RFFE_STATUS register shall reset after it is read.						
2	READ_UNUSED_REG	0	Read command to an invalid address. The RFFE_STATUS register shall reset after it is read.						
1	WRITE_UNUSED_REG	0	Write command to an invalid address. The RFFE_STATUS register shall reset after it is read.						
0	BID_GID_ERR	0	Read command with a BROADCAST_ID or GROUP_ID. The RFFE_STATUS register shall reset a read.	fter it is					
		Re	gister 27, Address 0x1B (GROUP_ID)						
7:4	(Reserved)	0000	(Reserved)						
3:0	Group SID	0000	Group slave ID						
		Re	egister 28, Address 0x1C (PM_TRIG)						
7:6	PWR_MODE	00	NOTE : When an RFFE Slave is initially powered up 00 = Normal Operation (ACTIVE)						
			and comes out of reset, it enters STARTUP. During STARTUP, all Slave registers shall be set to						
			their default values. Following STARTUP, the Slave shall transition to ACTIVE but immediately transition into LOW POWER to avoid requiring a write on the bus to configure the devices explicitly to LOW POWER. When the Slave is in LOW POWER, charge pumps shall be disabled and the Slave shall be listening to the RFFE bus.						
			11 = Reserved						
5	Trigger Mask 2	1	Trigger Enable: 0, Trigger Disable: 1						
4	Trigger Mask 1	1	Trigger Enable: 0, Trigger Disable: 1						
3	Trigger Mask 0	1	Trigger Enable: 0, Trigger Disable: 1						
2	Trigger Register 2	0	Not supported						
1	Trigger Register 1	0	(Reserved)						
0	Trigger Register 0	0	1 = Latch Register 0,1 contents						
		Re	egister 29, Address 0x1D (PROD_ID)						
7:0	Product ID	0x8E	Product ID						
		R	tegister 30, Address 0x1E (MAN_ID)						
7:0	Manufacturer ID	0xA5	Manufacturer ID [7:0]						
			Register 31, Address 0x1F (USID)						
7:6	(Reserved)	00	(Reserved)						
5:4	Manufacturer ID (MSB)	01	Manufacturer ID [9:8]						
3:0	User ID	1111	USID = 1111						

Table 5. SKY77910-11 Electrical Specifications – GMSK Low Band (1 of 2) *Unless otherwise specified: Prated = 33 dBm; ETC per Table 2.*

	GSM850/900 GMSK Mode							
Parameter		Symbol	Conditions	Minimum	Typical	Maximum	Unit	
Frequency Range	GSM850	f0	_	824	_	849	MHz	
	GSM900			880	_	915		
Supply Current		IBATT	-	_	_	2.3	Α	
Power Added Efficiency	GSM850	PAE	POUT = PRATED	_	40	_	%	
	GSM900		NTC Duty cycle = 1:8	_	40	_		
Harmonics		2f0 to 13f0	BW = 3 MHz 5 dBm ≤ Cal-Pout ≤ Prated Vramp = Cal-Vramp ¹	_	-40	-33	dBm	
Output Power		Pout_gmsk	PIN = -1 dBm VRAMP = 1.6 V NTC	_	34	_	dBm	
		Pout_gmsk_ex	PIN = -1 dBm VBATT = 3.0 V VRAMP = 1.8 V	31	_	_		
Input VSWR		ΓΙΝ	POUT ≤ PRATED	_	_	2.5:1		
Isolation		ISO_PDSD	PIN ≤ 6 dBm Forward Isolation Mode VRAMP ≤ 0.1 V	_	-7 0	- 51	dBm	
		ISO_PESE	PIN ≤ 6 dBm LB_GMSK_Tx Mode VRAMP ≤ 0.1 V	_	_	-15		
Mode Switching Time		T_MODE_GMSK	Time from EDGE to GMSK mode transition to application of GMSK RF input drive to meet forward isolation PESE			2	μs	

Table 5. SKY77910-11 Electrical Specifications – GMSK Low Band (2 of 2) *Unless otherwise specified: Prated = 33 dBm; ETC per Table 2.*

	GSM850/900 GMSK Mode							
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit		
Stability	S	All combinations of the following parameters: 5 dBm \leq Pout \leq Prated 0 dBm \leq PiN \leq 6 dBm Load VSWR = 12:1, all phase angles	No	parasitic osci	llation > -36	dBm		
Load Mismatch	Load	All combinations of the following parameters: 5 dBm \leq Pout \leq Prated 0 dBm \leq PiN \leq 6 dBm Load VSWR = 20:1, all phase angles.	No modu	le damage or	permanent de	egradation		
Noise Power	PNOISE_850	f_Rx = 869 MHz to 894 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83	dBm		
	PNOISE_900	f_Rx = 935 MHz to 960 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83			
		f_Rx = 925 MHz to 935 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-79			
		f_Rx =1805 MHz to 1880 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-86			
	PNOISE_750	f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz			-83			
	PNOISE_ISM	f_Rx = 2400 MHz to 2500 MHz POUT = PRATED NTC RBW = 100 kHz			-106			

¹ Cal-Vramp = Vramp at Pout = Cal-Pout, NTC

Table 6. SKY77910-11 Electrical Specifications – EDGE Low Band (1 of 2) Unless otherwise specified: VRAMP = 1.45 V; PRATED = 27.5 dBm; ETC per Table 2.

			GSM850/900 EDGE Mode				
Parameter		Symbol	Conditions	Minimum	Typical	Maximum	Unit
Frequency Range	GSM850	f0	_	824	_	849	MHz
	GSM900			880	_	915	
Power Added Efficiency	GSM850	PAE_GSM850	POUT = PRATED NTC	_	18	_	%
	GSM900	PAE_GSM900	Duty cycle = 1:8	_	18		
Harmonics		2fo to 15fo	BW = 3 MHz 5 dBm ≤ Pout ≤ Pout_edge, Pout_edge_ex	_	-45	-36	dBm
Output Power		POUT_EDGE	NTC ACPR / EVM / ORFS in specification	27.5		_	dBm
		POUT_EDGE_EX	ACPR / EVM / ORFS in specification	26.0		_	
Input VSWR		ΓIN	Pout ≤ Prated	_	ı	2.5:1	
Gain		G_NOM_850	POUT = PRATED	31.0	32.5	34.0	dB
		G_NOM_900	NTC	31.0	32.5	34.0	
		G_EX_850	Pout = Pout_edge,	29.0		35.5	
		G_EX_900	POUT_EDGE_EX	29.0	_	35.5	
ACPR		ACPR_200	Pout = Pout_edge,	_	-37.5	-34.0	dBc
		ACPR_400	Pout_edge_ex Bandwidth = 30 kHz	_	-65.0	-60.0	
		ACPR_600	Danaman – 35 laiz	_	-75.0	-70.0	
EVM		EVM_RMS	POUT = POUT_EDGE, POUT_EDGE_EX	_	_	4	%
Bias Switching Time		T_ON_EDGE	Rx to Tx transition time from final MIPI command and 90% VRAMP to 0.5 db RF settling.	_	_	1	μs

Table 6. SKY77910-11 Electrical Specifications – EDGE Low Band $(2\ 0\ F\ 2)$ Unless otherwise specified: Vramp = 1.45 V; Prated = 27.5 dBm; ETC per Table 2.

GSM850/900 EDGE Mode									
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit			
Stability	S	All combinations of the following parameters: 5 dBm \leq Pout \leq Prated Load VSWR = 12:1, all phase angles	No	parasitic osc	illation > -36	dBm			
Load Mismatch	Load	All combinations of the following parameters: $5 \text{ dBm} \le \text{Pout} \le \text{Prated}$ Load VSWR = 20:1, all phase angles.	No modu	le damage o	r permanent de	egradation			
Noise Power	PNOISE_850	f_Rx = 869 MHz to 894 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-82	dBm			
	PNOISE_900	$f_{\rm R}$ X = 935 MHz to 960 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-82				
		f _Rx = 925 MHz to 935 MHz POUT = PRATED NTC RBW = 100 kHz		_	-82				
		f_Rx = 1805 MHz to 1880 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-86				
	PNOISE_750	f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83				
	PNOISE_ISM	f_Rx = 2400 MHz to 2500 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-106				

Table 7. SKY77910-11 Electrical Specifications – GMSK High Band (1 of 2) **Unless otherwise specified: Prated = 30.5 dBm; ETC per Table 2.**

GSM1800/1900 GMSK Mode									
Parameter	•	Symbol	Conditions	Minimum	Typical	Maximum	Unit		
Frequency Range	DCS1800	f0	_	1710	_	1785	MHz		
	PCS1900		_	1850	_	1910			
Power Added Efficiency		PAE_DCS1800	Pout = Prated NTC	_	36	_	%		
		PAE_PCS1900	Duty cycle = 1:8	_	35	_			
Harmonics		2f0 to 7f0	BW = 3 MHz 0 dBm ≤ Cal-Pout ≤ Prated Vramp = Cal- Vramp ¹	_	-40	-33	dBm		
Output Power		Pout_gmsk	$\begin{aligned} \text{Pin} &= -1 \text{ dBm} \\ \text{Vramp} &= 1.6 \text{ V} \\ \text{NTC} \end{aligned}$	_	31.5	_	dBm		
		Pout_gmsk_ex	PIN = -1 dBm VBATT = 3.0 V VRAMP = 1.8 V	28.5	_	_			
Input VSWR		Гім	Pout ≤ Prated	_	_	2.5:1			
Isolation		ISO_PDSD	Pin ≤ 6 dBm Forward Isolation Mode VRAMP ≤ 0.1 V	_	-65	-53	dBm		
		ISO_PESE	Pin ≤ 6 dBm HB_GMSK_Tx Mode VRAMP ≤ 0.1 V	_	_	-15			
Mode Switching Time		T_MODE_GMSK	Time from EDGE to GMSK mode transition to application of GMSK RF input drive to meet forward isolation PESE	_	_	2	μs		

Table 7. SKY77910-11 Electrical Specifications – GMSK High Band (2 of 2) **Unless otherwise specified: Prated = 30.5 dBm; ETC per Table 2.**

GSM1800/1900 GMSK Mode								
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit		
Stability	S	All combinations of the following parameters: 0 dBm \leq Pout \leq Prated 0 dBm \leq PiN \leq 6 dBm Load VSWR = 12:1, all phase angles	No	parasitic oso	cillation >–36 o	dBm		
Load Mismatch	Load	All combinations of the following parameters: 0 dBm \leq Pout \leq Prated 0 dBm \leq PiN \leq 6 dBm Load VSWR = 20:1, all phase angles.	No modul	le damage o	permanent d	egradation		
Noise Power	PNOISE_1800	f_Rx = 1805 MHz to 1880 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83	dBm		
		f_Rx = 925 MHz to 960 MHz Роит = Prated NTC RBW = 100 kHz	_	_	-84			
	PNOISE_1900	f_Rx = 1930 MHz to 1990 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83			
		f_Rx = 869 MHz to 894 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-84			
	PNOISE_750	f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83			
	PNOISE_ISM	$f_{\rm R}$ X = 2400 MHz to 2500 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-106			

 $^{^{1}}$ Cal-Vramp = Vramp at Pout = Cal-Pout, NTC

Table 8. SKY77910-11 Electrical Specifications –EDGE High Band (1 of 2) Unless otherwise specified: VRAMP = 1.45 V; PRATED = 26.5 dBm; ETC per Table 2.

GSM1800/1900 **EDGE Mode Parameter** Symbol **Conditions** Minimum **Typical** Maximum Unit Frequency Range DCS1800 1710 1785 MHz f0 PCS1900 1850 1910 Power Added Efficiency PAE_DCS1800 $V_{BATT} = 3.6 V$ 18.5 % POUT = PRATED NTC PAE_PCS1900 19.5 Duty cycle = 1:8 Harmonics 2fo to 7fo BW = 3 MHz-36 -45 dBm $0 \text{ dBm} \le Pout \le Pout_edge, Pout_edge_ex}$ **Output Power** POUT EDGE NTC 26.5 dBm ACPR / EVM / ORFS in specification Pout_edge_ex ACPR / EVM / ORFS in specification 25.0 Input VSWR ΓιΝ $POUT \le PRATED$ 2.5:1 Gain G_NOM_1800 POUT = PRATED36.0 dΒ 33.0 34.5 NTC G NOM 1900 33.0 34.5 36.0 G_EX_1800 $POUT = POUT_EDGE$, 31.0 37.5 POUT EDGE EX 31.0 37.5 G EX 1900 **ACPR** ACPR_200 $POUT = POUT_EDGE$ -37.5-34.0dBc POUT EDGE EX ACPR 400 -65.0-59.0 Bandwidth = 30 kHz ACPR_600 -70.0 -75.0EVM EVM_RMS $POUT = POUT_EDGE$ 4 % POUT EDGE EX T_ON_EDGE Rx to Tx transition time from final MIPI command 1 Mode Switching Time μs and 90% VRAMP to 0.5 dB RF settling

Table 8. SKY77910-11 Electrical Specifications –EDGE High Band $(2\ 0F\ 2)$ Unless otherwise specified: Vramp = 1.45 V; Prated = 26.5 dBm; ETC per Table 2.

GSM1800/1900 EDGE Mode						
Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Stability	S	All combinations of the following parameters: 0 dBm ≤ Pout ≤ PRATED Load VSWR = 12:1, all phase angles	No parasitic oscillation >-36 dBm			
Load Mismatch	Load	All combinations of the following parameters: 0 dBm \leq Pout \leq PRATED Load VSWR = 20:1, all phase angles	No module damage or permanent degradation			
Noise Power	PNOISE_1800	f_Rx = 1805 MHz to 1880 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-80	dBm
		$f_{\rm R}$ x = 925 MHz to 960 MHz Pout = Prated NTC RBW = 100 kHz	_	_	-84	
	PNOISE_1900	$f_{\rm R}$ x = 1930 MHz to 1990 MHz Pout = Prated NTC RBW = 100 kHz	_	_	-80	
		f_Rx = 869 MHz to 894 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-84	
	PNOISE_750	f_Rx = 734 MHz to 757 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-83	
	PNOISE_ISM	f_Rx = 2400 MHz to 2500 MHz POUT = PRATED NTC RBW = 100 kHz	_	_	-106	

Table 9. SKY77910-11 Electrical Specifications – TD-SCDMA Band 39 Unless otherwise specified: VRAMP = 1.45 V; ETC per Table 2.

TD-SCDMA Band 39 (1880-1920 MHz) **Parameters** Minimum Maximum Unit Symbol Condition **Typical Output Power** POUT_TD_NOM NTC 24.5 dBm POUT TD EX 23.5 Gain dB High Power GHPM_NOM $\mathsf{Pout} = \mathsf{Pout_td_nom}$ 30.5 32.0 33.5 **G**HРМ EX POUT = POUT TD EX 28.0 35.0 GLPM Low Power Pin = -35 dBm, Vramp = 0.3 V24.0 27.0 Power Added Efficiency РАЕнрм POUT = POUT TD NOM 15 % $Pin \le -80 dBm$ TBD Quiescent Current ICQ_HPM mΑ Low Power Mode Current BATT_LPM $V_{RAMP} = 0.3 V$ TBD mΑ Pout = 0 dBmNTC Adjacent Channel Leakage ACLR1.6 POUT_TD_NOM 1.6 MHz offset -47 -42 dBc power Ratio¹ POUT TD EX -42 3.2 MHz offset ACLR3.2 -64 -60 POUT_TD_NOM, POUT_TD_EX Error Vector Magnitude¹ EVM_RMS 2 3 POUT_TD_NOM % POUT_TD_EX 2 4 Harmonic Suppression¹ f02-f06 $Pout \le Pout_td_nom$, $Pout_td_ex$, RBW = 1 MHz-36 dBm Tx Noise in Rx Bands¹ $f_{Rx} = 1805 \text{ MHz to } 1850 \text{ MHz},$ DCS Rx -81 dBm $Pout = Pout_{D_NOM}$ NTC, RBW = 100 kHzInput Voltage Standing Wave Ratio VSWR IN 2.5:1 Rise / Fall Time TonDC TRx Mode to TDD LTE Tx, from MIPI command and TBD 10 μs >90% VRAMP to 0.5 dB RF settling **TOFFDC** TDD LTE Tx to TRx Mode, from MIPI command or TBD 10 <10% VRAMP to 30 dB gain drop Stability S VSWR = 12:1 All phases, RBW = 1 MHz dBm -36**VSWR** Ruggedness - no damage Ru All phases, time = 10 seconds 20:1

Measured using ETSI TS 125.102 UL reference measurement channel (12.2 kbps), 16% duty cycle.

Table 10. SKY77910-11 Electrical Specifications – TD-SCDMA Band 34 Unless otherwise specified: Vramp = 1.45 V; ETC per Table 2.

TD-SCDMA Band 34 (2010-2025 MHz) **Parameters** Minimum Maximum Unit Symbol Condition **Typical Output Power** POUT_TD_NOM NTC 24.5 dBm POUT TD EX 23.5 Gain dB High Power GHPM_NOM $\mathsf{Pout} = \mathsf{Pout_td_nom}$ 30.5 32.5 34.0 **G**HРМ EX POUT = POUT TD EX 28.0 35.5 GLPM Low Power Pin = -35 dBm, Vramp = 0.3 V24.0 27.0 Power Added Efficiency РАЕнрм POUT = POUT TD NOM 15 % $Pin \le -80 dBm$ TBD Quiescent Current ICQ_HPM mΑ Low Power Mode Current BATT_LPM $V_{RAMP} = 0.3 V$ TBD mΑ Pout = 0 dBmNTC Adjacent Channel Leakage ACLR1.6 POUT_TD_NOM 1.6 MHz offset -44 -40 dBc power Ratio¹ POUT TD EX -40 3.2 MHz offset ACLR3.2 -62 -58 POUT_TD_NOM, POUT_TD_EX Error Vector Magnitude¹ EVM_RMS 2 3 POUT_TD_NOM % POUT_TD_EX 2 4 Harmonic Suppression¹ f02-f06 $Pout \le Pout_td_nom$, $Pout_td_ex$, RBW = 1 MHz-36 dBm Tx Noise in Rx Bands¹ $f_{Rx} = 1805 \text{ MHz to } 1880 \text{ MHz},$ DCS Rx -81 dBm $Pout = Pout_{D_NOM}$ NTC, RBW = 100 kHzInput Voltage Standing Wave Ratio VSWR IN 2.5:1 Rise / Fall Time TonDC TRx Mode to TDD LTE Tx, from MIPI command and TBD 10 μs >90% VRAMP to 0.5 dB RF settling **TOFFDC** TDD LTE Tx to TRx Mode, from MIPI command or TBD 10 <10% VRAMP to 30 dB gain drop Stability S VSWR = 12:1 All phases, RBW = 1 MHz dBm -36**VSWR** Ruggedness - no damage Ru All phases, time = 10 seconds 20:1

Measured using ETSI TS 125.102 UL reference measurement channel (12.2 kbps), 16% duty cycle.

Table 11. SKY77910-11 Electrical Specifications –TDD LTE Band 39 Unless otherwise specified: Vramp = 1.45 V: ETC per Table 2.

TDD LTE Band 39 (1880–1920 MHz)							
Parameters		Symbol	Condition	Minimum	Typical	Maximum	Unit
Output Power ¹		POUT_TDLTE_NOM	NTC	23.5	_	_	dBm
		POUT_TDLTE_EX		22.5	_	_	
Gain ¹	High Power	GHPM_TDLTE_NOM	POUT = POUT_TDLTE_NOM	30.5	32.0	34.0	dB
		GHPM_TDLTE_EX	Pout = Pout_tdlte_ex	28.0	_	35.0	
	Low Power	GLPM	Pin = -35 dBm, Vramp = 0.3 V	_	24.0	27.0	
Power Added Efficiency		РАЕнрм	POUT = POUT_TDLTE_NOM	_	13	_	%
Quiescent Current		Ісо_нрм	P _{IN} ≤ −80 dBm	_	TBD	_	mA
Low Power Mode Current		IBATT_LPM	VRAMP = 0.3 V POUT = 0 dBm NTC		50		mA
Adjacent Channel Leakage power	Ratio ¹	EUTRA_ACLR1	POUT = POUT_TDLTE_NOM	_	-42	_	dBc
			Pout = Pout_tdlte_ex	_	_	-36	
		UTRA_ACLR1	POUT = POUT_TDLTE_NOM	_	-45	_	
			Pout = Pout_tdlte_ex	_	_	-39	
		UTRA_ACLR2	POUT = POUT_TDLTE_NOM	_	-48	_	
			POUT = POUT_TDLTE_EX		_	-42	
Error Vector Magnitude ¹		EVM_RMS	POUT = POUT_TDLTE_NOM	_	2	3	%
			POUT = POUT_TDLTE_EX	_	2	4	
Harmonic Suppression ² Sec		f02	POUT ≤ POUT_TDLTE_NOM, POUT_TDLTE_EX,	_	_	-36	dBm
	Third	f03	RBW = 1 MHz	_	_	-46	
Tx Noise in Rx Bands ³	ISM Band	PNOISE_TDLTE_ISM	f_Rx = 2400 to 2500 MHz, POUT = POUT_TDLTE_NOM - MPR, NTC, RBW = 100 kHz	_	_	-106	dBm
Band 34 Rx		PNOISE_TDLTE_B34	f_Rx = 2010 to 2025 MHz, POUT = POUT_TDLTE_NOM - MPR, NTC, RBW = 100 kHz	_	_	-85	
Input Voltage Standing Wave Ratio		VSWR_IN	_			2.5:1	_
Rise / Fall Time		TonDC	TRx Mode to TDD LTE Tx, from MIPI command and >90% VRAMP to 0.5 dB RF settling	_	TBD	10	μs
		ToffDC	TDD LTE Tx to TRx Mode, from MIPI command or <10% VRAMP to 30 dB gain drop	_	TBD	10	
Stability		S	VSWR = 12:1 All phases, RBW = 1 MHz	_	_	-36	dBm
Ruggedness - no damage		Ru	All phases, time = 10 seconds	20:1	_		VSWR

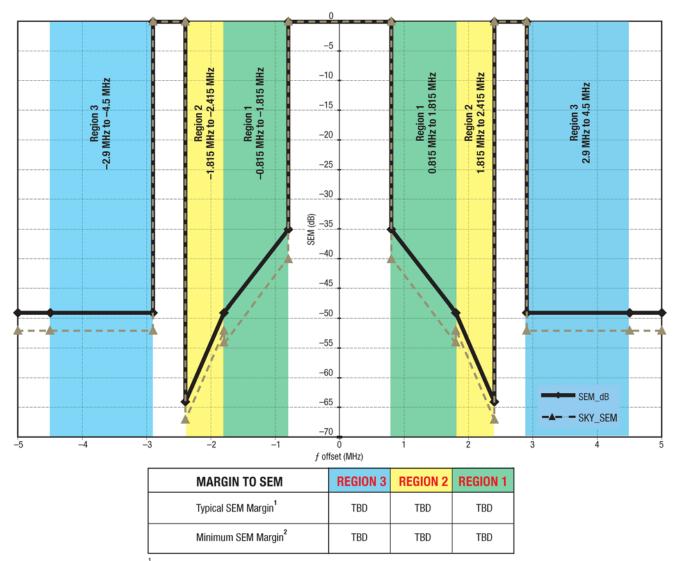
¹ Performance is measured using UL reference measurement channel, 10 MHz. QPSK, 12RB, per ETSI TS 136.101 (Release 12, section A.2.3.2.1-4a).

² Harmonic suppression is measured using UL reference measurement channel, 1.4 MHz, QPSK, 1RB, per ETSI TS 136.01 (Release 12, section A.2.3.2.1-1).

³ Noise is measured using UL reference measurement channel, 20 MHz, QPSK, 100 RB, per ETSI TS 136.101 (Release 12, section A.2.3.1.1)

TABLE 12. SKY77910-11 ELECTRICAL SPECIFICATIONS – TRX PORTS Unless otherwise specified: any TRX Mode; ETC per Table 2.

Ports TRx1 to TRx8							
	Parameter	Symbol	Conditions	Minimum	Typical	Maximum	Unit
Frequency Range		$f_{ extsf{TRX}}$	_	699	_	2690	MHz
Insertion Loss		Rx_IL_LB	699 MHz to 960 MHz	_	0.70	1.20	dB
		Rx_IL_MB	1710 MHz to 1990 MHz	_	0.80	1.45	
		Rx_IL_HB	2010 MHz to 2690 MHz	_	1.10	1.60	
TRx Mode V	SWR ¹	VSWR_TRx	NTC	_	1.5:1	_	VSWR
Isolation	Active TRx port to any	ISO_ADJ_TRx_LB	699 MHz to 960 MHz	26	35	_	dB
	adjacent TRx port	ISO_ADJ_TRx_MB	1710 MHz to 1990 MHz	23	30	_	
		ISO_ADJ_TRx_HB	2010 MHz to 2690 MHz	20	25	_	
	Active TRx port to any	ISO_NONADJ_TRx_LB	699 MHz to 960 MHz	35	40	_	
	non-adjacent TRx port	ISO_NONADJ_TRx_MB	1710 MHz to 1990 MHz	30	35	_	
	port	ISO_NONADJ_TRx_HB	2010 MHz to 2690 MHz	25	30	_	
TRx Harmonics		TRx_2fo, TRx_3fo	50 ohm, P_IN_TRX = +27 dBm, NTC			-55	
			VSWR 5:1 at ANT port, P_IN_TRX = +27 dBm, NTC			-50	
	termodulation Distortion $f_{tx} \pm f_{blocker}$	IMD2	Tx Output Power = 20 dBm CW Blocker Power = -15 dBm CW NTC			-105	dBm
3^{rd} Order Intermodulation Distortion $f_\text{IMD3} = 2f_\text{tx} - f_\text{blocker}$		IMD3	TRx port duplexer termination VSWR \geq 10:1 at f _blocker, all phases			-105	
Leakage froi	m Tx to TRx Ports	P_TxTRx	Any TX Mode	_	_	5	dBm
Coupling Fac	ctor in TRx Mode ²	CPL_TRx_LB	699 to 960 MHz, NTC		–27 dB		dB
		CPL_TRx_MB	1710 to 1990 MHz, NTC		–23 dB		
		CPL_TRx_HB	2010 to 2690 MHz, NTC		–22 dB		
Coupling Factor Variation over Output VSWR ³		CPL_SWR_TRx_LB	699 to 960 MHz, VSWR 2.5:1 at ANT port	0.5		-0.5	dB
		CPL_SWR_TRx_MB	1710 to 1990 MHz, VSWR 2.5:1 at ANT port	1.0		-1.0	
		CPL_SWR_TRx_HB	2010 to 2690 MHz, VSWR 2.5:1 at ANT port	1.0		-1.0	
	ctor Variation over	CPL_TV_TRx_LB	699 to 960 MHz	0.5		-0.5	dB
Temperature ^{3,4}		CPL_TV_TRx_MB	1710 to 1990 MHz	1.0		-1.0	
		CPL_TV_TRx_HB	2010 to 2690 MHz	1.0		-1.0	
Turn-on Tim	ne	Ton_vbatt	From 50% VBATT and VIO to 0.5 dB RF settling			20	μs
TRx-to-TRx	Switch Speed	T_TRxTRx	From MIPI command to 0.5 dB RF settling		2	5	μs


 $^{^{1}\,\,}$ Based on the worst of TRx and ANT port reflection coefficients.

 $^{^{\,2}\,}$ Defined as the ratio of CPL port to ANT port output power, driven from TRx.

³ Variation with respect to 50 ohm reference.

⁴ Variation with respect to NTC.

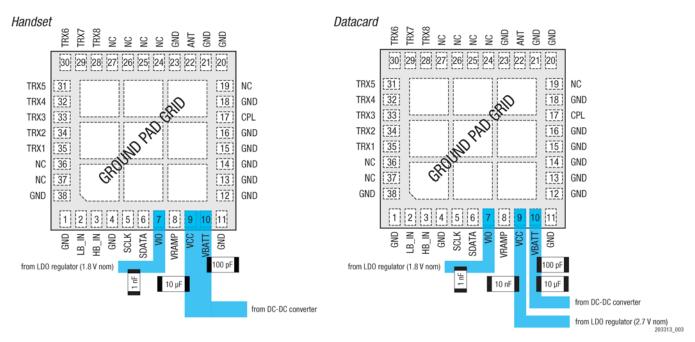
203313_002

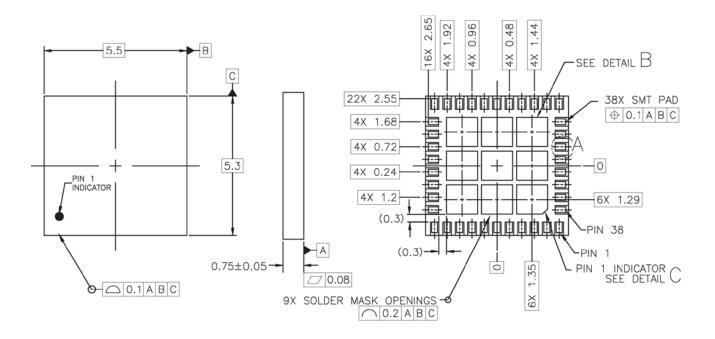
NTC, Pout = Pout_td_nom

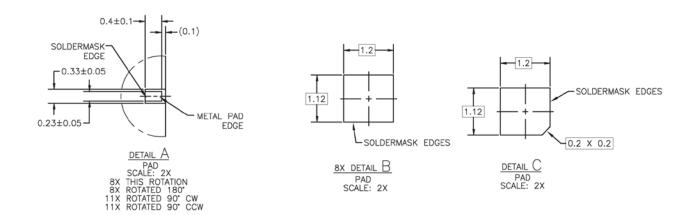
²ETC, POUT = POUT_TD_EX

FIGURE 2. SKY77910-11 - TD-SCDMA MARGIN-TO-SEM CHART

Technical Information




FIGURE 3. SKY77910-11 APPLICATION SCHEMATICS


SKY77910-11 Tx-Rx FEM for QUAD-BAND GSM / GPRS / EDGE w/ EIGHT LINEAR TRX SWITCH PORTS, DUAL-BAND TD-SCDMA, and TDD LTE Band 39

Package Dimensions

The SKY77910-11 quad-band front-end module is a 5.5 mm x 5.3 mm x 0.8 mm, 38-pad, leadless package. Figure 4 is a three-view mechanical drawing of the pad configuration with layout

dimensions. Figure 5 provides a recommended phone board layout footprint for the FEM to help the designer attain optimum thermal conductivity, good grounding, and minimum RF discontinuity for the 50-ohm terminals.

NOTES: UNLESS OTHERWISE SPECIFIED.

- 1. DIMENSIONING AND TOLERANCING IN ACCORDANCE WITH ASME Y14.5M-1994.
- 2. DIMENSIONS ARE IN MILLIMETERS
- 3. PAD DEFINITIONS PER DETAILS ON DRAWING.

203313_004

FIGURE 4. DIMENSIONAL DIAGRAM FOR 5.5 mm x 5.3 mm x 0.8 mm, 38-Pad Leadless Package - SKY77910-11 (All Views)

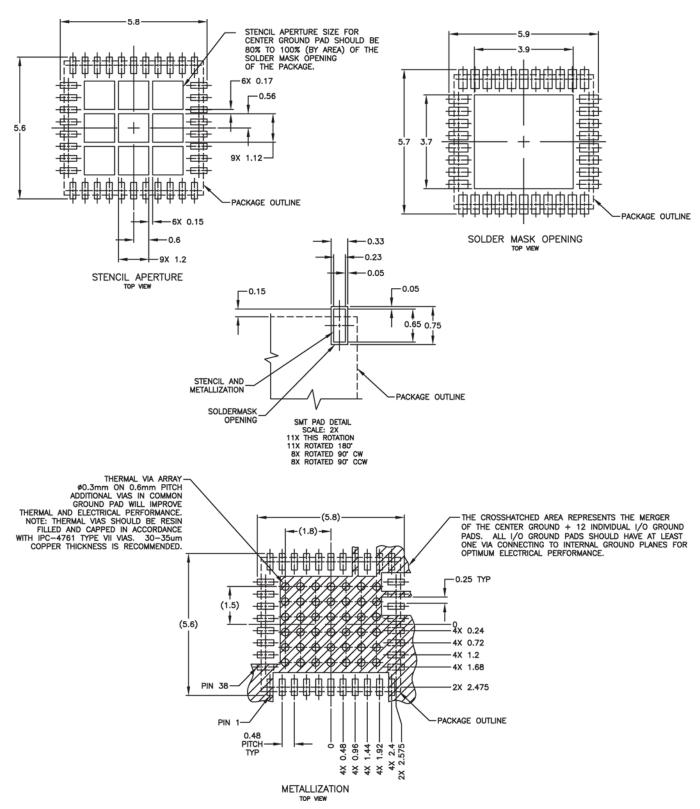


FIGURE 5. PCB LAYOUT FOR 5.5 mm x 5.3 mm, 38-PAD LEADLESS PACKAGE - SKY77910-11 SPECIFIC

SKY77910-11 Tx-Rx FEM for QUAD-BAND GSM / GPRS / EDGE w/ EIGHT LINEAR TRX SWITCH PORTS, DUAL-BAND TD-SCDMA, and TDD LTE Band 39

Package Description Figure 6 shows the device pad configuration and the pad

numbering convention, which starts with pad 1 in the upper left

Pad layout as seen from Top View looking through package.

FIGURE 6. SKY77910-11 PAD NAMES AND CONFIGURATION (TOP VIEW)

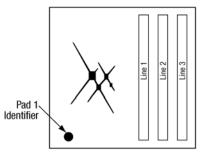

203313 006

TABLE 13. SKY77910-11 SIGNAL DESCRIPTIONS

Pad ¹	Name	Description
2	LB_IN	RF input to LB PA
3	HB_IN	RF input to HB PA
5	SCLK	MIPI clock
6	SDATA	MIPI serial data
7	VIO	MIPI supply voltage
8	VRAMP	Controls GMSK power; EDGE, TD-SCDMA, TDD LTE bias
9	VCC	Output switch supply voltage
10	VBATT	PA supply voltage
17	CPL	Directional coupler RF output
19	NC	No connection
22	ANT	RF output to antenna
24–27	NC	No connection
28-35	TRx8-TRx1	Wideband TRx switch ports
36–37	NC	PA output to Antenna
Ground Pad Grid		Ground Pad Grid (device underside)

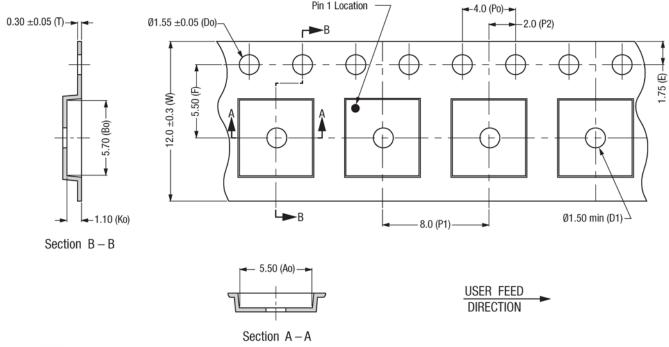
¹ Pads 1, 4, 11–16, 18, 20, 21, 23, and 38 are ground pads.

and increments counter-clockwise around the package. Table 13 lists the pad names and signal descriptions. Figure 7 illustrates the typical case markings.

NOTE: Lines 1, 2, 3 have a maximum of 12 characters Line 1 = Part Number and Version Line 2 = Lot Number

Line 3 = YEAR-WEEK-Country Code (MX)

FIGURE 7. TYPICAL CASE MARKINGS


203313 007

Package Handling Information

Because of its sensitivity to moisture absorption, this device package is baked and vacuum-packed prior to shipment. Instructions on the shipping container label must be followed regarding exposure to moisture after the container seal is broken, otherwise, problems relate to moisture absorption may occur when the part is subjected to high temperature during solder assembly.

The SKY77910-11 is capable of withstanding an MSL3/260 °C solder reflow. Care must be taken when attaching this product. whether it is done manually or in a production solder reflow environment. If the part is attached in a reflow oven, the temperature ramp rate should not exceed 3 °C per second; maximum temperature should not exceed 260 °C. If the part is manually attached, precaution should be taken to insure that the part is not subjected to temperatures exceeding 260 °C for more than 10 seconds. For details on attachment techniques, precautions, and handling procedures recommended by Skyworks, please refer to Skyworks Application Note: PCB Design and SMT Assembly/Rework, Document Number 101752. Additional information on standard SMT reflow profiles can also be found in the JEDEC Standard J-STD-020.

Production quantities of this product are shipped in the standard tape-and-reel format (Figure 8).

NOTES:

- 1. CARRIER TAPE IS BLACK CONDUCTIVE POLYSTYRENE OR POLYCARBONATE.
- 2. COVER TAPE IS TRANSPARENT AND CONDUCTIVE.
- 3. ESD SURFACE RESISTIVITY 10⁴ TO 10¹¹ OHMS/SQ, PER EIA, JEDEC TAPE AND REEL SPEC.
- 4. Po/P1 10 PITCHES CUMULATIVE TOLERANCE ON TAPE: ±0.20 mm.
- 5. Ao & Bo MEASUREMENT POINT TO BE 0.3 mm FROM BOTTOM POCKET.
- 6. ALLOWABLE CAMBER TO BE 1/100 mm, NON-CUMULATIVE OVER 250 mm.
- 7. ALL DIMENSIONS ARE IN MILLIMETERS.

Carrier Tape for Body Size 5.3 x 5.5 x 0.80-1.10 mm D232-0760

FIGURE 8. DIMENSIONAL DIAGRAM FOR CARRIER TAPE BODY SIZE 5.3 mm x 5.5 mm x 0.85-1.10 mm - MCM

Electrostatic Discharge (ESD) Sensitivity

Attention: Observe Precautions for Handling Electrostatic-Sensitive Devices. Electrostatic Discharge (ESD) can damage this device, which must be protected from ESD at all times. Static charges may easily produce potentials of several kilovolts on the human body or equipment which can discharge without detection. Industry-standard ESD precautions should be used at all times.

· Personnel Grounding

- Wrist Straps
- Conductive Smocks, Gloves and Finger Cots
- Antistatic ID Badges
- Protective Workstation
 - Dissipative Table Top
 - Protective Test Equipment (Properly Grounded)
 - Grounded Tip Soldering Irons
 - Solder Conductive Suckers
 - Static Sensors

To avoid ESD damage, both latent and visible, it is very important that the product assembly and test areas follow the ESD handling precautions listed below

- Facility
 - Relative Humidity Control and Air Ionizers
 - Dissipative Floors (less than 1,000 M Ω to GND)
- Protective Packaging and Transportation
 - Bags and Pouches (Faraday Shield)
 - Protective Tote Boxes (Conductive Static Shielding)
 - Protective Trays
 - Grounded Carts
 - Protective Work Order Holders

Ordering Information

Product Name	Order Number	Evaluation Board Part Number
SKY77910-11 Tx-Rx Front-End Module	SKY77910-11	

Revision History

Revision	Date	Description
А	September 6, 2014	Initial Release – Preliminary Information
В	March 13, 2015	Revise: Figures 4, 7, 8

References

Skyworks Application Note: *PCB Design and SMT Assembly/Rework Guidelines for MCM–L Packages;* Document Number 101752 Standard SMT Reflow Profiles: *JEDEC Standard J–STD–020*

© 2014, 2015, Skyworks Solutions, Inc. All Rights Reserved.

Information in this document is provided in connection with Skyworks Solutions, Inc. ("Skyworks") products or services. These materials, including the information contained herein, are provided by Skyworks as a service to its customers and may be used for informational purposes only by the customer. Skyworks assumes no responsibility for errors or omissions in these materials or the information contained herein. Skyworks may change its documentation, products, services, specifications or product descriptions at any time, without notice. Skyworks makes no commitment to update the materials or information and shall have no responsibility whatsoever for conflicts, incompatibilities, or other difficulties arising from any future changes.

No license, whether express, implied, by estoppel or otherwise, is granted to any intellectual property rights by this document. Skyworks assumes no liability for any materials, products or information provided hereunder, including the sale, distribution, reproduction or use of Skyworks products, information or materials, except as may be provided in Skyworks Terms and Conditions of Sale.

THE MATERIALS, PRODUCTS AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING FITNESS FOR A PARTICULAR PURPOSE OR USE, MERCHANTABILITY, PERFORMANCE, QUALITY OR NON-INFRINGEMENT OF ANY INTELLECTUAL PROPERTY RIGHT; ALL SUCH WARRANTIES ARE HEREBY EXPRESSLY DISCLAIMED. SKYWORKS DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. SKYWORKS SHALL NOT BE LIABLE FOR ANY DAMAGES, INCLUDING BUT NOT LIMITED TO ANY SPECIAL, INDIRECT, INCIDENTAL, STATUTORY, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS THAT MAY RESULT FROM THE USE OF THE MATERIALS OR INFORMATION, WHETHER OR NOT THE RECIPIENT OF MATERIALS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Skyworks products are not intended for use in medical, lifesaving or life-sustaining applications, or other equipment in which the failure of the Skyworks products could lead to personal injury, death, physical or environmental damage. Skyworks customers using or selling Skyworks products for use in such applications do so at their own risk and agree to fully indemnify Skyworks for any damages resulting from such improper use or sale.

Customers are responsible for their products and applications using Skyworks products, which may deviate from published specifications as a result of design defects, errors, or operation of products outside of published parameters or design specifications. Customers should include design and operating safeguards to minimize these and other risks. Skyworks assumes no liability for applications assistance, customer product design, or damage to any equipment resulting from the use of Skyworks products outside of stated published specifications or parameters.

Skyworks and the Skyworks symbol are trademarks or registered trademarks of Skyworks Solutions, Inc., in the United States and other countries. Third-party brands and names are for identification purposes only, and are the property of their respective owners. Additional information, including relevant terms and conditions, posted at www.skyworksinc.com, are incorporated by reference.