

PRELIMINARY INFORMATION

Preliminary Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.

Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status

SL8204 TELEPHONE TONE RINGER

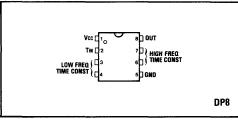
The SL8204 is a telephone set tone ringer IC. It is packaged in an 8 pin DIL Minidip. The unit is designed for use as a telephone set bell replacement, or as an extension ringer. The SL8204 will drive a speaker in place of the existing bell, using power supplied from the telephone line.

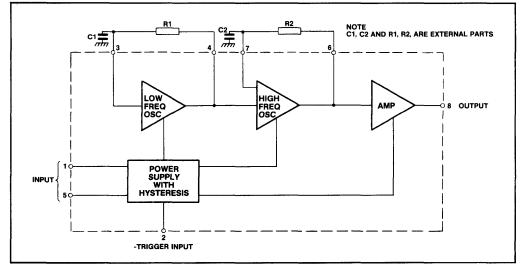
Two audio oscillators are incorporated. The low frequency oscillator shifts the high frequency oscillator between 508 and 635Hz at a 10Hz rate. These frequencies are determined by external components which may be changed as desired. The IC has a built-in threshold circuit with hysteresis which prevents false triggering, eliminates rotary dial 'chirps', and provides positive switching operation.

The IC may also be used for other applications requiring an attention-getting sound. Output power from the built-in amplifier is nominally 35mW, and will produce a maximum 90dBA sound pressure-level from a properly baffled 2 inch speaker.

FEATURES

- Low Current Drain
- Small Size (mini-DIP)
- Adjustable Frequency
- Threshold Circuit Prevents False Triggering and Rotary Dial 'Chirps'
- Built-In Hysteresis For Positive Enable
- Few External Components
- Up To 90dBA Sound Pressure Level



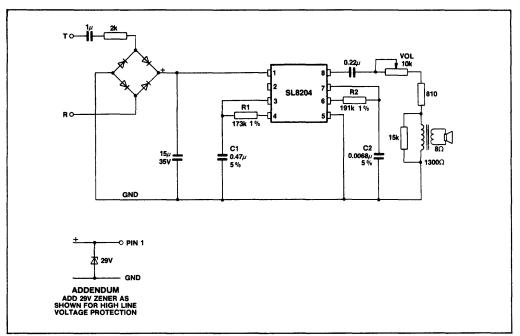

Fig.1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Supply voltage	30V d.c.
Storage temperature range	-65°C to +150°C
Operating temperature range	-45°C to +65°C

APPLICATIONS

- Telephone Bell Replacement
- **Extension Ringers**


ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated): $T_{amb} = -45^{\circ}C \text{ to } +65^{\circ}C$

Characteristic Value		Units	Conditions				
CildiaCleristic	Min.	Тур.	Max.	Units	s Conditions		
Initiation supply voltage Vsi	17	19	21	v	See Fig.4		
Sustaining voltage Vsus	9.7	11.5	13	v	See Fig.4		
Supply current Is	1.4	2.5	4.2	mA	No load. See Fig.4		
Supply current Isus	0.7	1.4	2.5	mA	See Fig.4		
K1, fн1 (constant) See Eq.1 fн1 (frequency)	1/1.681 458	1/1.515 508	1/1.380 558	Hz	R₂ = 191k	C ₂ = 6800pF	
K2, fн₂ (constant) See Eq. 2 ỉн₂ (frequency)	1.190 545	1.250 635	1.310 731	Hz	R2 = 191k	C ₂ = 6800pF	
K3, f∟ (constant) See Eq. 3 f∟ (frequency)	1/1.367 9	1/1.234 10	1/1.118 11	Hz	R1 = 173k	$C_1 = 0.47 \mu F$	
Operating voltage	-	-	29	V V			
Output voltage high	18.0	19.0	20.0	v	Vcc = 21V Pin 6 = 6V	l(Pin 8) = -15mA Pin 7 = GND	
Output voltage low	0.5	0.9	1.3	v	Vcc = 21V Pin 6 = GND	l(Pin 8) = 15mA Pin 7 = 6V	
Trigger voltage V⊤	8.5	9.5	10.5	v	Vcc = 15V See Note 1		
Trigger current IT		20.0	1000	μA	See Notes 1 and 3		
Disable voltage VD		0.4	0.8	V	Tamb = 25°C See Note 2		
Disable current	-40	-50		μA	Tamb = 25°C See Note 2		
lın (Pin 3)	-	-	500	nA	Pin 3 = 6V	Pin 4 = GND	
lın (Pin 7)	-	-	500	nA	Pin 7 = 6V	Pin 6 = GND	
I (Pin 4) Source Vcc = Vsus	150	300	600	μA	Pin 3 = GND	Pin 4 = GND	
I (Pin 4) Sink Vcc = Vsus	100	200	350	μA	Pin 3 = 6V	Pin 4 = 5V	
1 (Pin 6) Source Vcc = Vsus	80	175	350	μA	Pin 6 = GND	Pin 7 = GND	Pin 4 = GND
I (Pin 6) Source Vcc = Vsus	125	250	500	μA	Pin 6 = GND	Pin 7 = GND	Pin 4 = 8V
I (Pin 6) Sink Vcc = Vsus	70	125	250	μA	Pin 6 = 5V	Pin 7 = 6V	Pin 4 = GND
I (Pin 6) Sink Vcc = Vsus	100	200	300	μA	Pin 6 = 5V	Pin 7 ==6V	Pin 4 = 8V

NOTES

VT and IT are the conditions applied to Pin 2 to start oscillation for Vsus<Vcc<Vsi
Vp and Ip are the conditions applied to Pin 2 to inhibit oscillation for Vsi<Vcc
Trigger Current must be limited externally

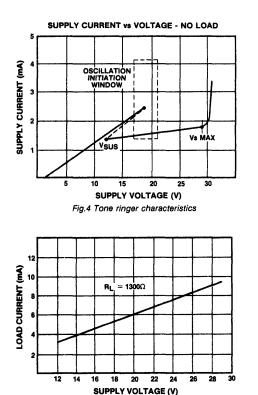
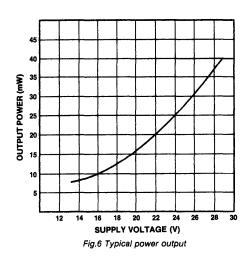



Fig.5 Typical RMS current

