

SL1521, A, B & C

WIDEBAND AMPLIFIERS

The SL1521A, B and C are wide band amplifiers intended for use in successive detection logarithmic IF strips operating at centre frequencies of up to 200MHz. It is a plug in replacement for the SL521 series of RF amplifiers. The mid-band voltage gain of the SL1521 is typically 12dB. The SL1521 A, B and C differ mainly in the tolerance of voltage gain.

APPLICATIONS

- Radar IF Strips
- Wideband Amplification

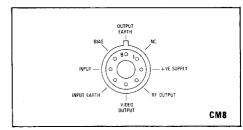


Fig. 1 Pin connections

ABSOLUTE MAXIMUM RATINGS

Storage temperature -55°C to +150°C Operating temperature -55°C to +125°C Maximum chip operating temperature 150°C Chip to ambient thermal resistance 250°C/W

Test circuits: see Fig.8

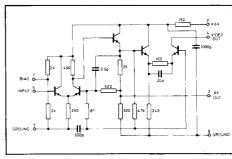


Fig. 2 Circuit diagram

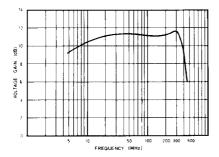


Fig. 3 Voltage gain v. frequency

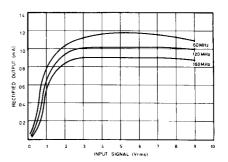


Fig. 4 Rectified output current v. input signal

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

=+ 22°C ±2°C =+ 5.2V Temperature

Supply voltage

DC connection between input and bias pins.

	0:	Value				0 1111	
Characteristic	Circuit	Min.	Тур.	Max.	Units	Conditions	
Voltage gain, f = 120 MHz	SL1521 A	11.5		12.5	dB		
	SL1521 B	11.2		12.8	dB	3mVrms input	
	SL1521 C	10.8		13.1	dB	50 ohms source	
Voltage gain, f = 160MHz	SL1521 A	11.2		12.8	dB	4pF load + 500 Ω	
0 0	SL1521 B	11.0		13.0	dΒ		
	SL1521 C	10.6		13.4	dB		
Upper cut-off frequency	SL1521 A	315	350		MHz		
	SL1521 B	315	350		MHz	50 ohms source	
	SL1521 C	300	350		MHz		
Lower cut-off frequency	All types		6	10	MHz	50 ohms source	
Propagation delay	All types		0.6		ns		
Maximum rectified video output	SL1521 A	0.95		1.05	mA	f = 120 MHz	
current	SL1521 B	0.90		1.10	mA	0.5Vrms input	
	SL1521 C	0.90		1.20	mA	4pF load, no RL	
Variation of gain with supply voltage	All types		1.0		dB/V		
Variation of maximum rectified	All types		30		%/V		
output current with supply voltage							
Maximum input signal before overloa	d All types		1.5		V rms	See note below	
Noise figure			3	4.5	dB	f = 120 MHz, source	
Supply current	All types	10.0	15.0	20.0	mA	resistance optimised	
Maximum RF output voltage	All types	1.0			Vp-p		

Note: Overload occurs when the input signal reaches a level sufficient to forward bias the base-collector junction to TR1 on peaks.

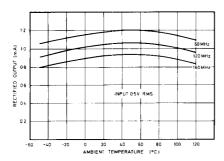


Fig. 5 Maximum rectified output current v. temperature

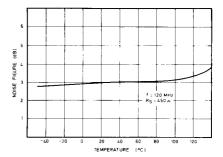


Fig. 6 Typical noise figure v. temperature

Operating Notes

The amplifiers are intended for use directly coupled, as shown in Fig. 8.

The seventh stage in an untuned cascade will be giving virtually full output on noise.

Noise may be reduced by inserting a single tuned circuit in the chain. As there is a large mismatch between stages a simple shunt or series circuit cannot be used. The choice of network is also controlled by the need to avoid distorting the logarithmic law; the network must give unity voltage transfer at resonance. A suitable network is shown in Fig. 9. The value of C1 must be chosen so that at resonance its admittance equals the total loss conductance across the tuned circuit.

A simple capacitor may not be suitable for decoupling the output line if many stages and fast rises times are required.

Values of positive supply line decoupling capacitor required for untuned cascades are given below. Smaller values can be used in high frequency tuned cascades.

The amplifiers have been provided with two earth leads to avoid the introduction of common earth lead inductance between input and output circuits. The equipment designer should take care to avoid the subsequent introduction of such inductance.

	Number of stages						
	6 or more	5	4	3			
Minimum capacitance	30nF	10nF	3nF	1nF			

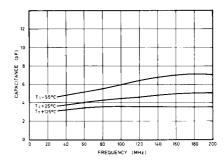


Fig. 7 Input admittance with open-circuit output

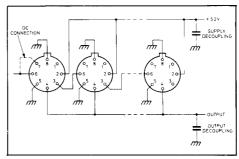


Fig. 8 Direct coupled amplifiers

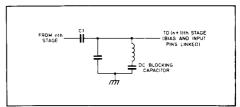


Fig. 9 Suitable interstage tuned circuit