THIS DOCUMENT IS FOR MAINTENANCE PURPOSES ONLY AND IS NOT RECOMMENDED FOR NEW DESIGNS

DS3224 2.3

SL6444

1GHz AMPLIFIER / MIXER

The SL6444 Amplifier and Mixer is designed for use in Cordless Telephones, Cellular Radios, Pagers and Low Power receivers operating at frequencies up to 1GHz. It contains a low noise amplifier and mixer. Operating from a single supply it draws a current of 9.5mA and has a power down facility.

FEATURES

- IGHz Operation
- Low Power Consumption
- Low Noise Figure
- Suitable for Superheterodyne Architectures
- Power Down Facility for Battery Economy
- Balun for Balanced Mixer Drive

ORDERING INFORMATION

SL6444 KG MPAS Miniature Plastic Dil Package

NOTE. This device has static sensitive terminations, sensitivity typically measured as 200V using MIL-STD-883 method 3015. ESD handling precautions are essential to avoid degradation of performance or permanent damage to this device.

	1 2 3 4 5 6 7	14 13 12 11 10 9 8	MP14
Pin	Function	Pin	Function
1 2 3 4 5 6 7	Battery Economy Bias Supply RF Input RF Ground VCC decouple RF Output VCC	14 13 12 11 10 9 8	Bandgap Ref. LO Input Ground Mixer Output 180° Mixer Output 0° Mixer Current Mixer Input

Fig. 1 Pin connections - top view

Fig. 2 Block diagram

ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed over the following conditions unless otherwise stated. T_{amb} = 25°C, V_{CC} = 2.7V and at V_{CC} = 6.0V

Characteristic	Pin		Value		Units	Conditions
		Min	Тур	Max		
DC CHARACTERISTICS						
Supply voltage Supply current, I _{CC} Note 1	V _{cc}	2.7 7.0 8.7	5.0 7.8 9.7 0.5	6.0 8.5 10.7 1.0	V mA mA μA	Battery economy low $V_{CC} = 2.7$ Battery economy low $V_{CC} = 6.0$ Battery economy high
Bandgap reference	VBG VBG	1.15 1.19	1.17 1.22	1.20 1.25	V V	No external load $V_{CC} = 2.7$ No external load $V_{CC} = 6.0$
Battery economy high	BEC	V _{CC} -0.5		V _{cc}	V	
Battery economy low	BEC	0		0.5	V	
Battery economy sink current	BEC		0.1	2.0	μΑ	Battery economy high
Battery economy source current	BEC		1.0	2.0	μΑ	Battery economy low
RFAMPLIFIER (COMMON EMITTER)						
Supply current	RFOUT	2.1	2.5	2.8	mA	$V_{CC} = 6.0V$
MIXER						
Optimum frequency range	MIXIN	0.1			GHz	
Supply current Note 2.		3.5	3.9	4.3	mA	$V_{\rm CC} = 2.7$
Mixer conversion Voltage gain Mixer output gain match	MIXOUT MIXOUTB	4.2 10.3 10.0	4.0 11.0 10.6	11.7 11.2 -/+ 0.5	dB dB dB	$V_{CC} = 6.0V$ Note 3 $V_{CC} = 2.7V$ Note 3

NOTES: (1) Total device supply current

 (2) Half mixer current in each of MIXOUT and MIXOUTB
(3) conditions:- LOIN = 100MHz, -15dBm MIXIN = 100.01MHz, -30dBm

MIXOUT and MIXOUTB 470 Ω load IF = 10kHz

TYPICAL ELECTRICAL CHARACTERISTICS

These characteristics are guaranteed by design.

 $T_{amb} = 25^{\circ}C$, $V_{CC} = 5$ Volts.

Characteristics	Characteristics Pin Value		Units	Conditions		
		Min	Тур	Max		
RF AMPLIFIER (COMMON EMITTER)						
Input Impedance						50Ω system see fig 3
Output Impedance						50Ω system see fig 3
Gain (RF _{IN} to RF _{OUT})						50Ω system see fig 3
Reverse isolation ($\mathrm{RF}_{\mathrm{IN}}$ to $\mathrm{RF}_{\mathrm{OUT}}$)						50Ω system see fig 3
MIXER						
Input Impedance						50Ω system see fig 4
Output Impedance						50Ω system see fig 4

PERFORMANCE CHARACTERISTICS (GPS Demonstration boards)

Test conditions (unless otherwise stated): VCC = 2.7V; $T_{amb} = 25^{\circ}C$ Input frequency 915MHz; Local oscillator frequency 765MHz; Intermediate frequency 150MHz; Local oscillator amplitude 80mV r.m.s.

Characteristics	Pin	Value		Units	Conditions	
		Min	Тур	Max		
RF AMPLIFIER COMMON EMITTER (NOTE 1)						Application circuit Fig. 5
Power gain			16		dB	
Third order intercept point			-12		dBm	At input
Noise figure			2.7		dB	
Output power at 1dB gain compression			-6		dBm	
SINGLE BALANCED MIXER (Note 1)						Application circuit Fig. 6
Power conversion gain			4.5		dB	
Third order intercept point			-5.5		dBm	At input
Double sideband noise figure			10		dB	
LO to RF isolation			28		dB	
LO to IF isolation			39		dB	

PERFORMANCE CHARACTERISTICS (GPS Demonstration boards) continued

Test conditions (unless otherwise stated): VCC = 2.7V; $T_{amb} = 25^{\circ}C$ Input frequency 915MHz; Local oscillator frequency 765MHz; Intermediate frequency 150MHz; Local oscillator amplitude 80mV r.m.s.

Characteristics	Pin	Pin Value		Units	Conditions	
		Min	Тур	Max		
RF to IF isolation			18		dB	
DOUBLE BALANCED MIXER (Note 1)						Application circuit Fig. 7
Power conversion gain			10			
Third order intercept point			-8		dBm	At input
Double sideband noise figure			10		dB	
LO to RF isolation			26		dB	
LO to IF isolation			42		dB	
RF to IF isolation			32		dB	

NOTE.

1. Application circuits have been optimised for minimum noise figure and maximum gain. Typical performance across temp at 2.7V and 6.0V are shown in graphs 1 to 6.

ABSOLUTE MAXIMUM RATINGS

Supply voltage	8V
Storage temperature	-55°C to + 150°C
Operating temperature	-10°C to + 85°C

PIN NO	NAME	TITLE	DESCRIPTION
1	BEC	Battery Economy	Turns device OFF when "HIGH", on when "LOW".
2	BIAS	Bias Supply	Controls the bias current in the RF amplifier. Must be decoupled externally to ground through 1nF capacitor.
3	RFIN	RFInput	This is the common emitter input to the base of the RF transistor. It is DC biased externally through a suitable inductor to the bias pin, pin 2.
4	RFGND	R.F. Ground	Must be connected to the system ground with minimum inductance.
5	VCCDEC	VCC Decouple	This pin allows the VCC supply at the RF Amplifier to be effectively decoupled.
6	RFOUT	RF Output	The collector of the RF amplifier output transistor. Must be returned to VCC through a load in which the DC bias current can flow.
7	vcc	Power Supply	Positive supply.
8	MIXIN	Mixer Input	Input port of mixer, should be AC coupled externally.
9	MIXCUR	Mixer Current	A resistor may be placed between this pin and ground to reduce mixer current. Otherwise connect to GND.
10	MIXOUT	Mixer Output 0°	Output port of the mixer. An open collector output which must be returned to VCC through a suitable load. Half of the total Mixer current will flow from this port.
11	МІХОИТВ	Mixer Output I80°	Output port of the mixer. An open collector output which must be returned to VCC through a suitable load. Half the total mixer current will flow from this port.
. 12	GND	Ground	Must be connected to the system ground with minimum inductance.
13	LOIN	LO Input	Local Oscillator input to mixer, should be AC coupled externally.
14	VBG	Bandgap	Temperature compensated voltage reference. Must be decoupled externally to ground through a 1nF capacitor.

VCC = 5V Amplifer current 2.2mA

FREQ-MHz	MAG[S11]	ANG[S21]	MAG [S21]	ANG [S21]	MAG [S12]	ANG [12]	MAG [S22]	ANG [S22]
100.000	0.91	-10	5.89	167	0.016	158	0.99	-5
200.000	0.89	-21	5.86	151	0.010	-75	0.99	-11
300.000	0.86	-30	5.60	136	0.004	55	0.99	-16
400.000	0.81	-39	5.19	121	0.003	118	0.98	-21
500.000	0.77	-47	4.86	108	0.004	-102	0.97	-25
600.000	0.72	-55	4.48	95	0.005	154	0.98	-32
700.000	0.67	-63	4.11	84	0.004	134	0.97	-38
800.000	0.62	-70	3.73	73	0.008	165	0.97	-44
900.000	0.58	-77	3.35	61	0.008	150	0.94	-52
1000.000	0.55	-83	2.97	52	0.010	117	0.91	-59
1100.000	0.52	-87	2.64	43	0.014	97	0.87	-66
1200.000	0.49	-92	2.32	34	0.013	82	0.82	-73
1300.000	0.47	-95	2.06	28	0.010	78	0.76	-79
1400.000	0.45	-98	1.85	22	0.009	59	0.71	-85
1500.000	0.45	-101	1.71	16	0.004	80	0.67	-89

SL6444	Typical RF	[•] Amplifer	scattering	parameters
--------	------------	-----------------------	------------	------------

Fig. 3 Typical Input and Output Impedance of SL6444 RF Amplifier (Normalised to 50Ω)

Fig. 3b Typical gain and reverse isolation of SL6444 RF Amplifier in a 50 Ohm test system

	i		·	
FREQ-MHz	MAG[S11]	ANG[S11]	MAG [S22]	ANG [S21]
100.000	0.79	-6	1.00	-6
200.000	0.78	-13	0.99	-12
300.000	0.77	-20	0.99	-16
400.000	0.76	-28	0.97	-22
500.000	0.77	-34	0.96	-28
600.000	0.78	-41	0.97	-35
700.000	0.70	-50	0.94	-40
800.000	0.70	-58	0.91	-47
900.000	0.68	-67	0.88	-54
1000.000	0.64	-76	0.86	-60
1100.000	0.61	-86	0.83	-67
1200.000	0.58	-95	0.79	-74
1300.000	0.55	-105	0.75	-82
1400.000	0.51	-117	0.71	-89
1500.000	0.49	-129	0.68	-96

VCC = 5V Mixer current 4.4mA. S22 is measured at either MIXOUT or MIXOUTB. S11 is measured at MIXIN.

SL6444 Typical Mixer port impedance

Fig. 4 Typical Input and Output Impedance of SL6444 Mixer (Normalised to 50Ω)

PERFORMANCE CHARACTERISTICS (GPS Demonstration boards)

Test conditions (unless otherwise stated) Input frequency 915MHz; Local oscillator frequency 765MHz; Intermediate frequency 150MHz; Local oscillator amplitude 80mV r.m.s.

Graph 1

Graph 2

Graph 3

Graph 4

Graph 5

Graph 6

3. Good quality capacitors with high self resonant frequency should be used

NOTES

4. Components should be placed in close proximity to device

R1, R2	47 Ohm
C1, C2, C3, C4, C5, C7	1nF
C6	270pF
C8	1μF
VC1, VC2, VC3	20pF Trimmer
L1	56nH
L2	39nH
L3	6nH 1 Turn 24SWG
	8mm diameter

Microstrip lines 0.5mm wide on 1.6mm thick glass fibre PCB and the following lengths.

T1	5mm
T2	16mm
Т3	8mm
T4	15mm

Fig. 5 SL6444 RF amplifier demonstration circuit

Fig. 7 Double balanced mixer demonstration circuit

SL6444

PACKAGE DETAILS

Dimensions are shown thus: mm (in). For further package information please contact your local Customer Service Centre.

This publication is issued to provide information only which (unless agreed by the Company in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or services. The Company reserves the right to alter without prior knowledge the specification, design on price of any product or service. Information concerning possible methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any guarantee that use tha

For more information about all Zarlink products visit our Web Site at

www.zarlink.com

Information relating to products and services furnished herein by Zarlink Semiconductor Inc. trading as Zarlink Semiconductor or its subsidiaries (collectively "Zarlink") is believed to be reliable. However, Zarlink assumes no liability for errors that may appear in this publication, or for liability otherwise arising from the application or use of any such information, product or service or for any infringement of patents or other intellectual property rights owned by third parties which may result from such application or use. Neither the supply of such information or purchase of product or service conveys any license, either express or implied, under patents or other intellectual property rights owned by Zarlink or licensed from third parties by Zarlink, whatsoever. Purchasers of products are also hereby notified that the use of product in certain ways or in combination with Zarlink, or non-Zarlink furnished goods or services may infringe patents or other intellectual property rights owned by Zarlink owned by Zarlink.

This publication is issued to provide information only and (unless agreed by Zarlink in writing) may not be used, applied or reproduced for any purpose nor form part of any order or contract nor to be regarded as a representation relating to the products or services concerned. The products, their specifications, services and other information appearing in this publication are subject to change by Zarlink without notice. No warranty or guarantee express or implied is made regarding the capability, performance or suitability of any product or service. Information concerning possible methods of use is provided as a guide only and does not constitute any guarantee that such methods of use will be satisfactory in a specific piece of equipment. It is the user's responsibility to fully determine the performance and suitability of any equipment using such information and to ensure that any publication or data used is up to date and has not been superseded. Manufacturing does not necessarily include testing of all functions or parameters. These products are not suitable for use in any medical products whose failure to perform may result in significant injury or death to the user. All products and materials are sold and services provided subject to Zarlink's conditions of sale which are available on request.

Purchase of Zarlink s I²C components conveys a licence under the Philips I²C Patent rights to use these components in and I²C System, provided that the system conforms to the I²C Standard Specification as defined by Philips.

Zarlink and the Zarlink Semiconductor logo are trademarks of Zarlink Semiconductor Inc.

Copyright 2001, Zarlink Semiconductor Inc. All Rights Reserved.

TECHNICAL DOCUMENTATION - NOT FOR RESALE