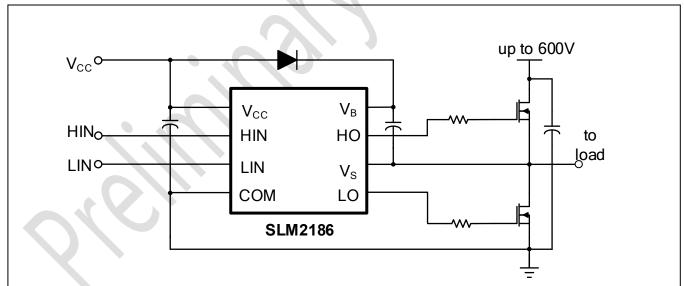


600V High and Low Side Driver

PRODUCT SUMMARY

Voffset 600 V max.
 Io+/- 4 A / 4 A
 Vout 10 V - 20 V
 ton/off (typ.) 170ns / 170ns


GENERAL DESCRIPTION

The SLM2186 is a high voltage, high speed power MOSFET and IGBT drivers with independent high-and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 600 V.

FEATURES

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Low V_{CC} operation
- Tolerant to negative transient voltage, dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V, and 5 V logic compatible
- CMOS Schmitt-triggered inputs with pull-down
- Matched propagation delay for both channels
- Outputs in phase with inputs
- RoHS compliant
- SOIC-8 package

TYPICAL APPLICATION CIRCUIT

(Refer to Lead Assignments for correct configuration). This diagram shows electrical connections only. Please refer to our Application Notes and Design Tips for proper circuit board layout.

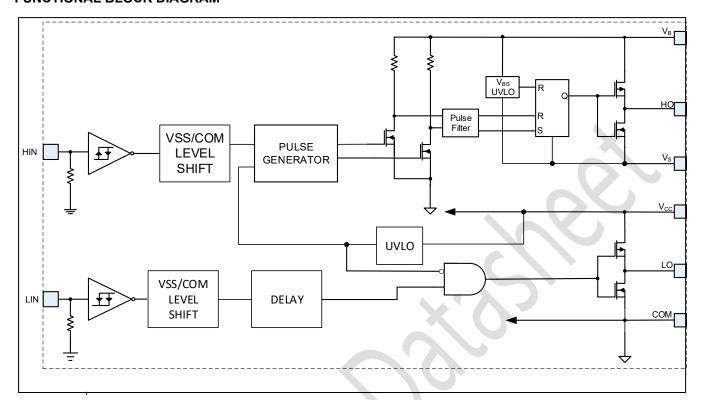
Typical Application Circuit

PIN CONFIGURATION

	n (Top View)	
SOIC-8	1 HIN 2 LIN 3 COM	V _B 8 HO 7 V _S 6
	4 LO	V _{cc} 5

PIN DESCRIPTION

No.	Pin	Description	
1	HIN	Logic input for high-side gate driver output (HO), in phase	
2	LIN	Logic input for low-side gate driver output (LO), in phase	
3	СОМ	Low-side return	
4	LO	Low-side gate drive output	
5	Vcc	Low-side and logic fixed supply	
6	Vs	High-side floating supply return	
7	НО	High-side gate drive output	
8	V _B	High-side floating supply	


ORDERING INFORMATION

Industrial Range: -40°C to +125°C

Order Part No.	Package	QTY
SLM2186CA-DG	SOIC8, Pb-Free	2500/Reel
SLM2186CA-TG	SOIC8, Pb-Free	100/Tube

FUNCTIONAL BLOCK DIAGRAM

SLM2186

ABSOLUTE MAXIMUM RATINGS

Symbol	Definition	Min.	Max.	Units	
V_{B}	High-side floating absolute voltage		-0.3	625	
Vs	High-side floating supply offset voltage		V _B - 25	V _B + 0.3	
Vно	High-side floating output voltag	је	Vs - 0.3	V _B + 0.3	V
Vcc	Low-side and logic fixed supply vo	oltage	-0.3	25	V
V _{LO}	Low-side output voltage		-0.3	Vcc + 0.3	
VIN	Logic input voltage (HIN &LIN	-0.3	Vcc + 0.3		
dV _S /dt	Allowable offset supply voltage transient			50	V/ns
Б	Declare rever discination @ T / 125°C	PDIP-8		1.0	10/
P _D	Package power dissipation @ T _A ≤ +25°C	SOIC-8	+-	0.625	W
D#h	The survey was interesting the same in the	PDIP-8		125	°0/\/
Rth _{JA}	i nermai resistance, junction to ambient	Thermal resistance, junction to ambient SOIC-8		200	°C/W
TJ	Junction temperature			150	
Ts	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)			300	

Note:

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

RECOMMENDED OPERATIONS CONDITIONS

Symbol	Definition	Min.	Max.	Units
V_{B}	High-side floating absolute voltage	V _S + 10	Vs + 20	
Vs	High-side floating supply offset voltage	Note 1	600	
V_{HO}	High-side floating output voltage	Vs	V _B	V
Vcc	Low-side and logic fixed supply voltage	10	20	V
V _{LO}	Low-side output voltage	0	Vcc	
VIN	Logic input voltage (HIN & LIN)	COM	Vcc	
TA	Ambient temperature	- 40	125	°C

The input/output logic timing diagram is shown in Fig. 1. For proper operation the device should be used within the recommended conditions. The V_S offset rating is tested with all supplies biased at a 15 V differential.

DYNAMIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V, C_L = 1000 pF and T_A = 25°C unless otherwise specified.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
t _{on}	Turn-on propagation delay	Vs = 0 V		170	250	
t _{off}	Turn-off propagation delay	V _S = 600 V		170	250	
tr	Turn-on rise time			22	38	Ns
t _f	Turn-off fall time			18	30	
MT	Delay matching, HS & LS turn-on/off			(35	

STATIC ELECTRICAL CHARACTERISTICS

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V and T_A = 25°C unless otherwise specified. The V_{IN} , V_{TH} , and I_{IN} parameters are referenced to COM and are applicable to all three logic input leads: HIN and LIN. The V_O and I_O parameters are

referenced to COM and are applicable to the respective output leads: HO or LO.

Symbol	Parameter	Condition	Min.	Тур.	Max.	Unit
ViH	Logic "1" input voltage	V = 7.V to 20V	2.5			
VIL	Logic "0" input voltage	V _{CC} = 7 V to 20V			0.8	.,
V _{OH}	High level output voltage, V _{BIAS} - V _O				1.4	V
V _{OL}	Low level output voltage, Vo	I _O = 20 mA		0.02	0.15	
I _{LK}	Offset supply leakage current	V _B = V _S = 600 V			50	
I _{QBS}	Quiescent V _{BS} supply current	V = 0.V == 5.V	20	60	400	
Iqcc	Quiescent V _{CC} supply current	V _{IN} = 0 V or 5 V	200	290	400	μΑ
I _{IN+}	Logic "1" input bias current	HIN=LIN = 5V		60	70	
I _{IN-}	Logic "0" input bias current	HIN=LIN= 0V			5	
V _{BSUV+}	V _{BS} supply undervoltage positive going threshold		8	8.9	9.8	V
V _{BSUV} -	V _{BS} supply undervoltage negative going threshold		7.4	8.2	9	V
Vccuv+	V _{CC} supply undervoltage positive going threshold		8	8.9	9.8	V
Vccuv-	V _{CC} supply undervoltage negative going threshold		7.4	8.2	9	V
l _{O+}	Output high short circuit pulsed current	$V_O = 0 \text{ V}$ $V_{IN} = \text{Logic "1"}$ $PW \leqslant 10 \mu\text{s}$	2	4.0		٨
I _{O-}	Output low short circuit pulsed current	V _O = 15 V V _{IN} = Logic "0" PW ≤ 10 μs	2	4.0		A

Switching and Timing Relationships

The relationships between the input and output signals of the SLM21867 are illustrated below in Figures 1, 2. From these figures, we can see the definitions of several timing parameters (i.e., ton, toff, tr, and tr) associated with this device.

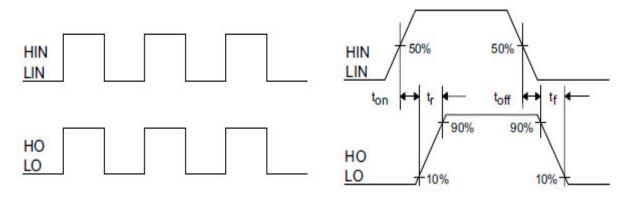
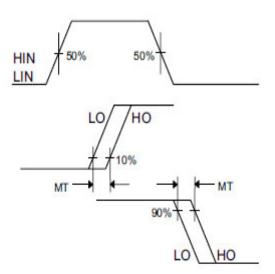
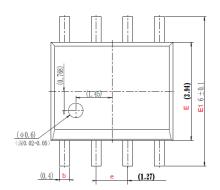
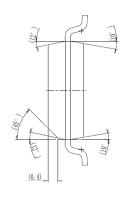
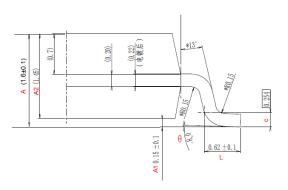
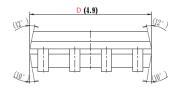


Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions


Figure 3. Delay Matching Waveform Definitions



PACKAGE CASE OUTLINES

字符	Dimension millimeters			
3-19	Min	Standard	Max	
A	1.500	1.600	1. 700	
A1	0.050	0.165	0.250	
A2	1.350	1. 450	1.550	
b	0.300	0. 400	0. 500	
c	0. 220	0. 254	0. 280	
D	4.800	4. 900	5. 000	
E	3.840	3. 940	4. 040	
E1	5. 900	6. 000	6. 100	
е		1. 27 (BSC)		
L	0.520	0. 620	0.720	
θ	0 °		8*	

PART MARKING INFORMATION

Internal Trace Code

Data Code

Part Number _____

Pin1 Identifier Revision History

Note: page numbers for previous revisions may differ from page

numbers in current version

Page or Item	Subjects (majo	r chang	es since pre	vious revision)
Rev 0.1 datasheet, 2020-1-14				
Whole document	Draft datasheet rel	eased		