# SM8100

## 特点

- ◆ 待机功耗<30mW@220Vac
- ◆ 自适应多模式控制,根据输入电压 和输出负载情况自动切换 PWM、 PFM 和 Burst 模式;
- ◆ 内置优化 OCP 补偿;
- ◆ 内置斜率补偿电路;
- ◆ 开机软启动;
- ◆ 内置多种保护电路,包括过流保护,过载保护,VDD过压保护以及输入低压保护等;
- ◆ 封装形式: SOP8

## 应用领域

- ◆ DVD、DVB、适配器
- ◆ 打印机电源;
- ◆ PC 待机电源;
- ◆ LED 驱动;

## 概述

SM8100 是电流模式 PWM 多模式控制器,适用于低待机的开关电源方案。根据输入电压和负载情况,自适应切换 Burst、PFM 或者 PWM 工作模式。在 85VAC~265VAC 输入电压范围内,系统待机功耗小于 30mW。

## 管脚图



SOP8

# 典型应用

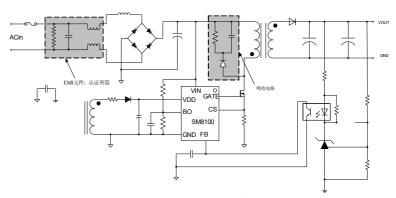



图 1 有 AC 欠压保护功能

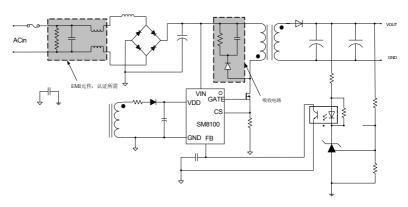
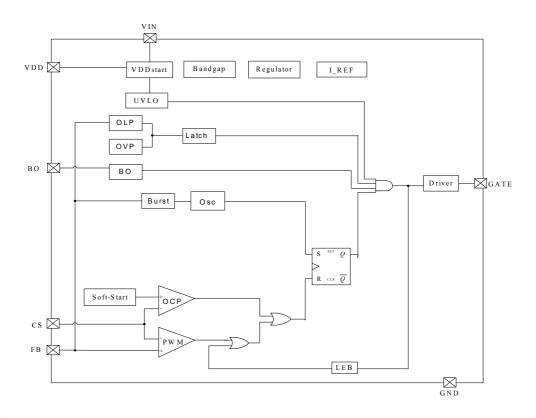



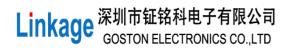

图 2 无 AC 欠压保护功能

# 内部功能框图



# 封装示意图




# 管脚说明

| SOP8 | 名称   | 功能说明    |  |  |
|------|------|---------|--|--|
| 1    | GATE | 芯片输出端   |  |  |
| 2    | VDD  | 芯片电源    |  |  |
| 4    | FB   | 输出反馈端   |  |  |
| 5    | VIN  | 启动供电端   |  |  |
| 6    | ВО   | 输入电压检测端 |  |  |
| 7    | GND  | 芯片地     |  |  |
| 8    | CS   | 电流采样端   |  |  |

# 极限参数

#### TA= 25°C

| 符号                   | 说明      | 范围              |     | 单位         |
|----------------------|---------|-----------------|-----|------------|
| VDD                  | 芯片工作电压  | <35             |     | V          |
| I <sub>DDclamp</sub> | 芯片钳位电流  | <10             |     | mA         |
| V <sub>FB</sub>      | FB 输入电压 | −0.3~7.0        |     | V          |
| Vcs                  | CS 输入电压 | −0.3~7.0        |     | V          |
| Top                  | 工作温度    | -20~85          |     | $^{\circ}$ |
| T <sub>stg</sub>     | 存储温度    | <b>-40</b> ∼150 |     | $^{\circ}$ |
| V <sub>ESD</sub>     | 人体放电模式  | >2000           |     | ٧          |
| R <sub>θja</sub>     | 热阻      | SOP8            | 155 | °C/W       |



# 电气工作参数

(除非特殊说明,下列条件均为 Ta=25℃)

| 符号                     | 说明             | 条件                                                                            | 范围   |      |      | 单位   |
|------------------------|----------------|-------------------------------------------------------------------------------|------|------|------|------|
|                        |                |                                                                               | 最小   | 典型   | 最大   | - 平型 |
| 芯片工作电压部分               |                |                                                                               |      |      |      |      |
| VINAC                  | 输入交流电压范围       |                                                                               | 85   |      | 265  | V    |
| Istart                 | 启动电流           | V <sub>IN</sub> =20V                                                          |      | 1    |      | mA   |
| IVDD_OPER              | 工作电流           | V <sub>IN</sub> =20V, V <sub>FB</sub> =3V, V <sub>CS</sub> =0V,  GATE floated | 0.5  | 0.6  | 1.2  | mA   |
| Burst                  | Burst 模式工作电流   | V <sub>IN</sub> =20V, V <sub>FB</sub> =0V, V <sub>CS</sub> =0V,  GATE floated |      | 800  |      | μА   |
| U <sub>vlo</sub> (OFF) | VDD 低压锁定电压     |                                                                               |      | 7.7  |      | V    |
| Uvlo(ON)               | VDD 低压锁定恢复电压   |                                                                               |      | 15   |      | V    |
| $VDD_{clamp}$          | VDD 箝位电压       | Idd=5mA                                                                       |      | 34   |      | V    |
| OVP <sub>(LATCH)</sub> | 过压保护阈值         |                                                                               |      | 32   |      | V    |
| FB 输入部分                |                |                                                                               |      |      | l    |      |
| V <sub>FB(open)</sub>  | FB 开环电压        | VDD=18V                                                                       | 4.5  | 5.5  | 6    | V    |
| I <sub>FB(short)</sub> | FB 短路输出电流      |                                                                               | -250 | -350 | -450 | uA   |
| V <sub>тн_вм</sub>     | BURST 模式阈值     |                                                                               | 1.2  |      | 1.4  | V    |
| V <sub>TH_PL</sub>     | 过功率阈值          |                                                                               |      | 3.6  |      | V    |
| $T_{D\_PL}$            | 过载延迟时间         |                                                                               |      | 38   |      | ms   |
| CS 输入部分                | •              |                                                                               |      |      |      |      |
| $V_{TH\_OC}$           | 过流检测 输入阈值      | VDD=18V                                                                       | 0.7  | 0.80 | 0.9  | V    |
| 振荡部分                   | •              |                                                                               |      |      | •    | •    |
| Fosc                   | 振荡器时钟频率        |                                                                               | 57   | 66   | 71   | KHz  |
| D <sub>MAX</sub>       | 最大占空比          | VDD=18V                                                                       | 70   | 80   | 90   | %    |
| GATE 驱动部分              | •              |                                                                               |      |      |      |      |
| VoL                    | 输出低电平电压        | VDD=18V, Io=20mA                                                              | -    | -    | 0.8  | V    |
| V <sub>OH</sub>        | 输出高电平电压        | VDD=18V, Io=-20mA                                                             | 10   | -    | -    | V    |
| $V_{\text{clamp}}$     | 输出箝位电压         |                                                                               | -    | 18   | -    | V    |
| BO 部分                  |                |                                                                               |      |      |      |      |
| V <sub>TH_BO</sub>     | 输入低压保护阈值       |                                                                               | 3.9  |      | 4    | V    |
| Т <sub>Д_ВО</sub>      | 输入低压保护<br>延迟时间 |                                                                               |      | 20   |      | ms   |

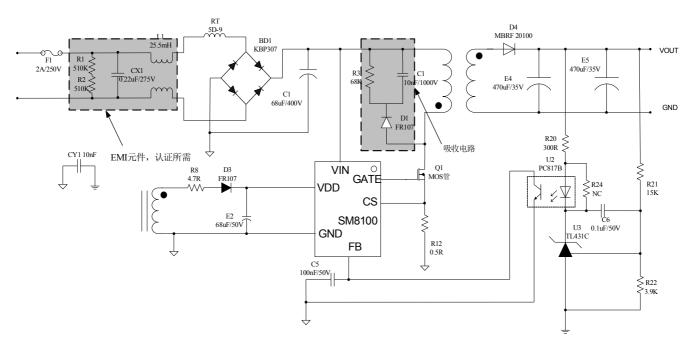
# 功能表述

SM8100 是 AC-DC 控制驱动芯片。它可以采用自适应多模式控制方式进行工作,即根据系统条件自动切换工作模式,在不同输入电压和不同输出负载的情况下工作在 PWM 模式、PFM 模式和 Burst 模式。该芯片可满足系统低待机功耗和高转换效率的要求。

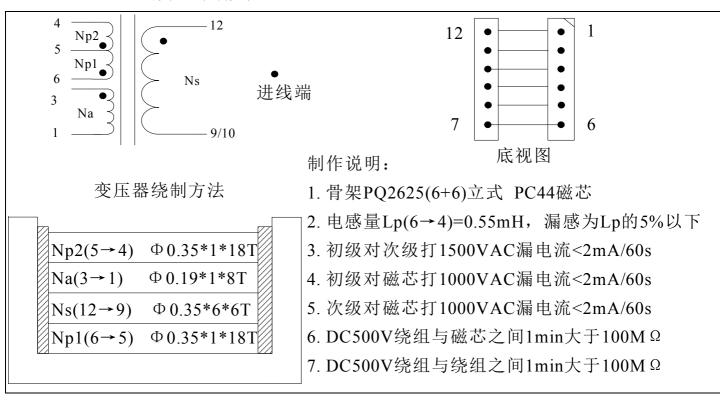
#### ◆ 电源部分

由 VIN 端口供电,通过 VDDstart 模块启动产生 15V 电源 VDD,进而产生内部 6V 低压电源 VDD,通过 Bandgap、Regulator 和 L\_REF 模块产生各参考电压和偏置电流,UVLO 模块使能控制内部逻辑电路的工作和关闭。

#### ◆ 逻辑控制部分

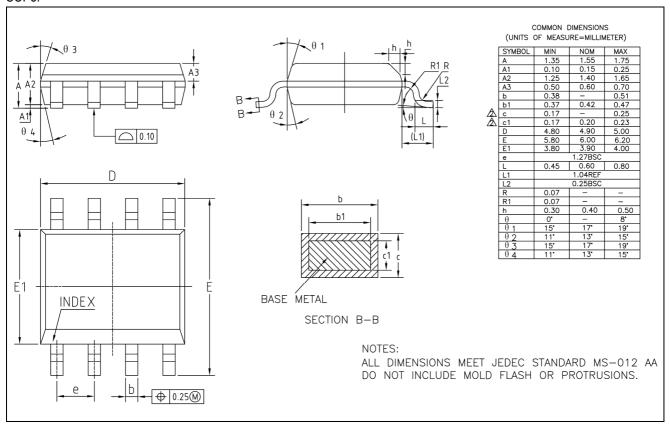

由 OSC 模块产生 66KHz 时钟信号控制功率 MOSFET 的开启,通过 CS 端口检测原边电流和 FB 端口反馈输 出电压/电流状态控制功率 MOSFET 的关闭,根据不同输入电压和不同输出负载在 PWM、PFM 和 Burst 模式切换 控制方式,实现系统恒压/恒流。

#### ◆ 保护功能部分


由 OLP、OCP、OVP、BO 等模块实现输出过载保护、过流保护,过压保护和输入低压保护功能;通过 Sof-Start 模块实现软启动。

### 典型应用方案

◆ SM8100 12V/3A 反激系统应用方案原理图




◆ SM8100 12V/3A 电源变压器绕制参数



# 封装形式

SOP8:

