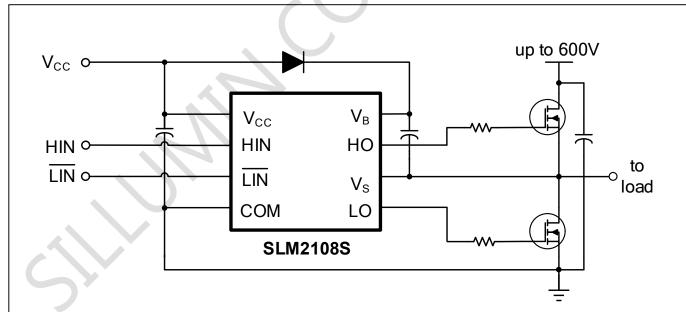


600V Half-Bridge Driver

PRODUCT SUMMARY

600 V max. Voffset lo+/-130 mA/270 mA 10 V - 20 V V_{OUT} 220 ns/200 ns t_{on/off} (typ.)

Deadtime (typ.) 540 ns


GENERAL DESCRIPTION

The SLM2108S is a high voltage, high speed power MOSFET and IGBT drivers with dependent highand low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

FEATURES

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout
- 3.3 V, 5 V, and 15 V logic compatible
- Cross-conduction prevention logic
- Matched propagation delay for both channels
- Internal 540 ns deadtime
- High-side output in phase with HIN input
- Low-side output out of phase with LIN input
- Logic and power ground +/- 5 V offset
- RoHS compliant
- SOIC-8 and PDIP-8 package

TYPICAL APPLICATION CIRCUIT

(Refer to Lead Assignments for correct configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.

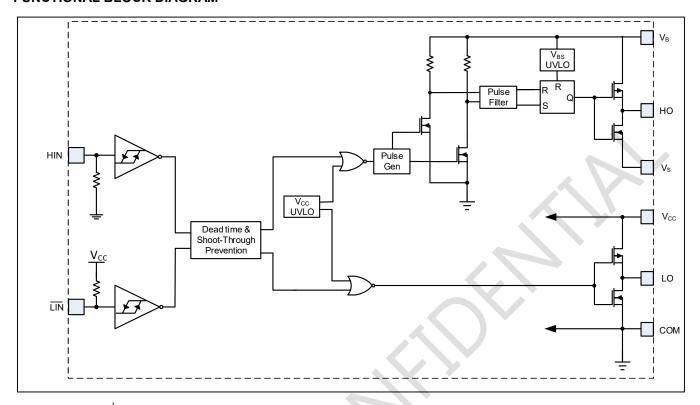
Typical Application Circuit

PIN CONFIGURATION

Pin Configuration (Top View)	
1 V _{cc}	V _B 8
HIN	HO 7
3 LIN	V _S 6
4 COM	LO 5
	1 V _{cc} 2 HIN 3 LIN

PIN DESCRIPTION

No.	Pin	Description
1	Vcc	Low-side and logic fixed supply
2	HIN	Logic input for high-side gate driver output (HO), in phase
3	LIN	Logic input for low-side gate driver output (LO), out of phase
4	СОМ	Low-side return
5	LO	Low-side gate drive output
6	Vs	High-side floating supply return
7	НО	High-side gate drive output
8	V _B	High-side floating supply


ORDERING INFORMATION

Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM2108SCA-13GTR	SOIC8, Pb-Free	2500/Reel
SLM2108SCA-GT	SOIC8, Pb-Free	100/Tube
SLM2108SDA-GT	PDIP8, Pb-Free	100/Tube

FUNCTIONAL BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition	Min.	Max.	Units	
V_{B}	High-side floating absolute voltage		-0.3	625	
Vs	High-side floating supply offset voltage		V _B - 25	V _B + 0.3	
Vно	High-side floating output voltage		Vs - 0.3	V _B + 0.3	V
Vcc	Low-side and logic fixed supply vo	oltage	-0.3	25	V
V _{LO}	Low-side output voltage		-0.3	Vcc + 0.3	
V _{IN}	Logic input voltage (HIN &LIN	-0.3	V _{CC} + 0.3		
dV _S /dt	Allowable offset supply voltage transient			50	V/ns
D-	Dackage newer discipation @ T. < 125°C	PDIP-8		1.0	W
P _D	Package power dissipation @ T _A ≤ +25°C	SOIC-8		0.625	VV
Dth	The world was interesting to a walking to	PDIP-8		125	°C // //
Rth_JA	Thermal resistance, junction to ambient	Thermal resistance, junction to ambient SOIC-8		200	°C/W
TJ	Junction temperature		7	150	
Ts	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)		J	300	

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATIONG CONDITIONS

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating absolute voltage	Vs + 10	Vs + 20	
Vs	High-side floating supply offset voltage	Note 1	600	
V _{HO}	High-side floating output voltage	Vs	V _B	V
Vcc	Low-side and logic fixed supply voltage	10	20	V
V _{LO}	Low-side output voltage	0	Vcc	
Vin	Logic input voltage (HIN & LIN)	0	Vcc	
T _A	Ambient temperature	- 40	125	°C

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15 V differential.

DYNAMIC ELECTRICAL CHARACTERISTICS

V_{BIAS} (V_{CC}, V_{BS}) = 15 V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	Vs = 0 V		220	300	
t _{off}	Turn-off propagation delay	Vs = 600 V		200	280	
t _r	Turn-on rise time	V _S = 0 V		100	220	
t _f	Turn-off fall time	Vs = 0 V		35	80	ns
DT	Deadtime, LS turn-off to HS turn-on & HS turn-on to LS turn-off	R _{DT} = 0 Ω	400	540	680	
MT	Delay matching, HS & LS turn-on/off				30	

STATIC ELECTRICAL CHARACTERISTICS

V_{BIAS} (V_{CC}, V_{BS}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN}, V_{TH}, and I_{IN} parameters are referenced to COM. The Vo and Io parameters are referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ViH	Logic "1" (HIN) & Logic "0" (LIN) input voltage	V _{CC} = 10 V to 20V	2.5			
VIL	Logic "0" (HIN) & Logic "1" (LIN) input voltage	VCC - 10 V 10 20 V			0.8	V
Vон	High level output voltage, V _{BIAS} - V _O	I _O = 2 mA		0.05	0.2	V
Vol	Low level output voltage, Vo	10 – 2 IIIA		0.02	0.1	
I _{LK}	Offset supply leakage current	V _B = V _S = 600 V			50	
I _{QBS}	Quiescent V _{BS} supply current	V _{IN} = 0 V or 5 V		60	75	
Iqcc	Quiescent V _{CC} supply current	VIN - 0 V 01 5 V		170	270	μA
I _{IN+}	Logic "1" input bias current	HIN = 5 V, LIN = 0 V		3	10	
I _{IN} -	Logic "0" input bias current	HIN = 0 V, LIN = 5 V			5	
Vccuv+ V _{BSUV+}	V _{CC} and V _{BS} supply undervoltage positive going threshold		8	8.9	9.8	V
Vccuv- V _{BSUV-}	V _{CC} and V _{BS} supply undervoltage negative going threshold		7.4	8.2	9	V
I _{O+}	Output high short circuit pulsed current	V_{O} = 0 V, V_{IN} = V_{IH} PW \leq 10 μ s	130	290		mΛ
I _{O-}	Output low short circuit pulsed current	V_0 = 15 V, V_{IN} = V_{IL} PW \leqslant 10 μs	270	600		mA

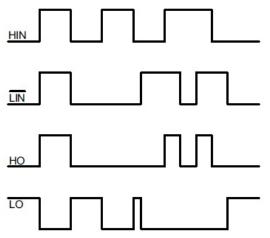
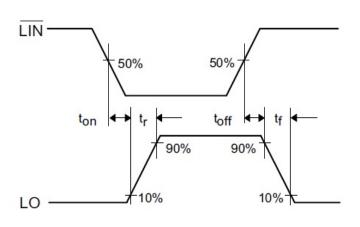



Figure 1. Input/Output Timing Diagram

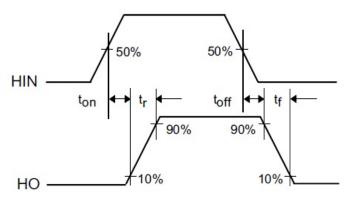


Figure 2. Switching Time Waveform Definitions

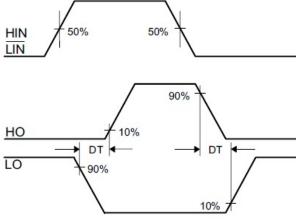


Figure 3. Deadtime Waveform Definitions

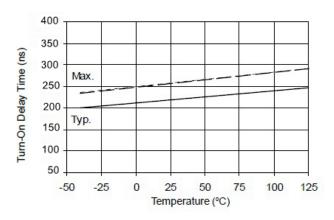


Figure 4A. Turn-On Time vs. Temperature

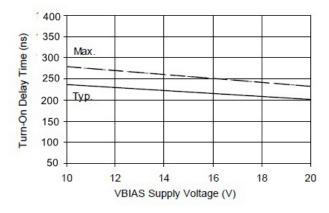


Figure 4B. Turn-On Time vs. Supply Voltage

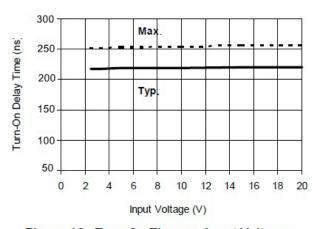


Figure 4C. Turn-On Time vs. Input Voltage

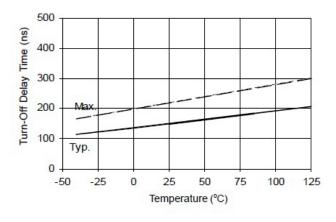


Figure 5A. Turn-Off Time vs. Temperature

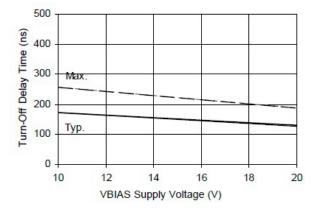


Figure 5B. Turn-Off Time vs. Supply Voltage

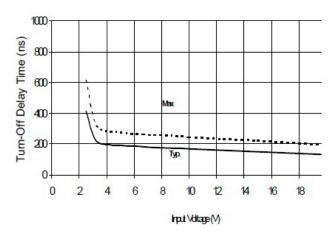


Figure 5C. Turn-Off Time vs. Input Voltage

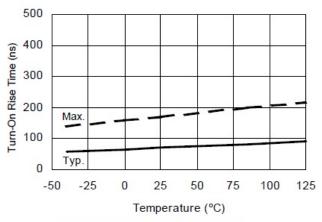


Figure 6A. Turn-On Rise Time vs. Temperature

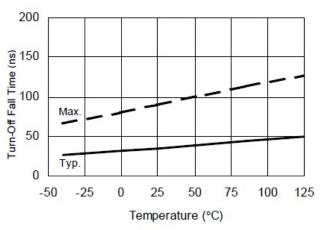


Figure 7A. Turn-Off Fall Time vs. Temperature

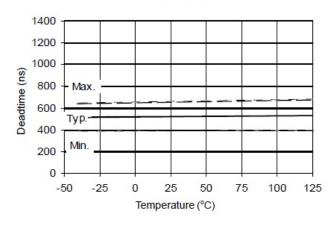


Figure 8A. Deadtime vs. Temperature

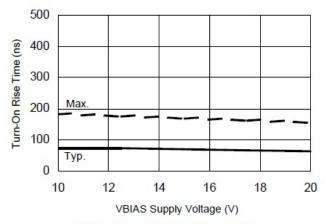


Figure 6B. Turn-On Rise Time vs. Voltage

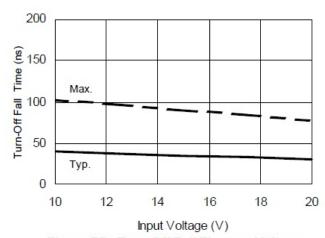


Figure 7B. Turn-Off Fall Time vs. Voltage

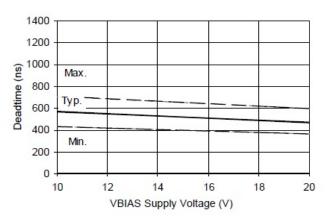


Figure 8B. Deadtime vs. Voltage

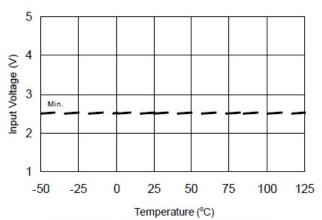


Figure 9A. Logic "1" Input Voltage vs. Temperature

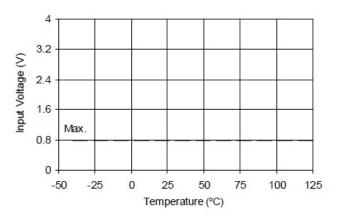


Figure 10A. Logic "0"(HIN) & Logic "1" (LIN) Input Voltage vs. Temperature

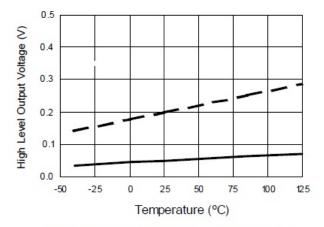


Figure 11A. High Level Output Voltage vs. Temperature

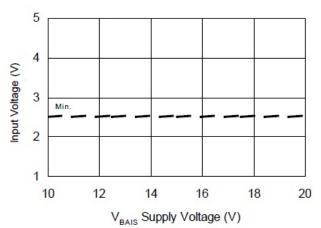


Figure 9B. Logic "1" Input Voltage vs. Supply Voltage

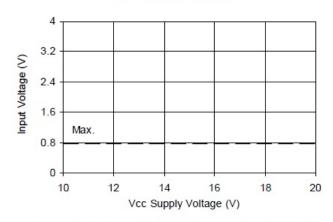


Figure 10B. Logic "0"(HIN) & Logic "1" (LIN) Input Voltage vs. Voltage

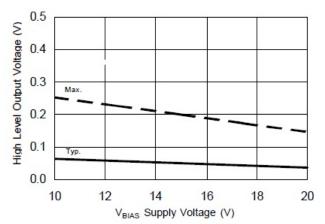


Figure 11B. High Level Output Voltage vs. Supply Voltage

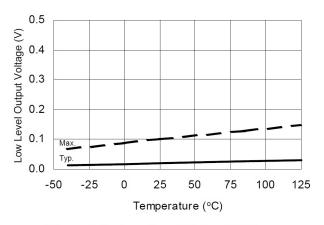


Figure 12A. Low Level Output Voltage vs. Temperature

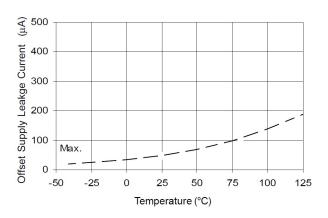


Figure 13A. Offset Supply Current vs. Temperature

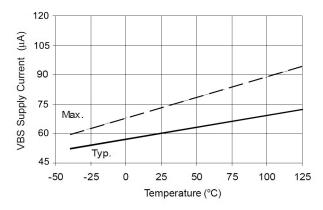


Figure 14A. V_{BS} Supply Current vs. Temperature

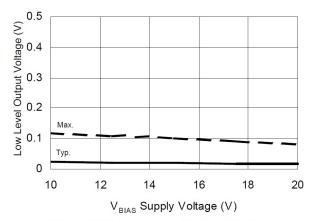


Figure 12B. Low Level Output Voltage vs. Supply Voltage

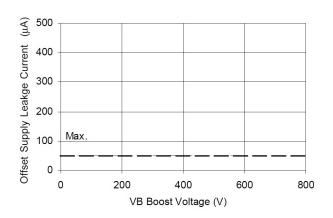


Figure 13B. Offset Supply Current vs. Voltage

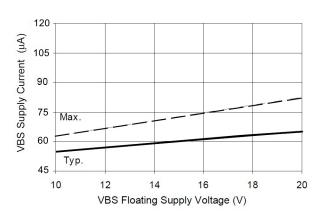


Figure 14B. V_{BS} Supply Current vs. Voltage

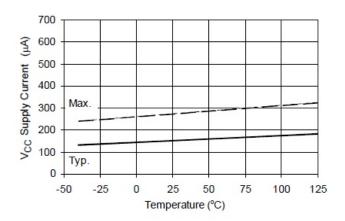


Figure 15A. V_{CC} Supply Current vs. Temperature

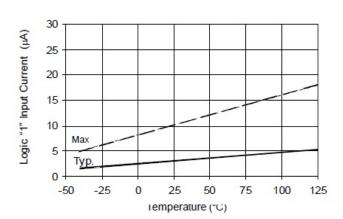


Figure 16A. Logic "1" Input Current vs. Temperature

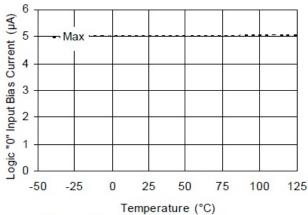


Figure 17A. Logic "0" Input Current vs. Temperature

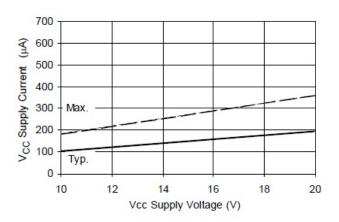


Figure 15B. V_{CC} Supply Current vs. Voltage

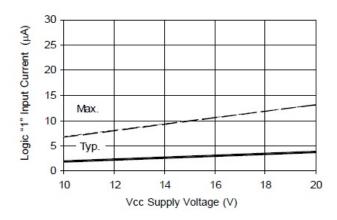


Figure 16B. Logic "1" Input Current vs. Voltage

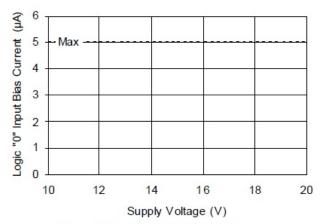


Figure 17B. Logic "0" Input Current vs. Voltage

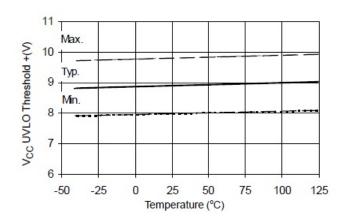


Figure 18A. V_{CC} Undervoltage Threshold(+) vs. Temperature

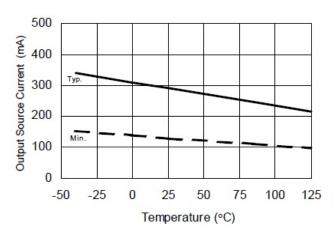


Figure 19A. Output Source Current vs. Temperature

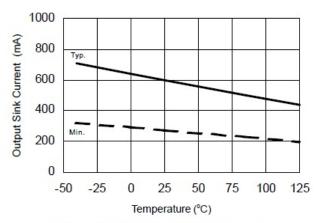


Figure 20A. Output Sink Current vs. Temperature

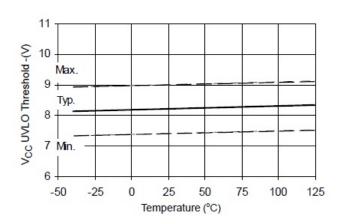


Figure 18B. V_{CC} UndervoltageThreshold (-) vs. Temperature

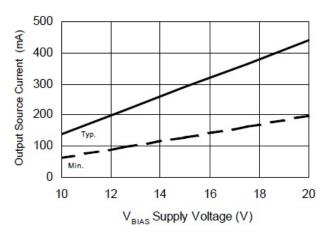


Figure 19B. Output Source Current vs. Supply Voltage

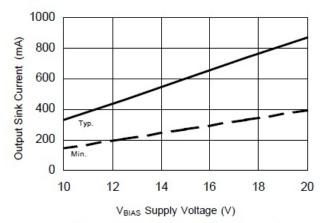
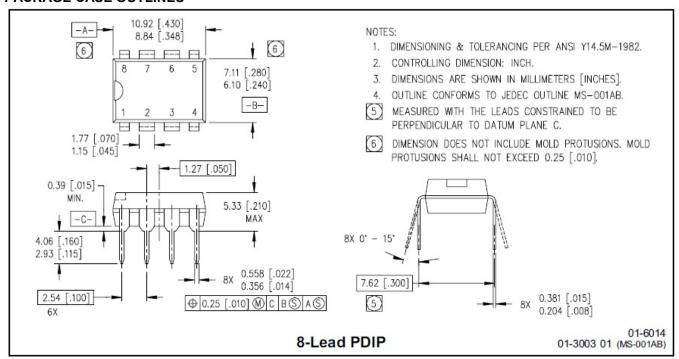
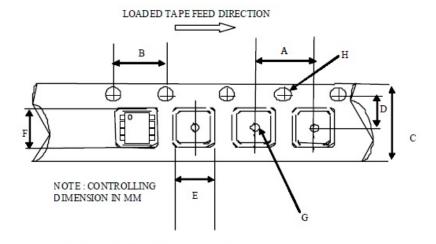
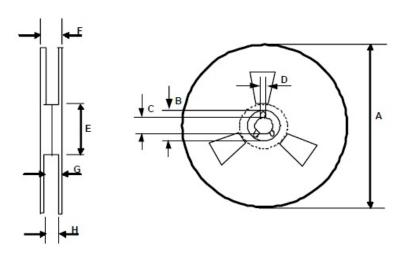



Figure 20B. Output Sink Current vs. Supply Voltage


PACKAGE CASE OUTLINES



Tape & Reel 8-lead SOIC

CARRIER TAPE DIMENSION FOR 8SOICN

	M etric		Im perial	
Code	Min	Max	Min	Max
Α	7.90	8.10	0.311	0.318
В	3.90	4.10	0.153	0.161
С	11.70	12.30	0.46	0.484
D	5.45	5.55	0.214	0.218
E	6.30	6.50	0.248	0.255
F	5.10	5.30	0.200	0.208
G	1.50	n/a	0.059	n/a
Н	1.50	1.60	0.059	0.062

REEL DIMENSIONS FOR 8SOICN

	M e	M etric		erial
Code	Min	Max	Min	Max
Α	329.60	330.25	12.976	13.001
В	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Revision History

Note: page numbers for previous revisions may differ from page numbers in current version

Page or Item	Subjects (major changes since previous revision)		
Rev 1.0 datasheet, 2	019-8-27		
Whole document	New company logo released	. 12/	
Page 1	Remove "Figure 1." and "June 2019"	X \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	