

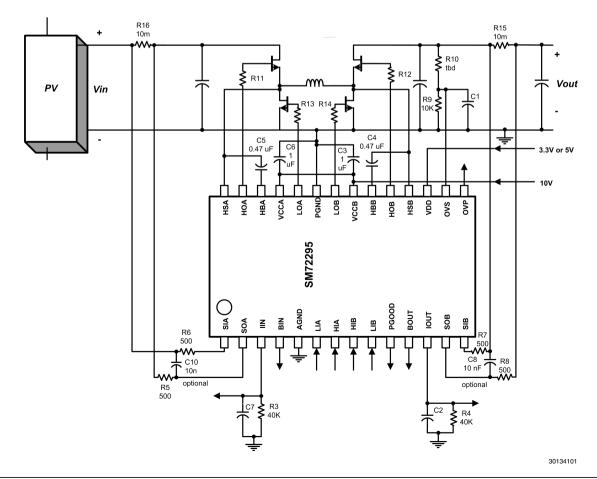
SM72295

Photovoltaic Full Bridge Driver

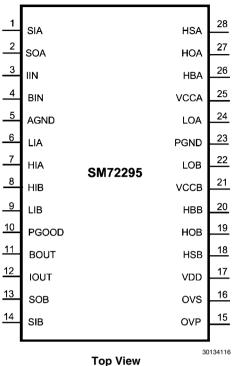
General Description

The SM72295 is designed to drive 4 discrete N type MOSFET's in a full bridge configuration. The drivers provide 3A of peak current for fast efficient switching and integrated high speed bootstrap diodes. Current sensing is provided by 2 transconductance amplifiers with externally programmable gain and filtering to remove ripple current to provide average current information to the control circuit. The current sense amplifiers have buffered outputs available to provide a low impedance interface to an A/D converter if needed. An externally programmable input over voltage comparator is also included to shutdown all outputs. Under voltage lockout with a PGOOD indicator prevents the drivers from operating if VCC is too low.

Features


- Renewable Energy Grade
- Dual Half Bridge MOSFET Drivers
- Integrated 100V bootstrap diodes
- Independent High and Low driver logic inputs
- Bootstrap supply voltage range up to 115V DC
- Two current sense amplifiers with externally programmable gain and buffered outputs
- Programmable over voltage protection
- Supply rail under-voltage lockouts with power good indicator

Package


■ SOIC-28

Typical Application Circuit

Connection Diagram

Top View SOIC-28

Ordering Information

Order Number	Description	NSC Package Drawing	Supplied As
SM72295X	28L SOIC WIDE	M28B	1000 Units in Tape and Reel
SM72295E	28L SOIC WIDE	M28B	250 Units in Tape and Reel

Pin Descriptions

Pin	Name	Description	Application Information
5	AGND	Analog ground	Ground return for the analog circuitry. Tie to the ground plane under the IC
23	PGND	Power ground return	Ground return for the LO drivers. Tie to the ground plane under the IC
21,25	VCCA, VCCB	Positive gate drive supply	Locally decouple to PGND using low ESR/ESL capacitor located as close to IC as possible.
26,20	HBA, HBB	High side gate driver bootstrap rail.	Connect the positive terminal of the bootstrap capacitor to HB and the negative terminal to HS. The bootstrap capacitor should be placed as close to IC as possible.
27, 19	HOA, HOB	High side gate driver output	Connect to gate of high side MOSFET with a short low inductance path.
28, 18	HSA, HSB	High side MOSFET source connection	Connect to bootstrap capacitor negative terminal and the source of the high side MOSFET.
7, 8	HIA, HIB	High side driver control input	The inputs have TTL type thresholds. Unused inputs should be tied to ground and not left open.
6, 9	LIA, LIB	Low side driver control input	The inputs have TTL type thresholds. Unused inputs should be tied to ground and not left open.
24, 22	LOA, LOB	Low side gate driver output	Connect to the gate of the low side MOSFET with a short low inductance path.
17	VDD	3.3V or 5V regulator output	Bypass with 0.1uF. Reference for over voltage shutdown and IOUT/IIN clamp
10	PGOOD	Power good indicator output	Open drain output with an internal pull-up resistor to VDD indicating VCC is in regulation. PGOOD low implies VCC is out of regulation.
15	OVP	Over voltage indicator output	Open drain output with an internal pull-up resistor to VDD indicating OVS > VDD. OVP is low when OVS>VDD.
11	BOUT	Buffered IOUT	Buffered IOUT.
4	BIN	Buffered IIN	Buffered IIN.
1	SIA	Sense high input for input current sense transconductance amplifier	Tie to positive side of the current sense resistor through an external gain programming resistor (RI). Amplifier transconductance is 1/RI.
2	S0A	Sense low input for input current sense transconductance amplifier	Tie to negative side of the current sense resistor through an external gain programming resistor. Amplifier transconductance is 1/RI.
3	IIN	Output for current sense transconductance amplifier	Output of the input current sense amplifier. Requires an external resistor to ground (RL). Gain is RL/RI, where RI is the external resistor in series with the SIA pin.
14	SIB	Sense high input for output current sense amplifier	Tie to positive side of the current sense resistor through an external gain programming resistor (RI). Amplifier transconductance is 1/RI.
13	S0B	Sense low input for output current sense amplifier	Tie to negative side of the current sense resistor through an external gain programming resistor. Amplifier transconductance is 1/RI.
12	IOUT	Output for current sense comparator.	Output of the output current sense amplifier. Requires an external resistor to ground (RL). Gain is RL/RI, where RI is the external resistor in series with the SIB pin.
16	OVS	Sense input for over voltage	Requires an external resistor divider. VDD is the reference voltage.

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/ Distributors for availability and specifications.

VCCA, VCCB -0.3 to 14V VDD -0.3 to 7V HBA to HSA, HBB to HSB -0.3 to 15V LIA,LIB,HIA,HIB,OVS -0.3 to 7V -0.3 to VCC+ 0.3V LOA,LOB HS-0.3 to HB + 0.3V HOA,HOB SIA,SOA,SIB,SOB -0.3 to 100V SIA to SOA, SIB to SOB -0.8 to 0.8V HSA, HSB (note 5) -5 to 100V HBA, HBB 115V PGOOD, OVP -0.3 to VDD IIN. IOUT -0.3 to VDD

BIN, BOUT -0.3 to VDD

Junction Temperature 150°C

Storage Temperatue Range -55°C to +150°C

ESD Rating

Human Body Model 2 kV

Recommended Operating Conditions

 VCCA,VCCB
 +8V to +14V

 VDD
 +3V to 7V

 SI, SO common mode
 VDD+1V to 100V

 HS (Note 5)
 -1V to 100V

 HBA, HBB
 HS+7V to HS+14V

 HS Slew Rate
 <50V/ns</td>

 Junction Temperature
 -40°C to +125°C

Electrical Characteristics Specifications in standard typeface are for $T_J = 25^{\circ}$ C, and those in boldface type apply over the full operating junction temperature range. No load on LO & HO, VCC = 10V, VDD = 5V, HB-HS = 10V, OVS = 0V unless otherwise indicated.

Symbol	Parameter	Conditions	Min	Тур	Max	Units
SUPPLY	CURRENTS					-
I _{DD}	VDD Quiescent Current	SIA = SOB, SIB = SOB.		25	40	μΑ
I _{cc}	VCC Quiescent Current (ICCA+ICCB)	All outputs off		500	800	μΑ
I _{cco}	VCC Operating Current (ICCA+ICCB)	LOA & LOB switching at 200kHz		2.2	3	mA
I _{HB}	HBA, HBB Quiescent Current	All outputs off		55	200	μΑ
I _{HBO}	HBA, HBB Operating Current	HOA & HOB switching at 200kHz		700	1000	μA
I _{HBS}	HBA & HBB to V _{SS} Current, Quiescent	HS = 100V, HB = 110V		0.1	10	μΑ
I _{HBSO}	HBA and HBB to V _{SS} Current, Operating	f = 200kHz		130		μΑ
PGOOD,	OVB OUTPUTs					
V_{OL}	Output Low RDS			25	50	Ω
R _{PU}	VDD pull up resistor			50	90	kΩ
LI ,HI INP	UT PINS					
V_{IL}	Input Voltage Threshold		1.3	1.8	2.3	V
V_{IHYS}	Input Voltage Hysteresis			50		mV
R_I	LI, HI Pull down Resistance		100	200	400	kΩ
OVER VO	LTAGE SHUTDOWN					
V_{OVR}	OVS Rising Threshold		VDD-50mV	VDD	VDD +50mV	V
V_{OVH}	OVS threshold Hysteresis			5%		VDD
l _{ovs}	OVS input bias current	OVS <vdd< td=""><td></td><td>1</td><td></td><td>nA</td></vdd<>		1		nA
UNDER V	OLTAGE SHUTDOWN					
V _{CCR}	VCC Rising Threshold		6	6.9	7.4	V
V _{CCH}	VCC threshold Hysteresis			0.5		V
V _{HBR}	HB-HS Rising Threshold		5.7	6.6	7.1	V
V _{HBH}	HB-HS Threshold Hysteresis			0.4		V
BOOT ST	RAP DIODE					
V_{DH}	High-Current Forward Voltage	I _{VCC-HB} = 100mA		0.8	1	V
R _D	Dynamic Resistance	I _{VCC-HB} = 100mA		1	1.65	Ω

Symbol	Parameter	Conditions	Min	Тур	Max	Units
LO & HO	ATE DRIVER					
V _{OL}	Low-Level Output Voltage	$I_{LO} = 100 \text{mA}$ $V_{OL} = \text{LO-PGND or HO-HS}$		0.16	0.4	V
V _{OH}	High-Level Output Voltage	I _{LO} = -100mA V _{OH} = VCC-LO or VCC-HO		0.28	0.6	V
I _{OHL}	Peak Pullup Current	HO, LO = 12V		3		Α
I _{OLL}	Peak Pulldown Current	HO, LO = 0V		3		A
t _{LPHL}	LO Turn-Off Propagation Delay	LI Falling to LO Falling		22		ns
t _{LPLH}	LO Turn-On Propagation Delay	LI Rising to LO Rising		26		ns
t _{HPHL}	HO Turn-Off Propagation Delay	HI Falling to HO Falling		22		ns
t _{HPLH}	LO Turn-On Propagation Delay	HI Rising to HO Rising		26		ns
t _{MON}	Delay Matching: LO on & HO off			1		ns
t _{MOFF}	Delay Matching: LO off & HO on			1		ns
t _{RC} , t _{FC}	Either Output Rise/Fall Time	C _L = 1000pF		8		ns
t _{PW}	Minimum Input Pulse Width that Changes the Output			50		ns
t _{BS}	Bootstrap Diode Turn-On or Turn-Off Time	I _F = 100mA/ I _R = 100mA		37		ns
CURRENT	SENSE AMPLIFIER			!!		
V _{OS}	Offset voltage	$R_{SI} = R_{SO} = 500$, 10mV sense resistor voltage	-2		2	mV
Gain 5mV	Gain is programmed with external resistors IOUT, IIN =(RL/RSI)* (SI-SO)	5mV sense resistor voltage R _{SI} = R _{SO} = 1000, R _L = 75K		390		mV
Gain 50mV	Gain is programmed with external resistors IOUT, IIN =(RL/RSI)* (SI-SO)	50mV sense resistor voltage R _{SI} = R _{SO} = 1000, R _L = 75K		3.85		V
Vclamp	Output Clamp	0.1V sense resistor voltage $R_{SI} = R_{SO} = 1000, R_{L} = 75K$		VDD		V
CURRENT	SENSE BUFFER					
	Offset voltage (BIN-IIN), (BOUT-IOUT)	IIN = 2.5V	-60		60	mV
	Output low voltage BOUT,BIN	IIN, IOUT = 0	0		50	mV
	Output high voltage BOUT,BIN	IIN, IOUT = VDD	VDD-100mV	VDD-30mV	VDD	mV
THERMAL	RESISTANCE					
) _{JA}	Junction to Ambient	SOIC-28 (Note 3)		60		°C/W

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the component may occur. Operating Ratings are conditions under which operation of the device is guaranteed. Operating Ratings do not imply guaranteed performance limits. For guaranteed performance limits and associated test conditions, see the Electrical Characteristics tables.

Note 2: The human body model is a 100 pF capacitor discharged through a 1.5 kΩ resistor into each pin. 2 kV for all pins except HB, HO & HS which are rated at 1000V.

Note 3: 2 layer board with 2 oz Cu using JEDEC JESD51 thermal board.

Note 4: Min and Max limits are 100% production tested at 25°C. Limits over the operating temperature range are guaranteed through correlation using Statistical Quality Control (SQC) methods. Limits are used to calculate National's Average Outgoing Quality Level (AOQL).

Note 5: In the application the HS nodes are clamped by the body diode of the external lower N-MOSFET, therefore the HS node will generally not exceed -1V. However, in some applications, board resistance and inductance may result in the HS node exceeding this stated voltage transiently. If negative transients occur, the HS voltage must never be more negative than VCC-15V. For example if VCC = 10V, the negative transients at HS must not exceed -5V.

Block Diagram

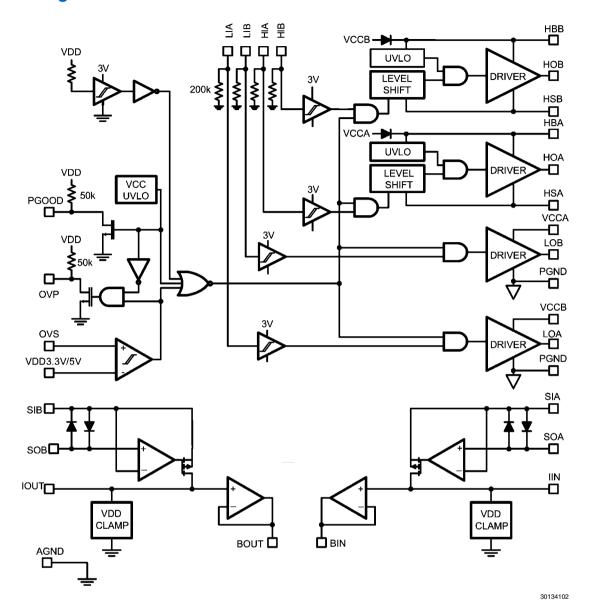
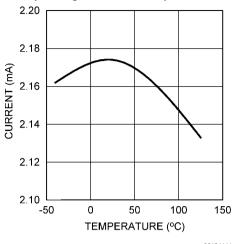
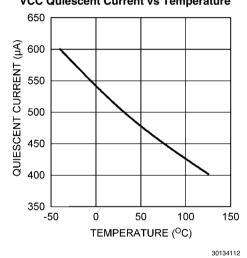
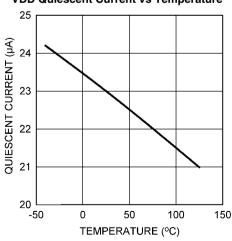



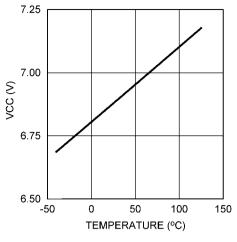
FIGURE 1. Block Diagram

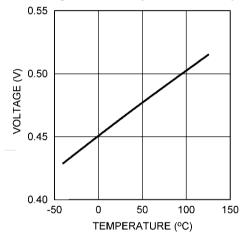
Typical Performance Characteristics

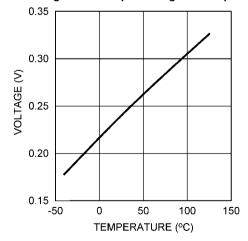

Operating Current vs Temperature


3013411

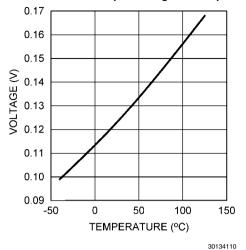
30134115


VCC Quiescent Current vs Temperature

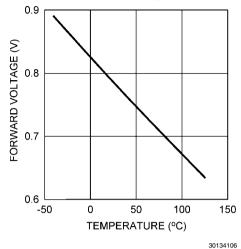

VDD Quiescent Current vs Temperature


VCC Undervoltage Rising Threshold vs Temperature

VCC Undervoltage Threshold Hysteresis vs Temperature

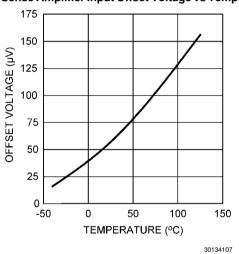


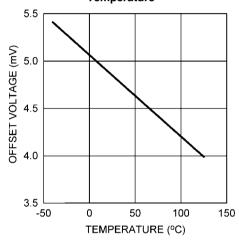
Gate Drive High Level Output Voltage vs Temperature



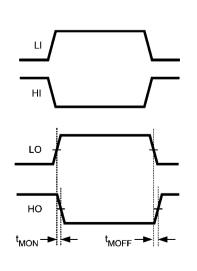
30134109

Gate Drive Low level Output Voltage vs Temperature




Bootstrap Diode Forward Voltage vs Temperature

Current Sense Amplifier Input Offset Voltage vs Temperature Current Sense Amplifier Output Buffer Offset Voltage vs


175 ______
Temperature

30134108

Timing Diagram

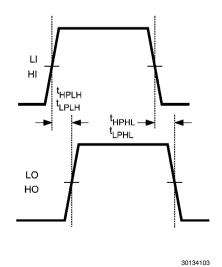
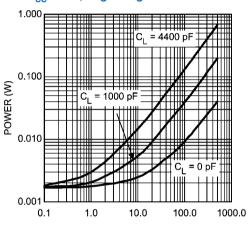


FIGURE 2.

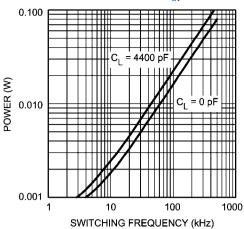

Power Dissipation Considerations

The total IC power dissipation is the sum of the gate driver losses and the bootstrap diode losses. The gate driver losses are related to the switching frequency (f), output load capacitance on LO and HO (C_L), and supply voltage (V_{DD}) and can be roughly calculated as:

$$P_{DGATES} = 2 \cdot f \cdot C_{L} \cdot V_{DD}^{2}$$

There are some additional losses in the gate drivers due to the internal CMOS stages used to buffer the LO and HO outputs. The following plot shows the measured gate driver power dissipation versus frequency and load capacitance. At higher frequencies and load capacitance values, the power dissipation is dominated by the power losses driving the output loads and agrees well with the above equation. This plot can be used to approximate the power losses due to the gate drivers.

Gate Driver Power Dissipation (LO + HO) V_{CC} = 12V, Neglecting Diode Losses

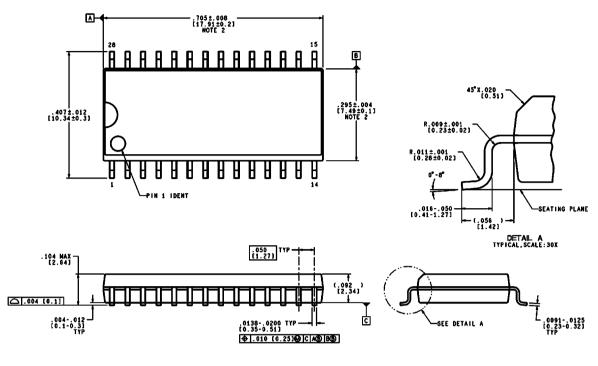


SWITCHING FREQUENCY (kHz)

30134104

The bootstrap diode power loss is the sum of the forward bias power loss that occurs while charging the bootstrap capacitor and the reverse bias power loss that occurs during reverse recovery. Since each of these events happens once per cycle, the diode power loss is proportional to frequency. Larger capacitive loads require more current to recharge the bootstrap capacitor resulting in more losses. Higher input voltages (V_{IN}) to the half bridge result in higher reverse recovery losses. The following plot was generated based on calculations and lab measurements of the diode recovery time and current under several operating conditions. This can be useful for approximating the diode power dissipation. The total IC power dissipation can be estimated from the previous plots by summing the gate drive losses with the bootstrap diode losses for the intended application.

Diode Power Dissipation V_{IN} = 50V

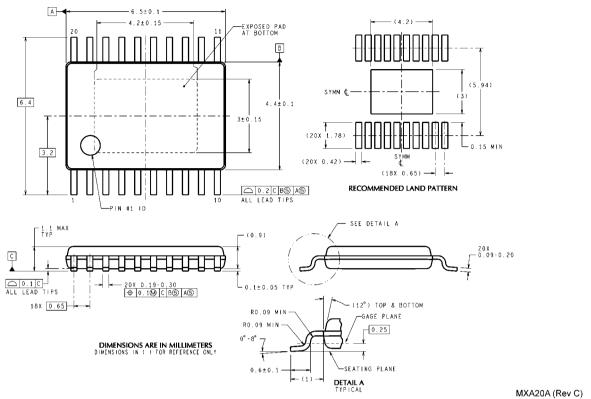

30134105

Layout Considerations

The optimum performance of high and low-side gate drivers cannot be achieved without taking due considerations during circuit board layout. Following points are emphasized.

- Low ESR / ESL capacitors must be connected close to the IC, between VDD and VSS pins and between the HB and HS pins to support the high peak currents being drawn from VDD during turn-on of the external MOSFET.
- To prevent large voltage transients at the drain of the top MOSFET, a low ESR electrolytic capacitor must be connected between MOSFET drain and ground (VSS).
- In order to avoid large negative transients on the switch node (HS pin), the parasitic inductances in the source of top MOSFET and in the drain of the bottom MOSFET (synchronous rectifier) must be minimized.
- 4. Grounding Considerations:
 - a. The first priority in designing grounding connections is to confine the high peak currents that charge and discharge the MOSFET gate into a minimal physical area. This will decrease the loop inductance and minimize noise issues on the gate terminal of the MOSFET. The MOSFETs should be placed as close as possible to the gate driver.
 - b. The second high current path includes the bootstrap capacitor, the bootstrap diode, the local ground referenced bypass capacitor and low-side MOSFET body diode. The bootstrap capacitor is recharged on a cycle-by-cycle basis through the bootstrap diode from the ground referenced VDD bypass capacitor. The recharging occurs in a short time interval and involves high peak current. Minimizing this loop length and area on the circuit board is important to ensure reliable operation.

Physical Dimensions



CONTROLLING DIMENSION IS INCH VALUES IN [] ARE MILLIMETERS

NS Package Drawing M28B

30134150

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead TSSOP Package NS Package Number MXA20A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at:

Products		Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT.

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS. PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2010 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor Americas Technical Support Center Email: support@nsc.com Tel: 1-800-272-9959 National Semiconductor Europe Technical Support Center Email: europe.support@nsc.com National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com National Semiconductor Japan Technical Support Center Email: ipn.feedback@nsc.com