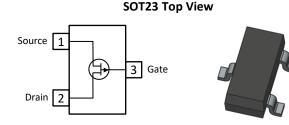
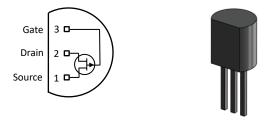


2N5460, 2N5461, 2N5462 P-Channel JFET

Features


- InterFET P0032F Geometry
- Typical Noise: 2.7 nV/VHz
- Low Ciss: 3.2pF Typical
- RoHS Compliant
- SMT, TH, and Bare Die Package options.

Applications


- Audio Amplifiers
- General Purpose Amplifiers

Description

The 40V InterFET 2N5460, 2N5461, and 2N5462 JFET's are targeted for sensitive amplifier stages for mid-frequencies designs. Input capacitance is typically 3.2pF. The 2N5462 is target for higher gain applications with a typical Gfs of 3.5mS.

TO-92 Bottom View

Product Summary

	Parameters	2N5460 Min	2N5461 Min	2N5462 Min	Unit
BV _{GSS}	Gate to Source Breakdown Voltage	40	40	40	V
IDSS	Drain to Source Saturation Current	-1	-2	-4	mA
V _{GS(off)}	Gate to Source Cutoff Voltage	0.75	1	1.8	V
GFS	Forward Transconductance	1000	1500	2000	μS

Ordering Information Custom Part and Binning Options Available

Part Number	Description	Case	Packaging
2N5460; 2N5461; 2N5462	Through-Hole	TO-92	Bulk
SMP5460; SMP5461; SMP5462	Surface Mount	SOT23	Bulk
	7" Tape and Reel: Max 3,000 Pieces		Minimum 1,000 Pieces
SMP5460TR; SMP5461TR; SMP5462TR	13" Tape and Reel: Max 9,000 Pieces	SOT23	Tape and Reel
	Chip Orientated Tray		
2N5460COT; 2N5461COT; 2N5462COT	(COT Waffle Pack)	СОТ	400/Waffle Pack
	Chip Face-up Tray		
2N5460CFT; 2N5461CFT; 2N5462CFT	(CFT Waffle Pack)	CFT	400/Waffle Pack

Disclaimer: It is the Buyers responsibility for designing, validating and testing the end application under all field use cases and extreme use conditions. Guaranteeing the application meets required standards, regulatory compliance, and all safety and security requirements is the responsibility of the Buyer. These resources are subject to change without notice.

Technical

Support

Electrical Characteristics

Maximum Ratings (@ T_A = 25°C, Unless otherwise specified)

	Parameters	Value	Unit
VRGS	Reverse Gate Source and Gate Drain Voltage	40	V
I_{FG}	Continuous Forward Gate Current	50	mA
PD	Continuous Device Power Dissipation	300	mW
Р	Power Derating	1.7	mW/°C
Τı	Operating Junction Temperature	-55 to 125	°C
T _{STG}	Storage Temperature	-65 to 200	°C

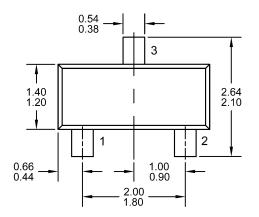
Static Characteristics (@ TA = 25°C, Unless otherwise specified)

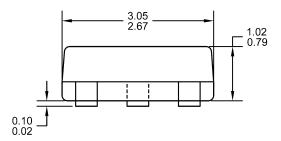
			2N5460		2N5461		2N5462		
	Parameters	Conditions	Min	Max	Min	Max	Min	Max	Unit
V(BR)GSS	Gate to Source Breakdown Voltage	V_{DS} = 0V, I _G = 10 μ A	40		40		40		v
1	Gate to Source	$V_{GS} = 20V, V_{DS} = 0V, T_A = 25^{\circ}C$		5		5		5	nA
I _{GSS}	Reverse Current	V _{GS} = 20V, V _{DS} = 0V, T _A = 100°C		1		1		1	μA
Vgs(off)	Gate to Source Cutoff Voltage	V _{DS} = -15V, I _D = -1µA	0.75	6	1	7.5	1.8	9	v
	Gate to Source	V _{DS} = -15V, I _D = -100μA	0.8	4.5					
V _{GS}	Voltage	V _{DS} = -15V, I _D = -200μA			0.8	4.5			V
	voitage	V _{DS} = -15V, I _D = -400μA					1.5	6	
I _{DSS}	Drain to Source Saturation Current	$V_{DS} = -15V, V_{GS} = 0V$ (Pulsed)	-1	-5	-2	-9	-4	-16	mA

Dynamic Characteristics (@ TA = 25°C, Unless otherwise specified)

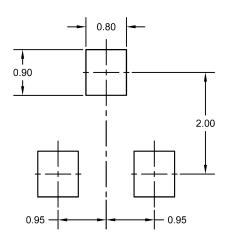
			2N5460		2N5461		2N5462		
	Parameters	Conditions	Min	Max	Min	Max	Min	Max	Unit
Gfs	Forward Transconductance	V _{DS} = -15V, V _{GS} = 0V, f = 1kHz	1000	4000	1500	5000	2000	6000	μS
Gos	Output Conductance	V _{DS} = -15V, V _{GS} = 0V, f = 1kHz		75		75		75	μS
Ciss	Input Capacitance	$V_{DS} = -15V, V_{GS} = 0V, f = 1MHz$		7		7		7	pF
C _{rss}	Reverse Transfer Capacitance	V_{DS} = -15V, V_{GS} = 0V, f = 1MHz		2		2		2	pF
en	Equivalent Circuit Input Noise Voltage	$\label{eq:VDS} \begin{split} V_{\text{DS}} &= -15 V, V_{\text{GS}} = 0 V, R_{\text{G}} = 1 \; \text{M}\Omega, \\ BW &= 1 \text{Hz}, f = 100 \text{Hz} \end{split}$		115		115		115	nV/√Hz
NF	Noise Figure	V _{DS} = -15V, V _{GS} = 0V, f = 1kHz		2.5		2.5		2.5	dB

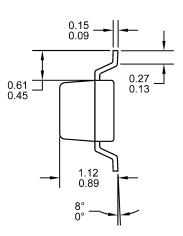
Technical


Support


Order

Now

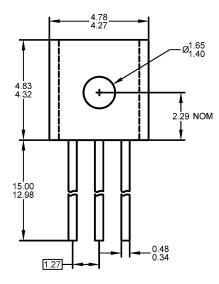

SOT23 (TO-236AB) Mechanical and Layout Data

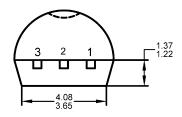

Package Outline Data

Suggested Pad Layout

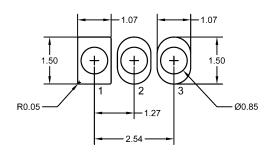
- 1. All linear dimensions are in millimeters.
- 2. Package weight approximately 0.12 grams
- 3. Molded plastic case UL 94V-0 rated
- For Tape and Reel specifications refer to InterFET CTC-021 Tape and Reel Specification, Document number: IF39002
- 5. Bulk product is shipped in standard ESD shipping material
- 6. Refer to JEDEC standards for additional information.

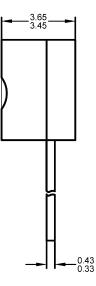
- 1. All linear dimensions are in millimeters.
- 2. The suggested land pattern dimensions have been provided for reference only. A more robust pattern may be desired for wave soldering.




Technical Support Now

2N5460-1-2


TO-92 Mechanical and Layout Data


Package Outline Data

Suggested Through-Hole Layout

- 1. All linear dimensions are in millimeters.
- 2. Package weight approximately 0.19 grams
- 3. Molded plastic case UL 94V-0 rated
- 4. Bulk product is shipped in standard ESD shipping material
- 5. Refer to JEDEC standards for additional information.

- 1. All linear dimensions are in millimeters.
- 2. The suggested land pattern dimensions have been provided as a straight lead reference only. A more robust pattern may be desired for wave soldering and/or bent lead configurations.