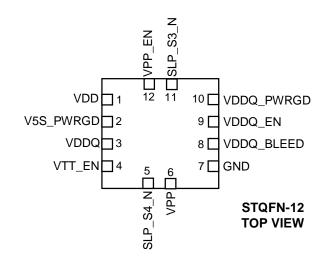


DDR_RAIL SEQUENCING

General Description

Silego SLG7NT4964 is a low power and small form device. The SoC is housed in a 1.6 x 1.6 mm STQFN package which is optimal for using with small devices.


Features

- Low Power Consumption
- Pb-Free / RoHS Compliant
- Halogen-Free
- STQFN-12 Package

Output Summary

• 4 Outputs — Push Pull 1X

Pin Configuration

DDR_RAIL SEQUENCING

Pin Configuration

Pin #	Pin Name	Туре	Pin Description
1	VDD	PWR	Supply Voltage
2	V5S_PWRGD	Digital Input	Digital Input without Schmitt trigger
3	VDDQ	Analog Input/Output	Analog Input/Output
4	VTT_EN	Digital Output	Push Pull 1X
5	SLP_S4_N	Digital Input	Digital Input without Schmitt trigger
6	VPP	Analog Input/Output	Analog Input/Output
7	GND	GND	Ground
8	VDDQ_BLEED	Digital Output	Push Pull 1X
9	VDDQ_EN	Digital Output	Push Pull 1X
10	VDDQ_PWRGD	Digital Input	Digital Input without Schmitt trigger
11	SLP_S3_N	Digital Input	Digital Input without Schmitt trigger
12	VPP_EN	Digital Output	Push Pull 1X

Ordering Information

orasining initiation	
Part Number	Package Type
SLG7NT4964V	V=STQFN-12
SLG7NT4964VTR	STQFN-12 – Tape and Reel (3k units)

DDR_RAIL SEQUENCING

Absolute Maximum Conditions

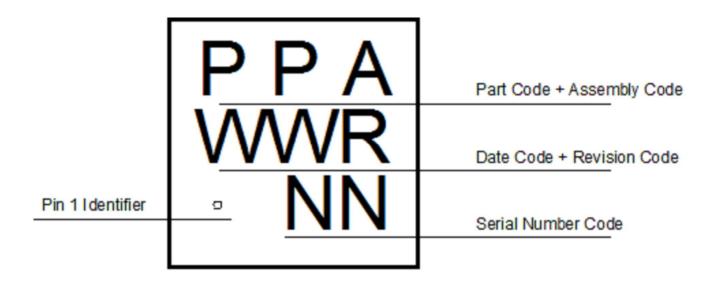
Parameter	Min.	Max.	Unit
V _{HIGH} to GND	-0.3	7	V
Voltage at input pins	-0.3	7	V
Current at input pin	-1.0	1.0	mA
Storage temperature range	-65	125	°C
Junction temperature		150	°C
ESD Protection (Human Body Model)	2000		V
ESD Protection (Charged Device Model)	1000		V
Moisture Sensitivity Level	1	1	

Electrical Characteristics

(@ 25°C, unless otherwise stated)

Symbol	Parameter	Condition/Note	Min.	Тур.	Max.	Unit
V_{DD}	Supply Voltage		3	3.3	3.6	V
T _A	Operating Temperature		-40	25	85	°C
ΙQ	Quiescent Current	Static inputs and outputs		65		μΑ
Vo	Maximal Voltage Applied to any PIN in High-Impedance State				VDD	V
Io	Maximal Average or DC Current (note 1)	Per Each Chip Side			90	mA
V_{IH}	HIGH-Level Input Voltage	Logic Input, at VDD=3.3V	1.78		VDD	V
V_{IL}	LOW-Level Input Voltage	Logic Input, at VDD=3.3V			1.21	V
I _{IH}	HIGH-Level Input Current	Logic Input PINs; V _{IN} = VDD	-1.0		1.0	μΑ
I _{IL}	LOW-Level Input Current	Logic Input PINs; V _{IN} = 0V	-1.0		1.0	μΑ
V_{OH}	HIGH-Level Output Voltage (note 1)	Push Pull & PMOS OD, I _{OH} = 3mA, 1X Driver, at VDD=3.3 V	2.71	3.09		V
V _{OL}	LOW-Level Output Voltage (note 1)	Push Pull, I _{OL} = 3mA, 1X Driver, at VDD=3.3 V		0.18	0.28	V
I _{OH}	HIGH-Level Output Current (note 1)	Push Pull & PMOS OD, V _{OH} = 2.4 V, 1X Driver, at VDD=3.3 V	5.83	10.158		mA
I _{OL}	LOW-Level Output Current (note 1)	Push Pull, V _{OL} =0.4V, 1X Driver, at VDD=3.3 V	4.06	6.44		mA
	Analog Comporator	ACMP0 threshold including input offset, reference voltage variation and hysteresis, at temperature 25°C.	189		212	
V_{ACMP0}	Analog Comparator Threshold Voltage	ACMP0 threshold including input offset, reference voltage variation and hysteresis, at temperature -40 +85°C (note 1)	186 214		214	mV
V _{ACMP1}	Analog Comparator Threshold Voltage	ACMP1 threshold including input offset, reference voltage variation and hysteresis, at temperature 25°C.	1164		1235	mV

DDR_RAIL SEQUENCING

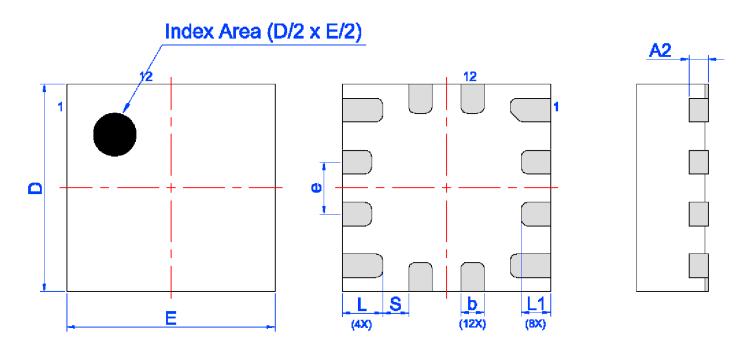

		ACMP1 threshold including input offset, reference voltage variation and hysteresis, at temperature -40 +85°C (note 1)	1150	1	1246	
т	Delay0 Time	At temperature 25°C	1.98	2.06	2.17	200
T_{DLY0}	Delayo Tilile	At temperature -40°C +85°C (note 1)	1.78	2.06	2.56	ms
т	Delay1 Time	At temperature 25°C	116.88	140	185.5	
T _{DLY1}	Delay i Tillie	At temperature -40°C +85°C (note 1)	105.11	140	215.2	μs
T _{SU}	Start up Time	From VDD rising past 1.35V		0.31		ms

^{1.} Guaranteed by Design.

DDR_RAIL SEQUENCING

Package Top Marking

Datasheet Revision	Programming Code Number	Locked Status	Part Code	Revision	Date
1.01	002	L	SQ	Α	03/08/2016


The IC security bit is locked/set for code security for production unless otherwise specified. Revision number is not changed for bit locking.

DDR_RAIL SEQUENCING

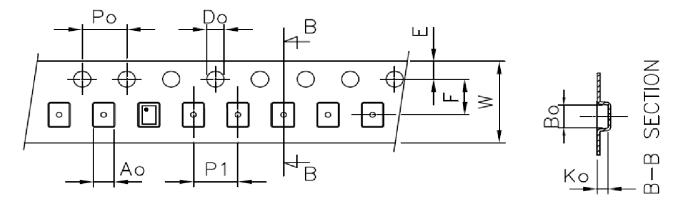
Package Drawing and Dimensions

12 Lead STQFN Package JEDEC MO-220

Unit: mm

Symbol	Min	Nom.	Max	Symbol	Min	Nom.	Max
Α	0.50	0.55	0.60	D	1.55	1.60	1.65
A1	0.005	-	0.060	E	1.55	1.60	1.65
A2	0.10	0.15	0.20	L	0.26	0.31	0.36
b	0.13	0.18	0.23	L1	0.175	0.225	0.275
е	0.40 BSC			S		0.2 REF	

DDR_RAIL SEQUENCING


Tape and Reel Specification

Packade IVNE	# of	. hackade	Max Units		Reel &	Trailer A		Leader B		Pocket (mm)	
	Pins		per reel	per box	Hub Size (mm)	Pockets	Length (mm)	Pockets	Length (mm)	Width	Pitch
STQFN 12L FC 0.4P Green	12	1.6x1.6x0.55	3000	3000	178/60	100	400	100	400	8	4

Carrier Tape Drawing and Dimensions

Package Type	Pocket BTM Length (mm)	Pocket BTM Width (mm)	Pocket Depth (mm)	Index Hole Pitch (mm)	Pocket Pitch (mm)	Index Hole Diameter (mm)	Index Hole to Tape Edge (mm)	Index Hole to Pocket Center (mm)	Tape Width (mm)
	Α0	В0	K0	P0	P1	D0	E	F	w
STQFN 12L FC 0.4P Green	1.9	1.9	0.8	4	4	1.5	1.75	3.5	8

Refer to EIA-481 Specifications

Recommended Reflow Soldering Profile

Please see IPC/JEDEC J-STD-020: latest revision for reflow profile based on package volume of 1.408 mm³ (nominal). More information can be found at www.jedec.org.

DDR RAIL SEQUENCING

Silego Website & Support

Silego Technology Website

Silego Technology provides online support via our website at http://www.silego.com/. This website is used as a means to make files and information easily available to customers.

For more information regarding Silego Green products, please visit:

http://greenpak.silego.com/

http://greenpak2.silego.com/

http://greenpak3.silego.com/

http://greenfet.silego.com/

http://greenfet2.silego.com/

http://greenclk.silego.com/

Products are also available for purchase directly from Silego at the Silego Online Store at http://www.silego.com/

Silego Technical Support

Datasheets and errata, application notes and example designs, user guides, and hardware support documents and the latest software releases are available at the Silego website or can be requested directly at info@silego.com.

For specific GreenPAK design or applications questions and support please send e-mail requests to GreenPAK@silego.com

Users of Silego products can receive assistance through several channels:

Online Training

Silego Technology has live training assistance and sales support available at http://www.silego.com/. Please contact us to schedule a 1 on 1 training session with one of our application engineers.

Contact Your Local Sales Representative

Customers can contact their local sales representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. More information regarding your local representative is available at the Silego website or send a request to info@silego.com

Contact Silego Directly

Silego can be contacted directly via e-mail at info@silego.com or user submission form, located at the following URL: http://support.silego.com/

Other Information

The latest Silego Technology press releases, listing of seminars and events, listings of worldwide Silego Technology offices and representatives are all available at http://www.silego.com/

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE

SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. SILEGO TECHNOLOGY DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. SILEGO TECHNOLOGY RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE