

SL1521 300MHz WIDEBAND LOG AMPLIFIER

The SL1521A and C are wideband amplifiers intended for use in successive detection logarithmic IF strips operating at centre frequencies of up to 200MHz. It is a plug in replacement for the SL521 series of RF amplifiers The midband voltage gain of the SL1521 is typically 12dB The SL1521A and C differ mainly in the tolerance of voltage gain

APPLICATIONS

- Radar IF strips
- Wideband Amplication

ABSOLUTE MAXIMUM RATINGS (Non-simultaneous)

Test circuits: see Fig.8

ORDERING INFORMATION

SL1521 A CM SL1521 AB CM SL1521 C CM SL1521 CB CM

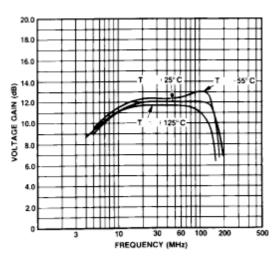
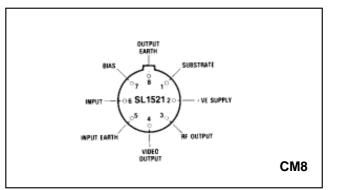
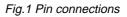
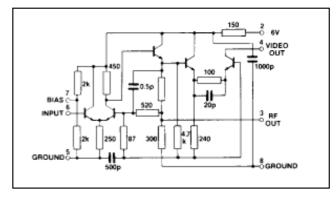
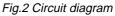






Fig.3 Voltage gain v. frequency

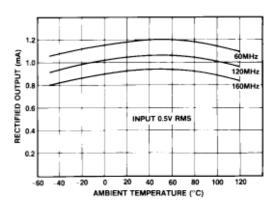


Fig.4 Maximum rectified output current v. temperature

SL1521

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

Temperature = $+22^{\circ}C \pm 2^{\circ}C$

Supply voltage = +5.2V DC connection between input and bias pins

Characteristic	Circuits	Value			Unite	Conditions	
Characteristic	Circuits	Min.	Тур.	Max.	Units	Conditions	
Voltage gain, f = 120MHz	SL1521A SL1521AC	11.5 10.8		12.5 13.1	dB dB	3mV rms input 50 ohms source	
Voltage gain, f = 160MHz	SL1521A SL1521C	11.2 10.6		12.8 13.4	dB dB	$\int 8pF \text{ load } + 500\Omega$	
Upper cut-off frequency	SL1521A SL1521C	250	285 285		MHz MHz	50 ohms source	
Lower cut-off frequency Propagination delay	All types All types		6 0.6	10	MHz ns	50 ohms source	
Maximum rectified video output current	SL1521A SL1521C	0.95 0.90		1.05 1.20	mA mA	f = 120MHz 0.5V rms input 8pF load, 500 ohms in parallel	
Variation of gain with supply voltage Variation of maximum rectified output current with supply voltage	All types All types		1.0 30		dB/V %V	Portano	
Maximum input signal before overload Noise figure	All types		1.5 4.5	6.0	V rms dB	See note below f = 120MHz, source	
Supply current Maximum RF output voltage	All types All types	10.0 1.0	15.0	20.0	mA V p-p	resistance optimised f = 120MHz	

OPERATING NOTES

The amplifiers are intended for use directly coupled, as shown in Fig 7 $\,$

The seventh stage in an untuned cascade will be giving virtually full output on noise.

Noise may be reduced by inserting a single tuned circuit in the chain As there is a large mismatch between stages a simple shunt or series circuit cannot be used. The choice of network is also controlled by the need to avoid distorting the logarithmic law; the network must give unity voltage transfer at resonance. A suitable network is shown in Fig. 8 The value of C1 must be chosen so that at resonance its admittance equals the total loss conductance across the tuned circuit.

A simple capacitor may not be suitable for decoupling the output line if many stages and fast rise times are required. Values of positive supply line decoupling capacitor required for untuned cascades are given below. Smaller vah~es can be used in high frequency tuned cascades.

The amplifiers have been provided with two earth leads to avoid the introduction of common earth lead inductance between input and output circuits The equipment designer should take care to avoid the subsequent introduction of such inductance

	Number of stages							
	6 or more	5	4	3				
Minimum capacitance	30nF	10nF	3nF	InF				

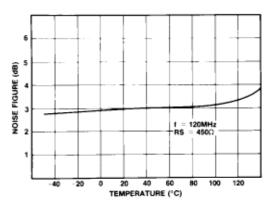


Fig.5 Typical noise figure v. temperature

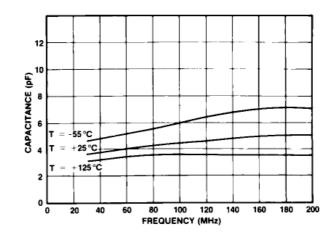


Fig.6 Input admittance with open-circuit output

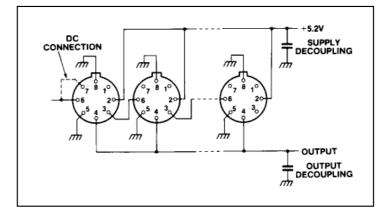


Fig.7 Direct coupled amplifier

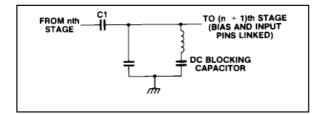


Fig.8 Suitable interstage tuned circuit