

PRELIMINARY INFORMATION

Preliminary Information is issued to advise Customers of potential new products which are designated 'Experimental' but are, nevertheless, serious development projects and is supplied without liability for errors or omissions. Details given may change without notice and no undertaking is given or implied as to current or future availability.

Customers incorporating 'Experimental' product in their equipment designs do so at their own risk. Please consult your local Plessey Semiconductors sales outlet for details of the current status.

SL9009EXP ADAPTIVE CANCELLATION FILTER

The SL9009 is a bipolar integrated circuit designed for use in duplex modems on 600Ω telephone lines. It automatically optimises the duplexer such that the transmitted signal is cancelled at the input to the receiver.

- Automatically Simulates Impedance Characteristic of Line
- Independently Variable L,C,R Impedance Components
- Achieves Typical 40dB Rejection of Transmitted Signal
- Requires Only 2 External Op-Amps for Complete Adaptive Duplexer
- 16 Pin DIL Package
- ±4.5 to ±7V Supply Range

Fig.1 Pin connections - top view

ABSOLUTE MAXIMUM RATINGS

Operating temperature range Storage temperature range Supply voltage range	0° C to 70° C -10° C to +125° C ±4.5V to ±10V
Pins 1,2,3,4,5,6,10,11,12,13,14,15	V- to V $+$
Output voltage range Pins 16,7	V- to V +
Input voltage range Pins 1,3 and 4 relative to Pin 2	±5V
Supply voltage range For specified parameters	$\pm 4.5V$ to $\pm 7V$

Fig.2 Block diagram

SL9009

ELECTRICAL CHARACTERISTICS

Test conditions (unless otherwise stated):

 $\pm4.5V$ to $\pm7V$ supply, 0°C to 70°C

Characteristic	Value		lue	Limite	Conditions	
	Min.	Тур.	Max.	·	Units	
Supply currents	0.8	1.3	2.0	mA	Pin 5 at V-, all other inputs and outputs at 0V	
4-Quadrant multipliers						
Input offset voltage multiplier						
switching inputs			9	m٧	Pins 14,15 and 10,11	
Input offset voltage multiplier						
linear input			13	mV	Pins 12,13	
Input bias current		0.1	0.7	μA	Pins 10 to 15	
Input offset currents			±0.15	μA	Pins 10,11,12,13,14 and 15	
Input common-mode range	V- +2.7		V + -2.7	v	Pins 10 to 15	
Output offset current pin 7(16)			±1.2	μA	$V_{12} = V_{13} = 0V$	
					V10 - V11 (V14 - V15) = 200mV p-p sine wave	
Transconductance V12 - V13						
to pin 7(16)	250	500	1000	µohm	V 10 - V 11 (V 14 - V 15) switched (±100mV)	
Output voltage compliance	V- +2.5		V + -2	v	<0.2µA change in output current, pin 7 or 16	
Transconductance cells						
Offset current pin 2			±12	μA	Cell under test set for gain $=$ 4, other cells for	
					gain 0, V ₂ = 0V	
Input impedance					Pin 2 = 0V	
Pin 1	3		10	kΩ		
Pins 3 and 4	4		14	kΩ		
Operating voltage range						
Pins 1,2,3,4	V- +2.7		V +-2	v		
Gain range, each cell		0.05-10				
Input current range Pins 1,3,4	±10			μA	For <1 % non-linearity	
Control inputs						
Input current Is, Is		l	0.12	μA	$V_5, V_6 = +V$	
Control voltage input range Pin 5	v- +2.7		V- +6		Cell gain 0.05-10	
Input range Pin 6	-2		+1.8	v	For cell 2 or 3 gain ≤2 x cell 1 gain,	
					V+=-(V-)	

PRINCIPLES OF OPERATION

The cancellation principle is to use the conductance cells to simulate the characteristics of the line, in a bridge circuit to separate out the received signal from the transmitted signal. The bridge output goes to two phase-sensitive detectors which detect the out-of-balance signal components in phase and in quadrature with the cancellation signal, derived from the transmit signal. These out-of-balance currents are integrated and fed back to the conductance cells, to adjust the effective resistance and capacitance or inductance until the bridge is balanced and the transmit signal is completely cancelled out. The current source characteristics are arranged to keep the loop stable for all normal line characteristics.

Description of Conductance Cell

Each conductance cell is effectively a variable-gain current amplifier with a gain approximately equal to CONTROL CURRENT

The input roughly follows the output voltage, with an effective input series resistance of about $Sk\Omega$. Therefore, with an impedance Z connected from the input to ground, the impedance seen at the output is approximately

$$(Z + 5k\Omega) \times \frac{20\mu A}{CONTROL CURRENT}$$

Fig.3 Simplified circuit illustrating cancellation principle

Fig.4 Conductance cell schematic

Fig.5 Typical line circuit for modem (900-3000Hz transmit frequency)