

Copyright Information

© 2009 by Sigma Designs Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Sigma Designs Inc. The information in this document is subject to change without notice. Sigma Designs, REALmagic and the REALmagic logo are either registered trademarks or trademarks of Sigma Designs Inc. in the United States and/or other countries. Manufactured under license from Dolby Laboratories and Macrovision. Dolby, Pro Logic, and the double-D symbol are trademarks of Dolby Laboratories. All other trademarks or registered trademarks are the properties of their respective owners.

Sigma Designs products are sold by description only. Sigma Designs reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that the datasheet is current before placing orders. Information furnished by Sigma Designs is believed to be accurate and reliable. However, no responsibility is assumed by Sigma Designs or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Sigma Designs or its subsidiaries.

Disclaimer

Sigma Designs Inc. makes no warranty, express, statutory, implied or by description regarding the information set forth herein or regarding the freedom of the described devices from intellectual property infringement. Sigma Designs Inc. makes no warranty of merchantability or fitness for any purpose.

Sigma Designs Inc. shall not be responsible for any errors that may appear in this document. Sigma Designs Inc. makes no commitment to update or keep current the information contained in this document.

Confidentiality

This document contains confidential information, trade secrets or both that are the property of Sigma Designs Inc. It is to be treated as confidential under the Non Disclosure Agreement (NDA), which has been signed by the obtainer. Reproduction or transmission in any manner to others in whole or in part is prohibited without prior written permission from Sigma Designs Inc.

Export Control

Due to the inclusion of cryptographic functions, Sigma Designs has applied to the US Department of Commerce, Bureau of Industry and Security (BIS) for authorization to ship the SMP8654 and SMP8655 to customers around the world. These devices have been authorized by the BIS for license exception ENC under sections 740.17 (A) and (B3). The ECCN number under which this exception was granted is 5A002A.1. The following Web site lists all countries where this license exception applies (see *country group B*, *as in B3 above*): http://www.gpo.gov/bis/ear/pdf/740spir.pdf.

Life Support Policy

The product(s) described in this document is not intended for use as critical component(s) in life support devices or systems without prior written permission from Sigma Designs Inc.

- Life support devices or systems are devices or systems which, (a) are intended as surgical implant(s) into the body, or (b) support or sustain life, and whose failure to perform, when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to
 cause the failure of the life support device or system, or to affect its safety or effectiveness.

Trademarks

Secure Media Processor, SMP8654 and SMP8655 are trademarks of Sigma Designs Inc.

Address

Sigma Designs Inc. 1778 McCarthy Blvd. Milpitas CA USA - 95035 Tel: 408.262.9003 Fax: 408.262.9740 www.sigmadesigns.com

Table of Contents

	Conventions			.1
	(0.1	Acronyms and Abbreviations	. 1
		0.2	Units of Measurement	.4
		0.3	General Conventions	. 5
1	Introduction			.7
		1.1	Block Diagram of SMP8654	. 7
		1.2	Main Features of SMP8654	.8
		1.3	Main Components of SMP8654	11
		1.4	Application Examples	15
2	Host CPU BI	ock .		17
	:	2.1	Block Diagram of Host CPU Block	17
	:	2.2	Introduction	18
		Centr	al Processor Unit (CPU)	19
		2.3	Introduction	19
	:	2.4	Features	L9
	;	2.5	Block Diagram	21
	:	2.6	Functional Description	22
	1	Local	Memory	42
	:	2.7	Introduction	12
	:	2.8	Features4	12
	:	2.9	Functional Description	12
	I	Interr	upt Controller	
	:	2.10	Introduction	
	:	2.11	Features	
	:	2.12	Block Diagram	
		2.13	Functional Description	
			'S	
			Introduction	
			Features	
	:	2.16	Block Diagram	
		2.17	Functional Description	
	:	2.18	Register Map	54
			's	
		2.19	Introduction	54

	2.20	Features	55
	2.21	Block Diagram	56
	2.22	Functional Description	57
	2.23	Register Map	61
	2.24	Pin Description	62
	2.25	Electrical Characteristics	62
	2.26	Timing Diagrams	63
	Smar	tcard Interface	
	2.27	Introduction	
	2.28	Features	
	2.29	Block Diagram	
	2.30	Functional Description	
	2.31	Register Map	
	2.32	Pin Description6	69
3	Security Subsyst	em	71
		Block Diagram of Security Subsystem	
	3.2	Introduction	72
	3.3	Features	73
	CPU	of the Security Subsystem (XPU)	74
	3.4	Description	74
	Hardy	ware Cipher Block	75
		ware Cipher Block	
	3.5	·	75
	3.5 Boot	Description	75 77
	3.5 Boot Seria	Description	75 77 78
	3.5 Boot Seria XPU	Description	75 77 78 80
	3.5 Boot Seria XPU 3.6	Description	75 77 78 80
	3.5 Boot Seria XPU 3.6	Description	75 77 78 80 80
	3.5 Boot Seria XPU 3.6 3.7 3.8	Description ROM I Flash Timers Introduction Features	75 77 78 80 80 80
	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9	Description ROM I Flash Introduction Features 8 Block Diagram 8	75 77 78 80 80 80 80
	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9	Description ROM I Flash Introduction Introduction 8 Features 8 Block Diagram 8 Functional Description 8	75 77 78 80 80 80 81 83
	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9 XPU I	Description	75 77 78 80 80 80 81 83
	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9 XPU I 3.10	Description ROM I Flash Introduction Features Block Diagram Functional Description Interrupt Controller Introduction	75 77 78 80 80 80 81 83 83
	3.5 Boot Serial XPU 3.6 3.7 3.8 3.9 XPU I 3.10 3.11	Description ROM I Flash Introduction Introduction 8 Features 8 Block Diagram 8 Functional Description 8 Interrupt Controller 8 Introduction 8 Features 8 Block Diagram 8	75 77 78 80 80 80 81 83 83 83
	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9 XPU I 3.10 3.11 3.12 3.13 Bus a	Description ROM I Flash Introduction Features 8 Block Diagram 8 Functional Description 8 Interrupt Controller 9 Introduction 10 Features 10 Block Diagram 10 Functional Description 10 Accessibility 10	75 78 80 80 80 81 83 83 84 84 84
	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9 XPU I 3.10 3.11 3.12 3.13 Bus a	Description	75 78 80 80 80 81 83 83 84 84 84
4	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9 XPU I 3.10 3.11 3.12 3.13 Bus a 3.14	Description ROM I Flash Introduction Features 8 Block Diagram 8 Functional Description 8 Interrupt Controller 9 Introduction 10 Features 10 Block Diagram 10 Functional Description 10 Accessibility 10	75 78 80 80 80 81 83 83 84 84 88
4	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9 XPU I 3.10 3.11 3.12 3.13 Bus a 3.14 IPU Subsystem .	Description ROM I Flash Introduction Features 8 Block Diagram 8 Functional Description 8 Interrupt Controller 9 Introduction 9 Features 8 Block Diagram 8 Functional Description 8 accessibility 9 Description 9	75 78 80 80 80 81 83 83 84 84 88 88
4	3.5 Boot Seria XPU 3.6 3.7 3.8 3.9 XPU I 3.10 3.11 3.12 3.13 Bus a 3.14 IPU Subsystem . 4.1	Description ROM I Flash Timers Introduction Features Block Diagram Functional Description Introduction Features Soluterrupt Controller Introduction Features Block Diagram Functional Description Soluterrupt Features Block Diagram Features Block Diagram Functional Description Soluterrupt Functional Description Soluterrupt Functional Description Soluterrupt Functional Description	75 78 80 80 80 81 83 83 84 88 88 88

	IPU I	Processor	94
	4.4	Description	94
5	DRAM Controlle	rs	95
	5.1		
	5.2	Introduction	9 <i>6</i>
	5.3	Features	96
	5.4	Functional Description	97
	5.5	Pin Description	105
	5.6	Electrical Characteristics	111
6	System Block		113
	6.1	Block Diagram of System Block	113
	6.2	Introduction	114
	GPIC) Block	114
	6.3	General Purpose I/O (GPIO)	114
	6.4	Front Panel Controller Interface (FIP)	122
	6.5	Infrared Decoder	126
	Inter	Integrated Circuits (I2C)	132
	6.6	Introduction	132
	6.7	Features	132
	6.8	Block Diagram	133
	6.9	Functional Description	134
	6.10	Register Maps	138
	6.11	Pin Description	139
	6.12	Electrical Characteristics	140
	6.13	Timing Diagrams	140
	Wate	hdog	141
	6.14	Introduction	141
	6.15	Block Diagram	141
	6.16	Functional Description	141
	6.17	Register Map	143
	6.18	Pin Description	143
	Cloc	k Generator	143
	6.19	Introduction	143
	6.20	Features	144
	6.21	3	
	6.22		
	6.23	-3	
	6.24		
	6.25	Electrical Characteristics	154

7	Host Interface		155
	7.1	Block Diagram of Host Interface	155
	7.2	Introduction	156
	PCI	Master/Slave/Host Interface	156
	7.3	Introduction	156
	7.4	Features	156
	7.5	Functional Description	157
	7.6	Register Map	163
	7.7	Pin Descriptions	
	7.8	Electrical Characteristics	169
	7.9	Timing Diagrams	170
	USB	2.0 Embedded Host Interface	172
	7.10	Functional Description	172
	7.11	real Processing	
	7.12		
	Ethe	rnet Interface	
	7.13	Pin Description	179
	7.14		
	7.15	Timing Diagram	182
	NAN	D Flash Interface	183
	7.16	Introduction	183
	7.17		
	7.18	Functional Description	183
	7.19	-3	
	7.20	real Processing	
	7.21		
	7.22	3 - 3 -	
	SATA	A Interface	
	7.23		
	7.24	Features	
	7.25		
	7.26	•	
	7.27		
	7.28		
8	Video Decoder S	ubsystem	197
	8.1	Block Diagram of Video Decoder Subsystem	197
	8.2	Introduction	
	8.3	Features	
	8.4	Functional Description	200

9	Video Processing	g Subsystem	205
	9.1	Block Diagram of Video Processing Subsystem	. 205
	9.2	Introduction	207
	9.3	Features	. 208
	9.4	Functional Description	. 209
	9.5	Register Maps	. 278
	9.6	Pin Description	. 288
	9.7	Electrical Characteristics	. 292
	9.8	Timing Diagrams	294
10	Audio Processi	ng Subsystem	295
	10.1	Block Diagram of Audio Processing Subsystem	295
	10.2	Introduction	296
	10.3	Features	296
	10.4	Functional Description	297
	10.5	Register Maps	. 309
	10.6	Pin Description	312
	10.7	Electrical Characteristics	. 313
	10.8	Timing Diagram	314
11	Transport Demu	ıltiplexer	315
	11.1	Block Diagram of Transport Demultiplexer	315
	11.2	Introduction	316
	11.3	Features	. 316
	11.4	Functional Description	318
	11.5	Pin Description	339
	11.6	Electrical Characteristics	340
	11.7	Timing Diagrams	. 341
12	Pin Information		345
	12.1	Pin Layout	
	12.2	Pin Listing by Pin Id	350
	12.3	Pin Listing by Pin Name	360
	12.4	Miscellaneous Pins	370
13	System Specific	cations	371
	13.1	Electrical Specifications	371
	13.2	Power Consumption	373
	13.3	Power Supply Sequencing	374
	13.4	Thermal Specifications	389
	13.5	Mechanical Specifications	390
14	DDR Implement	ation	393
	•	Memory System Implementation Guidelines	

15	Ordering I	Inform	ation	397
		15 (Ordering Information	397
16	Licensing			399
		16.1	Licensing	399
17	Appendix			403
		17.1	Basic Analog Video Parameters	403
		17.2	Main Video Scaler Filters	405
		17.3	Color Space Conversion Basic Matrices	407
			Video Output Scaling Examples	
		17.5	SDTV vs. HDTV Colorimetry Example	412
			Supported Media Formats	
			Supported File Formats	
		17.8	Supported Broadcast Formats	422
			Raster Operations	
Lis	t of Figures			433

Conventions

This section presents the acronyms, abbreviations, units of measurement and other conventions used in this datasheet.

0.1 Acronyms and Abbreviations

The acronyms and abbreviations used in this datasheet are listed alphabetically in the table below:

Table 0-1 Acronyms and abbreviations

Acronym/Abbreviation	Definition
2D/3D	2 Dimensional/3 Dimensional
AC	Alternating Current
ADC	Analog-to-Digital Converter
ATA	AT Attachment
AV or A/V	Audio Visual
BGA	Ball Grid Array
BPP	Bits per Pixel
CMOS	Complementary Metal Oxide Semiconductor
CODEC	Coder/Decoder
CPU	Central Processing Unit
CSS	Cascading Style Sheets or Content Scrambling System
D/A	Digital-to-Analog
DAA	Data Access Arrangement
DAC	Digital-to-analog Converter
DC	Direct Current
DDR SDRAM	Double Data Rate Synchronous DRAM
DMA	Direct Memory Access
DRAM	Dynamic Random-access Memory
DSL	Digital Subscriber Line

Table 0-1 Acronyms and abbreviations

Acronym/Abbreviation	Definition
DSP	Digital Signal Processor
DVD	Digital Versatile Disc or Digital Video Disc
DVI	Digital Visual Interface
EHCI	Extended Host Controller Interface
EJTAG	Enhanced Joint Test Action Group
EIA	Electronic Industries Alliance
FCS	Frame Check Sequence
FIFO	First In/First Out
GPIO	General Purpose Input/Output
HDMI	High-Definition Multimedia Interface
HDTV	High-Definition Television
I	Input
I/O	Input/Output
I ² C	Inter Integrated Circuit
IDE	Integrated Drive Electronics
IEC	International Electrotechnical Commission
IPTV	Internet Protocol TV
IR	Infrared
IRQ	Interrupt Request Line
ISO	International Organization for Standardization
JPEG	Joint Photographic Experts Group
LCD	Liquid Crystal Display
LSB	Least Significant Bit/Byte
MIPS	Millions of Instructions per Second
MMU	Memory Management Unit
MPEG	Moving Picture Experts Group
MSB	Most Significant Bit/Byte
0	Output
OHCI	Open Host Controller Interface
OSD	On Screen Display

Table 0-1 Acronyms and abbreviations

Acronym/Abbreviation	Definition
P/U	Pull-up Resistor
PCB	Printed Circuit Board
PCI	Peripheral Component Interconnect
PID	Program Id
PIP	Picture In Picture
PKI	public key infrastructure
PLL	Phase Locked Loop
PVR	Personal Video Recorder
RAM	Random Access Memory
RGB	Red Green Blue
RISC	Reduced Instruction Set Computer
ROM	Read Only Memory
RTC	Real-time Clock
S/PDIF	Sony/Philips Digital Interface
SDTV	Standard Definition Television
SPI	Synchronous Parallel Interface
SRAM	Static Random Access Memory
SSI	Synchronous Serial Interface
SSI	Server-side Include or Single-system Image
TDMX	Transport Demultiplexer
TLB	Translation Look-aside Buffer
TMDS	Transition Minimized Differential Signaling
UART	Universal Asynchronous Receiver Transmitter
USB	Universal Serial Bus
VOD	Video On Demand
YCbCr	Y is brightness (luma), Cb is blue minus luma (B-Y) and Cr is red minus luma (R-Y)

0.2 Units of Measurement

The units of measurement used in this datasheet are listed alphabetically in the table below:

Table 0-2 Units of measurement

Symbol	Unit of measurement
μΑ	microampere
μF	microfarad
μs	microsecond (1,000 nanoseconds)
⁰ C	degree Celsius
GB	gigabyte
bpp	Bits Per Pixel
Hz	Hertz (cycles per second)
kohm	kiloohm
Kb	kilobit
КВ	kilobyte (1,024 Bytes)
Kbps	kilobit per second
KBps	kilobyte per second
KHz	kilohertz
mA	milliampere
Mbps	megabit per second
MBps	megabyte (1,048,576 bits) per second
Mb	megabit
MB	megabyte (1,048,576 bytes)
MHz	megahertz (1,000 kilohertz)
ms	millisecond (1,000 micro seconds)
ns	nanosecond
V	volt
W	watt

5

0.3 General Conventions

Numbers and Number Bases

- Binary numbers are enclosed in single quotation marks when in text, e.g., '1' designates a binary number.
- Binary numbers are written with a lower case 'b' suffix. e.g., 16b.
- Binary numbers larger than four digits are written with a space dividing each group of four digits, as in 1011 0101 1010b.

Note: All other numbers are decimal.

Naming Conventions

- The register acronyms appear in capital letters such as SDIOVH or SDIN_EGD_HDG
- Register bits are listed in square brackets MSB-to-LSB separated by a colon mark, e.g., SDHE[3:0].
- TBD indicated that the values are 'to be determined', NA or N/A indicate 'not available' and NC indicates that a pin is 'no connect'.

1 Introduction

1.1 Block Diagram of SMP8654

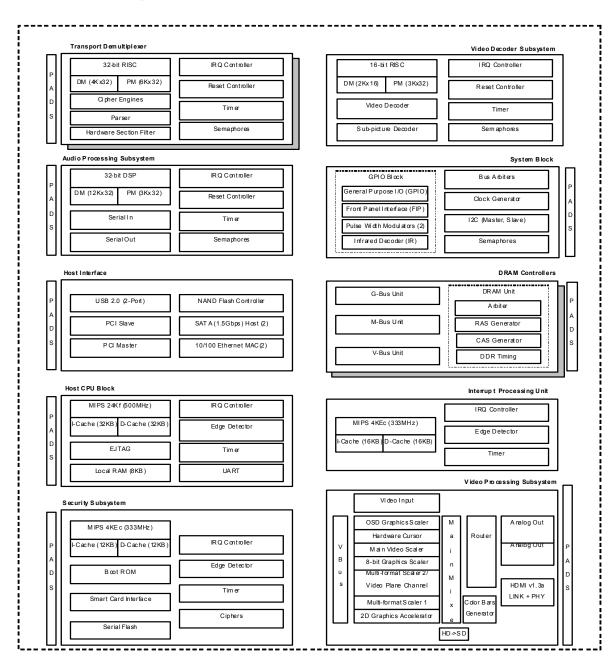


Figure 1-1 SMP8654 block diagram

1.2 Main Features of SMP8654

Host CPU

- Embedded 500MHz MIPS 24Kf for operating system, middleware and applications
- 32KB instruction and 32KB data caches
- Interrupt controller and timers
- Highly secure DRM/CA solution
 - Separate 333MHz MIPS 4KEc CPU to securely execute DRM and conditional access software
 - 12KB instruction and 12KB data caches
 - 32KB instruction scratch memory and 24KB data scratch memory
 - Encrypted DRAM and flash memory, secure boot loader, secure PKI, encrypted I/O interfaces
 - Supports a wide variety of DRM and conditional access solutions

IO standards

- 32-bit PCI v2.1 (33 or 66MHz) bus master/slave/host
- NAND Flash Interface supports up to 8GB of external memory (bootable)
- Dual SATA (1.5Gbps) host ports
- Supports Ethernet 10/100 (2 ports)
- Supports USB2.0 (2 ports)
- Front panel controller interface supports NEC uPD16311, NEC uPD16312, PTC PT6311 and PTC PT6312 front panel controllers
- Two ISO 7816 smartcard interfaces
- I²C master/slave interfaces
- 8-bit parallel DVB-SPI transport stream interface plus single serial interface, or triple serial transport stream interface
- I²S interface up to 20Mbps
- Two UARTs
- 16 dedicated general purpose I/O pins (up to 77 total GPIO)

Video decoding standards

- Video decoding of MPEG-1, MPEG-2 MP@HL, MPEG-4.2 ASP@L5 (720p), MPEG-4.10 (H.264) BP@L3, MP@L4.0 and HP@L4.0, WMV9 MP@HL, SMPTE 421M (VC-1) MP@HL, AP@L3, AVS Jizhun profile @ L2.0, 4.0, and 6.0
- Hardware accelerated Baseline JPEG decoding
- DVD-Video and Superbit DVD
 - * CSS decryption
 - * 16:9 and 4:3 playback, letterbox, 3:2 pull-down
 - Multiple angles and sub-picture
- Error concealment, deblocking filter

- Elementary video stream bit rate
 - * MPEG-2 SDTV (HDTV): 20 (40) Mbps maximum
 - * MPEG-4.2 SDTV (HDTV): 20 (40) Mbps maximum
 - * MPEG-4.10 (H.264) SDTV (HDTV): 20 (40) Mbps maximum
 - * WMV9/SMPTE 421M (SMPTE 421M (VC-1)) SDTV (HDTV): 20 (40) Mbps maximum

Video processing

- Brightness, color and contrast controls for each output port
- Hardware cursor (4096 pixels, 4-bpp, up to 255 pixels horizontally and vertically)
- 2D graphics accelerator (up to 100M pixels per second operation for most operations)
 - * Line, Rectangle, Ellipse and Circle: generate a single-color line, rectangle, ellipse or circle with optional gradient fill
 - * Blend: alpha blend one rectangular region onto another
 - * Move: move a rectangular region to another location
 - * Replace: modified version of Move
 - * Raster Operations: standard 256 Boolean operations
- OpenType/TrueType font rendering acceleration
- 32-bit OSD with flicker filtering and scaling
- Optional deinterlacing of interlaced sources
- Arbitrary scaling of video and graphics up to 1920x1080 pixels
- Alpha mixing of video, graphics, cursor and OSD
- Picture-in-Picture (PIP) support

Video interfaces

- NTSC/PAL composite and s-video outputs with optional Macrovision protection
- 2 analog YPbPr/RGB video outputs with optional Macrovision protection in 480i, 576i, 480p and 576p YPbPr output modes (12-bit DACs, interlaced or progressive, SDTV or HDTV resolution)
- Integrated HDMI v1.3a A/V output interface includes 36-bpp deep color support, HDCP 1.3 content protection and integrated PHY

Audio processing and interfaces

- DSP based audio decoding
- I²S and S/PDIF digital audio input interface
- DSP includes 3 I²S serial digital outputs to support 5.1-channel audio output
- Digital serial S/PDIF (IEC 60958) audio output

Transport stream inputs

- Transport input interfaces
 - * One 8-bit DVB-SPI and one SSI, or 3 SSI, with polarity control of data valid signal
 - * PCI, SATA, Ethernet
- Transport demux supports 256 dedicated PIDs (aggregate)
- Transport input bit rate: 486Mbps maximum (aggregate)
- Dedicated MIPS 4KEc processor (IPU)
 - Executes video display handler
 - Can be optionally used for other main CPU off load and acceleration functions
- Media formats
 - DVD-Video, SVCD (IEC 62107-2000), VCD 1.x and 2.0
 - DVD-R, DVD-RW, DVD+R, DVD+RW (conditional)
 - HDV
 - Audio CD, CD-R, CD-RW, CompactFlash
 - WMA, JPEG, MP3 and MPEG-4.2 AVI files using ISO 9660 format
 - Picture CD (JPEG files using ISO 9660 format)
 - Navigation software, HighMATTM support
- Streaming formats
 - ISMA (Internet Streaming Media Alliance) MPEG-4.2
 - MPEG-2, MPEG-4
 - WM9 with DRM
 - MPEG-4.10 (H.264) and SMPTE 421M (VC-1) over MPEG-2 Transport
- On screen display
 - High resolution, true-color OSD support
 - 2, 4, 7, and 8-bpp from 24-bit palette
 - Programmable OSD scaler
 - Programmable flicker filter for interlaced output modes
 - Alpha blending over video (8-bit)
- Operating system support
 - Linux
 - WinCE

1.3 Main Components of SMP8654

The SMP8654 is an advanced, single-chip audio/video decoder that provides highly-integrated solutions for HDTV, IPTV, MPEG-4.10 (H.264), WMV9, SMPTE 421M (VC-1) and AVS decoding. It incorporates flexible, advanced audio/video processing, enabling cost-effective solutions for consumer products, such as digital media adapters and IPTV set-top boxes.

The SMP8654 includes optimized features for tightly embedded applications such as TV/PDP integration, streaming video endpoints, and multifunction consumer appliances. The device also includes features that enable designers to easily incorporate advanced capabilities such as A/V streaming, Video-on-Demand (VOD) and Personal Video Recording (PVR) into their products.

In addition, the SMP8654 supports numerous popular media formats including DVD-Video, SVCD, VCD1.x, VCD2.0 and CD/CD-R/CD-RW (audio, JPEG, MP3 and MPEG-4 AVI files). It also supports ISMA MPEG-4 streaming format, and MPEG-4 over MPEG-2 transport streaming.

The SMP8654 architecture is composed of various hardware functional units – several incorporating custom-designed processor modules – interconnected by multiple high-speed synchronous data buses. Although the details of the on-chip buses are beyond the scope of this document, the primary buses and their functions are described below.

A 64-bit G-Bus connects the integrated MIPS host CPU with each functional unit. It provides access to the programmable configuration, control and status registers contained within each unit. The state of the device is initialized, controlled, and reconfigured as necessary through this bus. The G-Bus also supports direct access to the memory areas controlled by two memory controllers, PCI, flash memory areas and 32-bits of address and data (4G dwords addressable). It is an arbitrated, multi master bus.

The M-Bus provides the data path that allows each functional unit to communicate with the external memory controllers. It provides a 64-bit data path resulting in a peak data bandwidth of 2664MB/sec at a system clock frequency of 333MHz. The M-Bus arbitrates access among numerous DMA channels. An arbitration algorithm provides programmable bus bandwidth to be allocated and guaranteed to each DMA channel.

The V-Bus provides a dedicated high-speed data path between the video processing engine and the external memory controllers.

In addition to these device-wide buses, the various functional units typically have one or more dedicated local buses within the unit. These buses are not further described in this document.

The main modules of the SMP8654 are briefly described below. Each module is discussed in detail under their respective chapters.

Host CPU Block

The host CPU block of the SMP8654 contains a 500MHz MIPS 24Kf CPU with its instruction and data cache to support the embedded operating system, middleware and applications required for consumer appliances. The supported operating systems include Linux and WinCE. The software for the CPU is loaded from an external flash using a secure boot loader.

In addition to the RISC processor itself, the host CPU block contains the following additional resources: 2K Dword (8KB) local memory, 3 interrupt controllers, edge detection logic, two programmable timers, two Universal Asynchronous Receiver/Transmitters (UARTs) and two ISO 7816 smartcard controllers.

Security Processor Subsystem

A separate 333MHz MIPS 4KEc CPU is used to securely execute conditional access and DRM software. The software for this CPU resides on an internal flash (encrypted and digitally signed) to facilitate upgrades and is loaded using a secure boot loader.

DRAM Controllers

The SMP8654 contains two identical double-data rate synchronous DRAM (DDR-2) controllers operating at the memory clock rate (333MHz nominal). Because the DDR technology transfers data on both edges of the clock, the effective burst data bandwidth of each controller is 2.66GB/sec when using the full 32-bit interface (total peak bandwidth of 5.32GB/sec with 2 controllers). The DRAM controllers can each interface up to 512MB of external DDR-2 SDRAM.

System Block

The SMP8654 system block contains the following modules: GPIO block, I²C master and slave controllers and a clock generator. The GPIO block in turn contains General Purpose I/O (GPIO) controller, Front Panel Interface (FIP) controller, Pulse Width Modulator (PWM) and an infrared decoder.

The general purpose I/O controller provides 16 pins of general purpose control signals and logic to help eliminate the glue logic necessary for system integration. Other interfaces can also be used to provide GPIO functionality (if not otherwise used); a total of 77 GPIO pins can be implemented.

The Front Panel Interface (FIP) controller directly supports the NEC uPD16311, NEC uPD16312, PTC PT6311 and PTC PT6312. Other front panel controllers may be used by interfacing to the UART or the GPIO.

The infrared input allows the interfacing to an external IR receiver. The NEC and the Philips RC5/RC6 IR formats, commonly used by consumer equipment are supported.

The I²C master and slave interfaces enable the SMP8654 to read from and write to external devices. Two I²C master controllers, which support the synchronous Inter Integrated Circuits (I²C) serial protocol, enable the host CPU to access an external I²C slave device using a simplified register interface. A separate slave interface allows the SMP8654 to be the target of I²C transactions initiated by an external master.

The clock generator contains one audio clock, two video clocks, one system clock and one CPU clock. The clock generator creates two high speed clocks from a 27MHz external clock using two programmable PLLs, and creates the main system clock and multiple video and audio clocks by dividing either one of the high speed clocks or the 27MHz reference.

Host Interface

The host interface unit provides the interface between the primary internal buses (G-bus and M-bus) and the PCI, Ethernet and the USB 2.0.

The SMP8654 supports a PCI bus for system-level interconnection. The PCI bus implementation is a version 2.1 compliant, 32-bit wide bus capable of operating at 33 or 66MHz.

The SMP8654 includes a dual-port USB 2.0 Embedded Host Controller and integrated PHYs. It also includes 2 Ethernet 10/100 MACs with 2 MII (Media Independent Interface) interfaces to connect to an external PHY devices.

A NAND flash controller allows direct attachment of one or two NAND flash devices of up to 4GB capacity each for non-volatile storage of code and data. The NAND flash may be used as a boot device.

Video Decoder Subsystem

The SMP8654 contains a high-performance multi-codec video decoder. The video decoder subsystem executes the video decoding algorithms supported by the SMP8654. Its architecture is a hybrid of both processor-based and hardwired logic approaches.

The video decoder engine consists of a proprietary 16-bit RISC CPU which is augmented by a number of hardware functional units. These functional units perform the most compute-intensive portions of the video decompression algorithms supported by the SMP8654.

Video Processing Subsystem

The SMP8654 video processing engine provides sophisticated display processing, formatting and output capabilities. The video processing and display unit (VPD) has extensive capabilities for retrieving graphics and video images from the memory, formatting the images as needed, mixing the images and then presenting the video stream for display in a required format. Other capabilities provided by the VPD include hardware-assisted 2D graphics acceleration, and support for an external video input port.

The 3 available video outputs consist of 2 main analog outputs (6 DACs), and a digital HDMI interface. The 2 analog video outputs share the 6 DACs. The HDMI and analog component outputs can each support output formats up to 1920x1080p.

The SMP8654 contains an integrated HDMI transmitter. The HDMI transmitter block in the SMP8654 is HDMI v1.3a compliant, which transports consumer electronics standard digital video and digital audio over a TMDS interface. The HDMI unit supports the HDCP v1.3 content protection standard.

Audio Processing Subsystem

The SMP8654 contains an integrated audio subsystem based on a custom-designed 32-bit digital signal processor (DSP). Audio decoding and processing algorithms are fully executed on the DSP without special hardware support. This firmware-based approach gives great flexibility for accommodating future audio standards or specialized audio requirements. The audio unit provides 3 I²S output channels, one S/PDIF output channel, and one stereo I²S or S/PDIF audio input channel.

Transport Demultiplexer

The SMP8654 includes an on-chip, RISC processor-based transport demultiplexer (TDMX) unit. The transport demultiplexer block is capable of handling up to 6 multi-program bitstreams of up to 81Mbps each, with an aggregate total of up to 486Mbps.

Interrupt processing Unit (IPU)

A dedicated MIPS processor (32-bit 4KEc core) is integrated to off load certain low-latency processing requirements from the main CPU. Currently, the IPU primarily handles interrupts generated by the video processing subsystem, but may also be used to off load other system functions and accelerate performance-critical tasks. The IPU executes at 333MHz and includes 16KB instruction and data caches.

1.4 Application Examples

1.4.1 Networked DVD Player

The networked DVD player example below provides the typical functionality required for a networked DVD player. System integration requires very little external logic since the SMP8654 provides most of the features including:

- Progressive DVD-Video, MPEG4.10 (H.264), WMV9/SMPTE 421M (VC-1) playback
- Interlaced or progressive YPbPr or RGB video outputs
- NTSC/PAL composite and S-video outputs
- 5.1-channel and S/PDIF audio outputs
- I²C bus master function for controlling other chips
- A MIPS CPU for operating system, middleware and applications

Figure 1-2 Application example - networked DVD player

1.4.2 Digital Media Adapter or IPTV Set-top Box

The Digital Media Adapter or IPTV Set-top Box application requires very little external logic since the SMP8654 provides most of the features including:

- Decoding of MPEG-1, MPEG-2, MPEG-4.10 (H.264) and WMV9/SMPTE 421M (VC-1) content
- 2D graphics, OSD and deinterlacing
- Interlaced or progressive YPbPr or RGB video outputs
- NTSC/PAL composite and S-video outputs
- 5.1-channel and S/PDIF audio outputs
- A MIPS CPU for operating system, middleware and applications

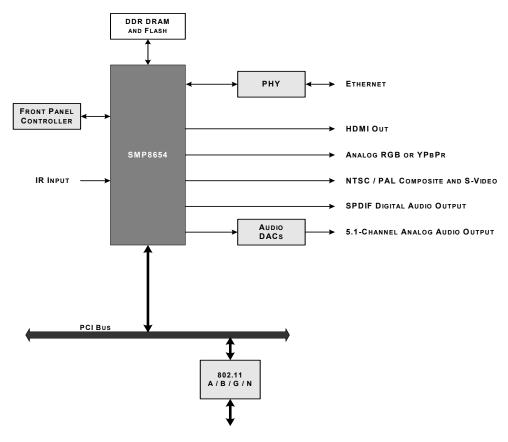


Figure 1-3 Application example - digital media adapter or IPTV set-top box

2

Host CPU Block

2.1 Block Diagram of Host CPU Block

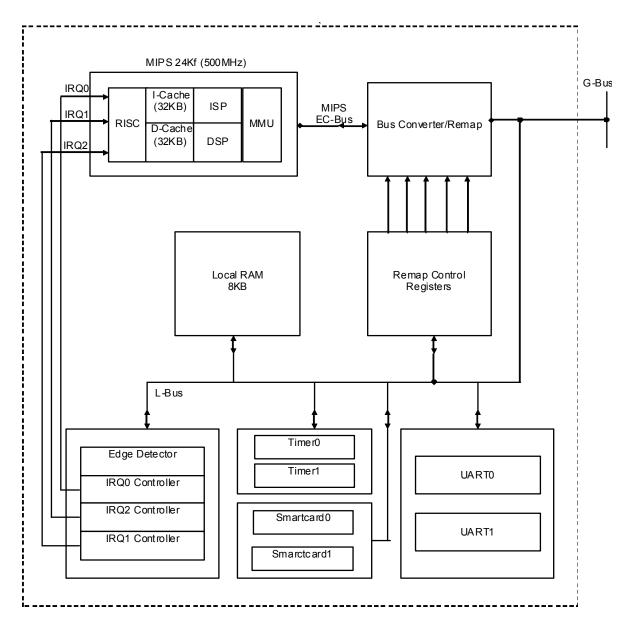


Figure 2-1 Block diagram of host CPU block

2.2 Introduction

The host CPU block of the SMP8654 contains a 500MHz MIPS 24Kf + FPU (Floating Point Unit) with its instruction and data cache to support the embedded operating system, middleware and applications required for the consumer products. Supported operating systems include Linux and WinCE. Software for the CPU is loaded from an external flash using a secure boot loader.

The host CPU block contains the following additional resources:

- 32KB program and 32KB data caches
- 3 interrupt controllers
- Edge detection logic
- 2 programmable timers
- 2 Universal Asynchronous Receiver/Transmitter (UARTs)
- 2 ISO-7816 'Smartcard' controllers

The CPU accesses the G-Bus as a master. A bridge allows the CPU to access all the G-Bus mapped local resources through the L-Bus.

Other components of the host CPU block reside on a local bus and can be accessed by either the RISC or the other G-Bus master. Both the bridges in the host CPU block perform a bus protocol adaptation and a configurable address translation (remap). The host CPU block connects to the rest of the chip via the G-Bus.

Table 2-1 Remap registers

Address ¹	Register Name	R/W/A ²	Description
+F000	CPU_REMAP0	R/W	CPU Remap 0 Register
+F004	CPU_REMAP1	R/W	CPU Remap 1 Register
+F008	CPU_REMAP2	R/W	CPU Remap 2 Register
+F00C	CPU_REMAP3	R/W	CPU Remap 3 Register
+F010	CPU_REMAP4	R/W	CPU Remap 4 Register
+F014	CPU_REMAP5	R/W	CPU Remap 5 Register
+F018	CPU_REMAP6	R/W	CPU Remap 6 Register
+F01C	CPU_REMAP7	R/W	CPU Remap 7 Register

^{1.} G-Bus byte address relative to the host CPU block base (0x60000).

^{2.} Read/write/auto update.

Central Processor Unit (CPU)

2.3 Introduction

The MIPS32® 24KfTM core (~720 conforming DMIPS at 500MHz) from MIPS Technologies is a high-performance, low-power, 32-bit MIPS RISC core designed for efficient embedded system-on-silicon applications. It implements the MIPS32 Release 2 Architecture in an 8-stage pipeline, and includes support for the MIPS16eTM application specific extension and the 32-bit privileged resource architecture. This standard architecture allows support by a wide range of industry standard tools and development systems.

To maintain high pipeline utilization, dynamic branch prediction is included in the form of a Branch History Table and a Return Prediction Stack. The Memory Management Unit (MMU) contains 4-entry instruction and 8-entry data Translation Lookaside Buffers (ITLB/DTLB) and a configurable 32 dual-entry joint TLB (JTLB).

The 24Kf core also features an IEEE 754 compliant Floating Point Unit (FPU). The FPU supports both single and double precision instructions.

The core includes a high performance Multiply/Divide Unit (MDU). The MDU is fully pipelined to support a single cycle repeat rate for 32x32 MAC instructions, which enables multiply-intensive algorithms to be performed efficiently.

Instruction and data level-one caches are organized as 4-way set associative. Data cache misses are non-blocking and up to 4 may be outstanding. Two instruction cache misses can be outstanding. Both caches are virtually indexed and physically tagged to allow them to be accessed in the same cycle that the address is translated.

2.4 Features

- 8-stage pipeline
- 32-bit address paths
- 64-bit data paths to caches and system buses
- MIPS32-Compatible Instruction Set
 - Multiply-Accumulate and Multiply-Subtract Instructions (MADD, MADDU, MSUB, MSUBU)
 - Targeted Multiply Instruction (MUL)
 - Zero/One Detect Instructions (CLZ, CLO)
 - Wait Instruction (WAIT)

- Conditional Move Instructions (MOVZ, MOVN)
- Prefetch Instruction (PREF)
- MIPS32 Enhanced Architecture (Release 2) Features
 - Vectored interrupts and support for external interrupt controller
 - Programmable exception vector base
 - Atomic interrupt enable/disable
 - Bit field manipulation instructions
- MIPS32 Privileged Resource Architecture
- Programmable Memory Management Unit
 - 32 dual-entry JTLB with variable page sizes
 - 4-entry ITLB
 - 8-entry DTLB
- MIPS16e[™] Code Compression
 - 16 bit encoding of 32 bit instructions to improve code density
 - Special PC-relative instructions for efficient loading of addresses and constants
 - SAVE & RESTORE macro instructions for setting up and tearing down stack frames within subroutines
 - Improved support for handling 8 and 16 bit data types

Caches

- Separate 32 KB Instruction and Data caches
- 4-Way Set Associative
- Up to 8 outstanding load misses
- Write-back and write-through support
- 32-byte cache line size
- Virtually indexed, physically tagged
- Cache line locking support
- Non-blocking prefetches
- Multiply/Divide Unit
 - Maximum issue rate of one 32x32 multiply per clock
 - 5 cycle multiply latency
 - Early-in iterative divide. Minimum 12 and maximum 38 clock latency (dividend (rs) sign extension-dependent)
- Floating Point Unit (FPU)
 - IEEE-754 compliant Floating Point Unit
 - Compliant to MIPS 64b FPU standards
 - Supports single and double precision data types

- Run at 2:1 core/FPU clock ratio (250MHz at 500MHz CPU clock)
- Power Control
 - Power-down mode (triggered by WAIT instruction)
- EJTAG Debug
 - Support for single stepping
 - Virtual instruction and data address/value breakpoints

2.5 Block Diagram

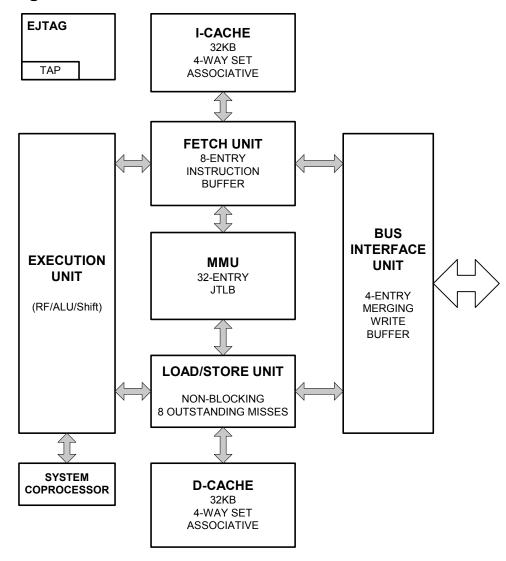


Figure 2-2 24Kf core block diagram

2.6 Functional Description

2.6.1 Pipeline Flow

The 24Kf core implements an 8-stage pipeline. Three extra fetch stages are conditionally added when executing MIPS16e instructions. This pipeline allows the processor to achieve a high frequency while maintaining reasonable area and power numbers.

The 24Kf core pipeline consists of the following stages:

- IF Instruction Fetch First
- IS Instruction Fetch Second
- IR Instruction Recode (MIPS16e only)
- IK Instruction Kill (MIPS16e only)
- IT Instruction Fetch Third (MIPS16e only)
- RF Register File access
- AG Address Generation
- EX Execute
- MS Memory Second
- ER Exception Resolution
- WB WriteBack

The 24Kf core implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the register and then read it back.

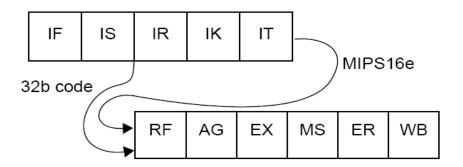


Figure 2-3 24Kf™ core pipeline

2.6.2 24Kf™ Core Logic Blocks

The 24Kf core consists of the following logic blocks. These logic blocks are defined in the following subsections:

- Fetch Unit
- Execution Unit
- Floating Point Unit
- MIPS16e recode
- System Control Coprocessor (CP0)
- Memory Management Unit (MMU)
- Instruction/Data Cache
- Cache Controllers
- Power Management
- Enhanced JTAG (EJTAG) breakpoints

2.6.2.1 Fetch Unit

The 24Kf core fetch unit is responsible for fetching instructions and providing them to the rest of the pipeline, as well as handling control transfer instructions (branches, jumps, etc.). It calculates the address for each instruction fetch and contains an instruction buffer that decouples the fetching of instructions from their execution.

The fetch unit contains two structures for the dynamic prediction of control transfer instructions. A 512-entry Branch History Table (BHT) is used to predict the direction of branch instructions. It uses a bimodal algorithm with two bits of history information per entry. Also, a 4-entry Return Prediction Stack (RPS) is a simple structure to hold the return address from the most recent subroutine calls. The link address is pushed onto the stack whenever a JAL, JALR, or BGEZAL instruction is seen. Then that address is popped when a JR instruction occurs.

2.6.2.2 Execution Unit

The 24Kf core execution unit implements a load/store architecture with single-cycle ALU operations (logical, shift, add, subtract) and an autonomous multiply/divide unit. The 24Kf core contains thirty-two 32-bit general-purpose registers used for integer operations and address calculation. The register file consists of two read ports and one write port and is fully bypassed to minimize operation latency in the pipeline.

The execution unit includes:

- 32-bit adder used for calculating the data address
- Logic for verifying branch prediction
- Load aligner
- Bypass multiplexers used to avoid stalls when executing instructions streams where data producing instructions are followed closely by consumers of their results
- Leading Zero/One detect unit for implementing the CLZ and CLO instructions
- Arithmetic Logic Unit (ALU) for performing bitwise logical operations
- Shifter & Store Aligner

2.6.2.3 Floating Point Unit (FPU)/Coprocessor 1

The 24Kf core Floating Point Unit (FPU) implements the MIPS64 ISA (Instruction Set Architecture) for floating-point computation. The implementation supports the ANSI/ IEEE Standard 754 (IEEE Standard for Binary Floating-Point Arithmetic) for single and double precision data formats. The FPU contains thirty-two 64-bit floating-point registers used for floating point operations.

The FPU runs at one-half the clock rate of the integer core. The FPU is connected via an internal 64-bit coprocessor interface. Note that clock cycles related to floating point operations are listed in terms of FPU clocks, not integer core clocks.

The performance is optimized for single precision formats. Most instructions have one FPU cycle throughput and four FPU cycle latency. The FPU implements the MIPS64 multiply-add (MADD) and multiply-sub (MSUB) instructions with intermediate rounding after the multiply function. The result is guaranteed to be the same as executing a MUL and an ADD instruction separately, but the instruction latency, instruction fetch, dispatch bandwidth, and the total number of register accesses are improved.

IEEE denormalized input operands and results are supported by hardware for some instructions. IEEE denormalized results are not supported by hardware in general, but a fast flush-to-zero mode is provided to optimize performance. The fast flush-to-zero mode is enabled through the FCCR register, and use of this mode is recommended for best performance when denormalized results are generated.

The FPU has a separate pipeline for floating point instruction execution. This pipeline operates in parallel with the integer core pipeline and does not stall when the integer pipeline stalls. This allows long-running FPU operations, such as divide or square root, to be partially masked by system stalls and/or other integer unit instructions. Arithmetic instructions are always dispatched and completed in order, but loads and stores can complete out of order. The exception model is 'precise' at all times. The FPU is also denoted as "Coprocessor 1" in this document.

FPU Pipeline

The FPU implements a high-performance 7-stage pipeline:

- Decode, register read and unpack (FR stage)
- Multiply tree double pumped for double (M1 stage)
- Multiply complete (M2 stage)
- Addition first step (A1 stage)
- Addition second and final step (A2 stage)
- Packing to IEEE format (FP stage)
- Register writeback (FW stage)

The FPU implements a bypass mechanism that allows the result of an operation to be forwarded directly to the instruction that needs it without having to write the result to the FPU register and then read it back.

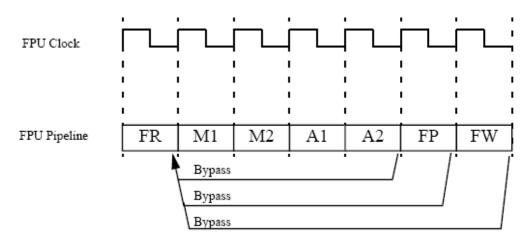


Figure 2-4 FPU pipeline

FPU Instruction Latencies and Repeat Rates

The following table contains the floating point instruction latencies and repeat rates for the 24Kf core. In this table 'Latency' refers to the number of FPU cycles necessary for the first instruction to produce the result needed by the second instruction. The 'Repeat Rate' refers to the maximum rate at which an instruction can be executed per FPU cycle.

Table 2-2 24Kf™ Core FPU latency and repeat rate

Opcode ¹	Latency	Repeat Rate
ABS.[S,D], NEG.[S,D], ADD.[S,D], SUB.[S,D], C.cond.[S,D], MUL.S	4	1
MADD.S, MSUB.S, NMADD.S, NMSUB.S, CABS.cond.[S,D]	4	1
CVT.D.S, CVT.PS.PW, CVT.[S,D].[W,L]	4	1
CVT.S.D, CVT.[W,L].[S,D], CEIL.[W,L].[S,D], FLOOR.[W,L].[S,D], ROUND.[W,L].[S,D], TRUNC.[W,L].[S,D]	4	1
MOV.[S,D], MOVF.[S,D], MOVN.[S,D], MOVT.[S,D], MOVZ.[S,D]	4	1
MUL.D	5	2
MADD.D, MSUB.D, NMADD.D, NMSUB.D	5	2
RECIP.S	13	10
RECIP.D	26	21
RSQRT.S	17	14
RSQRT.D	36	31
DIV.S, SQRT.S	17	14
DIV.D, SQRT.D	32	29
MTC1, DMTC1, LWC1, LDC1, LDXC1, LUXC1, LWXC1	4	1
MFC1, DMFC1, SWC1, SDC1, SDXC1, SUXC1, SWXC1	1	1

^{1.} Format: S = Single, D = Double, W = Word, L = Longword.

FPU Control Registers

The FPU contains a number of control registers as listed in the table below:

Table 2-3 Coprocessor 1 registers in numerical order

Register Number	Register Name	Function
0	FIR	Floating Point Implementation Register. Identifies the capabilities of the floating point unit.
25	FCCR	Floating Point Condition Codes Register. Alternate way of reading the FP condition codes in the FCSR.
26	FEXR	Floating Point Exceptions Register. Alternate way of reading the exception condition codes in the FCSR.
28	FENR	Floating Point Enables Register. Alternate way of reading the Enables field in the FCSR.
31	FCSR	Floating Point Control and Status Register.

2.6.2.4 MIPS16e[™] Application Specific Extension

The 24Kf core includes support for the MIPS16e ASE. This ASE improves code density through the use of 16-bit encoding of many MIPS32 instructions plus some MIPS16e-specific instructions. PC relative loads allow quick access to constants. Save/Restore macro instructions provide for single instruction stack frame setup/teardown for efficient subroutine entry/exit.

Multiply/Divide Unit (MDU)

The 24Kf core includes a multiply/divide unit (MDU) that contains a separate pipeline for integer multiply and divide operations. This pipeline operates in parallel with the integer unit pipeline and does not stall when the integer pipeline stalls. This allows any long-running MDU operations to be partially masked by system stalls and/or other integer unit instructions.

The MDU consists of a pipelined 32x32 multiplier, result/accumulation registers (HI and LO), a divide state machine, and the necessary multiplexers and control logic. The MDU supports execution of one multiply or multiply accumulate operation every clock cycle.

Divide operations are implemented with a simple 1 bit per clock iterative algorithm. An early-in detection checks the sign extension of the dividend (*rs*) operand. If rs is 8 bits wide, 23 iterations are skipped. For a 16-bit-wide rs, 15 iterations are skipped, and for a 24-bit-wide rs, 7 iterations are skipped. Any attempt to issue a subsequent MDU instruction while a divide is still active causes a pipeline stall until the divide operation is completed.

The following table lists the latencies (number of cycles until a result is available) and repeat rates (peak issue rate of cycles until the operation can be reissued) for the 24Kf core multiply and divide instructions. The approximate latency and repeat rates are listed in terms of pipeline clocks.

Table 2-4 24Kf™ Core Integer multiply/divide unit latencies and repeat rates

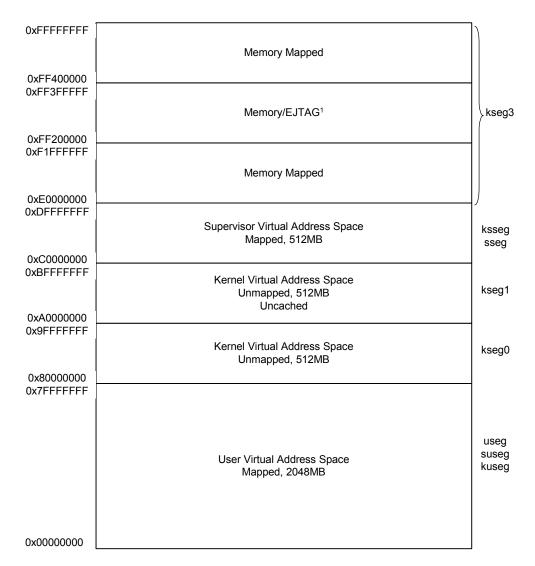
Opcode	Operand size (mul <i>rt</i>) (div <i>rs</i>)	Latency	Repeat Rate
MULT/MULTU, MADD/MADDU, MSUB/MSUBU	32-bit	5	1
MUL	32-bit	5	11
DIV/DIVU	8-bit	12/14	12/14
	16-bit	20/22	20/22
	24-bit	28/30	28/30
	32-bit	36/38	36/38

^{1.} If there is no data dependency, a MUL can be issued every cycle.

2.6.2.5 System Control Coprocessor (CP0)

The system control coprocessor, CP0 is responsible for the virtual-to-physical address translation and cache protocols, the exception control system, the processor's diagnostic capability, the operating modes (kernel, user, supervisor, and debug), and whether interrupts are enabled or disabled.

Interrupt Handling


The 24Kf core supports six hardware interrupt sources, two software interrupts, a timer interrupt, and a performance counter interrupt. The Interrupt compatibility mode is used, which acts identically to that in an implementation of Release 1 of the Architecture.

Modes of Operation

The 24Kf core supports four modes of operation: user mode, supervisor mode, kernel mode, and debug mode. User mode is most often used for application programs. Supervisor mode gives an intermediate privilege level with access to the ksseg address space. Kernel mode is typically used for handling exceptions and operating system kernel functions, including CP0 management and I/O device accesses. An additional Debug mode is used during system bring-up and software development. Refer to the EJTAG section outlined later in this chapter for more information on the debug mode.

29

1. This space is mapped to the memory in the user or the kernel mode, and by the EJTAG module in the debug mode.

Figure 2-5 24Kf core virtual address map

2.6.2.6 Memory Management Unit (MMU)

The 24Kf core contains a configurable Memory Management Unit (MMU) that is primarily responsible for converting virtual addresses to physical addresses and providing attribute information for different segments of memory.

Translation Lookaside Buffer (TLB)

The TLB consists of three address translation buffers:

- 32 dual-entry fully associative Joint TLB (JTLB)
- 4-entry fully associative Instruction Micro TLB (ITLB)
- 8-entry fully associative Data Micro TLB (DTLB)

When an instruction or data address is calculated, the virtual address is compared to the contents of the appropriate micro TLB (uTLB). If the address is not found in the ITLB or DTLB, the JTLB is accessed. If the entry is found in the JTLB, that entry is then written into the uTLB. If the address is not found in the JTLB, a TLB exception is taken.

The following figure shows how the ITLB, DTLB, and JTLB are implemented in the 24Kf core:

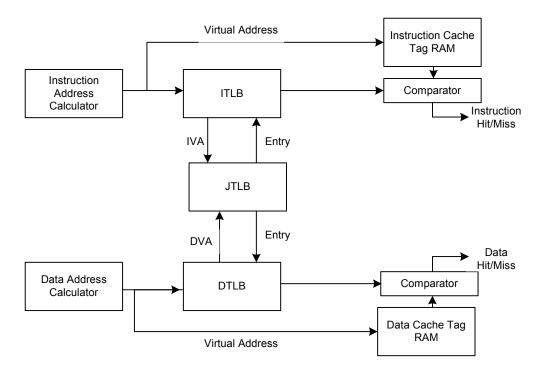


Figure 2-6 Address translation during a cache access

Joint TLB (JTLB)

The 24Kf core implements a fully associative JTLB containing 32 entries mapping up to 128 virtual pages to their corresponding physical addresses. The purpose of the TLB is to translate virtual addresses and their corresponding ASIDs into a physical memory address. The translation is performed by comparing the upper bits of the virtual address (along with the ASID) against each of the entries in the *tag* portion of the joint TLB structure.

The JTLB is organized as pairs of even and odd entries containing pages that range in size from 4KB to 256MB, in factors of four, into the 4GB physical address space. The JTLB is organized in page pairs to minimize the overall size. Each *tag* entry corresponds to two data entries: an even page entry and an odd page entry. The highest order virtual address bit not participating in the tag comparison is used to determine which of the data entries is used. Since page size can vary on a page-pair basis, the determination of which address bits participate in the comparison and which bit is used to make the even-odd determination is decided dynamically during the TLB look-up.

Instruction TLB (ITLB)

The ITLB is a small 4-entry, fully associative TLB dedicated to performing translations for the instruction stream. The ITLB only maps 4KB or 1MB pages/subpages. For 4KB or 1MB pages, the entire page is mapped in the ITLB. If the main TLB page size is between 4KB and 1MB, only the current 4KB subpage is mapped.

Similarly, for page sizes larger than 1MB, the current 1MB subpage is mapped.

The ITLB is managed by hardware and is transparent to software. The larger JTLB is used as a backing structure for the ITLB. If a fetch address cannot be translated by the ITLB, the JTLB is used to attempt to translate it in the following clock cycle, or when available. If successful, the translation information is copied into the ITLB for future use. There is a minimum two cycle ITLB miss penalty.

Data TLB (DTLB)

The DTLB is a small 8-entry, fully associative TLB dedicated to performing translations for loads and stores. Similar to the ITLB, the DTLB only maps either 4KB or 1MB pages/subpages.

The DTLB is managed by hardware and is transparent to software. The larger JTLB is used as a backing structure for the DTLB. If a load/store address cannot be translated by the DTLB, a lookup is done in the JTLB. If the JTLB translation is successful, the translation information is copied into the DTLB for future use. The DTLB miss penalty is also two cycles.

Each *tag* entry corresponds to 2 data entries: an even page entry and an odd page entry. The highest order virtual address bit not participating in the tag comparison is used to determine which of the data entries is used. Since the page size can vary on a page-pair basis, the determination of which address bits participate in the comparison and which bit is used to make the even-odd determination is decided dynamically during the TLB lookup.

Instruction TLB (ITLB)

The ITLB is a small 4-entry, fully associative TLB dedicated to performing the translations for the instruction stream. The ITLB only maps minimum sized pages/sub pages. The minimum page size is either 1KB or 4KB, depending on the PAGEGRAIN and CONFIG3 registers.

The ITLB is managed by the hardware and is transparent to the software. The larger JTLB is used as a backing store for the ITLB. If a fetch address cannot be translated by the ITLB, then the JTLB is used to attempt to translate it in the following clock cycle. If successful, then the translation information is copied into the ITLB for future use. There is a two cycle ITLB miss penalty.

Virtual-to-Physical Address Translation

Converting a virtual address to a physical address begins by comparing the virtual address from the processor with the virtual addresses in the TLB; there is a match when the virtual page number (VPN) of the address is the same as the VPN field of the entry, and either:

- The Global (G) bit of the TLB entry is set, or
- The ASID field of the virtual address is the same as the ASID field of the TLB entry.

This match is referred to as a TLB *hit*. If there is no match, a TLB *miss* exception is taken by the processor and software is allowed to refill the TLB from a page table of virtual/physical addresses in memory.

The following figure shows a flow diagram of the address translation process for two different page sizes. The top portion shows a virtual address for a 4KB page size. The width of the *Offset* in the following figure is defined by the page size. The remaining 20 bits of the address represent the virtual page number (*VPN*), and index the 1M-entry page table. The bottom portion of the figure shows the virtual address for a 16MB page size. The remaining 8 bits of the address represent the VPN, and index the 256-entry page table.

The virtual address is extended with an 8-bit address space identifier (ASID), which reduces the frequency of TLB flushes during context switches. This 8-bit ASID contains the number assigned to that process and is stored in the CP0 *EntryHi* register.

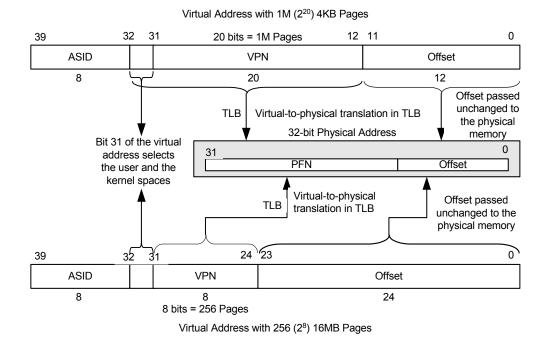


Figure 2-7 32-bit virtual address translation

Hits, Misses and Multiple Matches

Each JTLB entry contains a tag portion and a data portion. If a match is found, the upper bits of the virtual address are replaced with the page frame number (PFN) stored in the corresponding entry in the data array of the joint TLB (JTLB). The granularity of JTLB mappings is defined in terms of TLB *pages*. The 24Kf core's JTLB supports pages of different sizes ranging from 4KB to 256MB in factors of 4.

The following table shows the address bits used for even/odd bank selection depending on page size and the relationship between the legal values in the mask register and the selected page size.

Table 2-5 Mask and page size values

Pagemask[28:11]	Page Size	Even/Odd Bank Select Bit
000000000000000	4KB (used by Linux)	VAddr[12]
000000000000011	16KB	VAddr[14]
000000000001111	64KB	VAddr[16]
000000000111111	256KB	VAddr[18]
000000011111111	1MB	VAddr[20]
0000001111111111	4MB	VAddr[22]

Table 2-5 Mask and page size values (Continued)

Pagemask[28:11]	Page Size	Even/Odd Bank Select Bit
0000111111111111	16MB	VAddr[24]
0011111111111111	64MB	VAddr[26]
111111111111111	256MB	VAddr[28]

If no match occurs (TLB miss), an exception is taken and software refills the TLB from the page table resident in memory. Software can write over a selected TLB entry or use a hardware mechanism to write into a random entry.

The 24Kf core implements a TLB write compare mechanism to ensure that multiple TLB matches do not occur. On the TLB write operation, the write value is compared with all other entries in the TLB. If a match occurs, the 24Kf core takes a machine check exception, sets the TS bit in the CP0 *Status* register, and aborts the write operation.

Compared with previous cores from MIPS Technologies, the 24Kf core uses a more relaxed check for multiple matches in order to avoid machine check exceptions while flushing or initializing the TLB. On a write, all matching entries are disabled to prevent them from matching on future compares. A machine check is only signaled if the entry being written has its valid bit set, the matching entry in the TLB has its valid bit set, and the matching entry is not the entry being written.

TLB Tag and Data Formats

The following shows the format of a TLB *tag* entry. The entry is divided into the following fields:

- Global process indicator
- Address space identifier
- Virtual page number
- Compressed page mask

Setting the global process indicator (G bit) indicates that the entry is global to all processes and/or threads in the system. In this case, the 8-bit address space identifier (ASID) value is ignored since the entry is not relative to a specific thread or process.

The ASID field can help to reduce the frequency of TLB flushes on a context switches. The existence of the ASID allows multiple processes to exist in both the TLB and instruction caches. The current ASID value is stored in the *EntryHi* register and is compared to the ASID value of each entry.

G	ASID[7:0]	VPN2[31:29]	VPN2[2811]	CMASK[8:0]
1	8	3	18	9

Figure 2-8 TLB tag entry format

The following table shows the TLB tag entry fields:

Table 2-6 TLB tag entry fields

Field Name	Description
G	Global Bit. When set, indicates that this entry is global to all the processes and/or the threads and thus disables the inclusion of the ASID in the comparison.
ASID[7:0]	Address Space Identifier. Identifies with which process or thread this TLB entry is associated.
VPN2[31:29], VPN2[28:13]	Virtual Page Number divided by 2. This field contains the upper bits of the virtual page number. Because it represents a pair of TLB pages, it is divided by 2. Bits [31:29] are always included in the TLB lookup comparison. Bits [28:13] are included depending on the page size.
CMASK[8:0]	Compressed Page Mask Value. This field is a compressed version of the page mask. It defines the page size by masking the appropriate VPN2 bits from being involved comparison. It is also used to determine which address bit is used to make the even/odd page determination.

The following figure shows the TLB data array entry format:

PFN([31:12]	C[2:0]	D	V
20	3	1	1

Figure 2-9 TLB data array entry format

The following table shows the TLB data array entry fields:

Table 2-7 TLB data array entry fields

Field Name	Description
PFN[31:12]	Physical Frame Number. Defines the upper bits of the physical address. For page sizes larger than the 4KB, only a subset of these bits is actually used.
C[2:0]	Cacheability. Contains an encoded value of the cacheability attributes and determines whether the page should be placed in the cache or not.
D	'Dirty' or write-enable bit. Indicates that the page has been written and/or is writable. If this bit is set, stores to the page are permitted. If the bit is cleared, stores to the page cause a TLB Modified exception.
V	Valid bit. Indicates that the TLB entry, and thus the virtual page mapping, are valid. If this bit is set, accesses to the page are permitted. If the bit is cleared, accesses to the page cause a TLB Invalid exception.

Page Sizes and Replacement Algorithm

To assist in controlling both the amount of mapped space and the replacement characteristics of various memory regions, the 24Kf core provides two mechanisms. First, the page size can be configured, on a per-entry basis, to map a page size from 4KB to 256MB (in multiples of 4). The CP0 *PageMask* register is loaded with the mapping page size, which is then entered into the TLB when a new entry is written. Thus, operating systems can provide special purpose maps. For example, a typical frame buffer might be memory mapped with only one TLB entry.

The second mechanism controls the replacement algorithm when a TLB miss occurs. To select a TLB entry to be written with a new mapping, the 24Kf core provides a random replacement algorithm. However, the processor also provides a mechanism where a programmable number of mappings can be locked into the TLB via the CP0 *Wired* register, thus avoiding random replacement.

2.6.2.7 Instruction/Data Cache

Instruction Cache

The instruction cache is an on-chip memory block of 32KB, with 4-way associativity. Because the instruction cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access rather than having to wait for the physical address translation. A tag entry holds 20 bits of physical address, a valid bit, a lock bit, and an optional parity bit per way. The instruction data entry holds two instructions (64 bits) per way, as well as 6 bits of pre-decode information to speed the decode of branch and jump instructions, and 9 optional parity bits (one per data byte plus one more for the pre-decode information). The LRU replacement bits (6b) are stored in a separate array.

The instruction cache block also contains and manages the instruction line fill buffer. Besides accumulating data to be written to the cache, instruction fetches that reference data in the line fill buffer are serviced either by a bypass of that data, or data coming from the external interface. The instruction cache control logic controls the bypass function.

The 24Kf core supports instruction-cache locking. Cache locking allows critical code or data segments to be locked into the cache on a "per-line" basis, enabling the system programmer to maximize the efficiency of the system cache.

The cache-locking function is always available on all instruction-cache entries. Entries can then be marked as locked or unlocked on a per entry basis using the CACHE instruction.

Data Cache

The data cache is an on-chip memory block of 32KB, with 4-way associativity. Since the data cache is virtually indexed, the virtual-to-physical address translation occurs in parallel with the cache access. A tag entry holds 20 bits of physical address, a valid bit, a lock bit, and an optional parity bit per way. The data entry holds 64 bits of data per way, with optional parity per byte. There is an additional array holding dirty bits and LRU replacement algorithm bits (6b LRU, 4b dirty, and optionally 4b dirty parity).

In addition to instruction-cache locking, the 24Kf core also supports a data-cache locking mechanism identical to the instruction cache. Critical data segments are locked into the cache on a "per-line" basis. The locked contents can be updated on a store hit, but will not be selected for replacement on a cache miss.

The cache-locking function is always available on all data cache entries. Entries can then be marked as locked or unlocked on a per-entry basis using the CACHE instruction.

Cache Memory Configuration

The 24Kf core incorporates on-chip instruction and data caches that are accessed in two cycles: one cycle for the actual SRAM read and another cycle for the tag comparison, hit determination, and way selection. The instruction and data caches each have their own 64-bit data paths and can be accessed simultaneously. The following table lists the 24Kf core instruction and data cache attributes.

Table 2-8 24Kf™ core instruction and data cache attributes

Parameter	Instruction	Data
Size	32KB ¹	32KB
Organization	4 way set associative	4 way set associative
Line Size	32 Bytes ¹	32 Bytes
Read Unit	64 bits ¹	64 bits
Write Policies	N/A	write-through without write allocate, write-back with write allocate
Miss restart after transfer of	miss word	miss word
Cache Locking	per line (16 Bytes/line)	per line

Logical size of instruction cache. Cache physically contains some extra bits used for precoding the instruction type.

2.6.2.8 Cache Protocols

The 24Kf core supports the following cache protocols:

 Uncached: Addresses in a memory area indicated as uncached are not read from the cache. Stores to such addresses are written directly to main memory, without changing cache contents.

- Write-through, no write allocate: Loads and instruction fetches first search the cache, reading main memory only if the desired data does not reside in the cache. On data store operations, the cache is first searched to see if the target address is cache resident. If it is resident, the cache contents are updated, and main memory is also written. If the cache look-up misses, only main memory is written.
- Write-back, write allocate: Stores that miss in the cache will cause a cache refill.
 Store data, however, is only written to the cache. Caches lines that are written by stores will be marked as dirty. If a dirty line is selected for replacement, the cache line will be written back to main memory.
- Uncached Accelerated: Like uncached, data is never loaded into the cache. Store
 data can be gathered in a write buffer before being sent out on the bus as a bursted
 write. This is more efficient than sending out individual writes as occurs in regular
 uncached mode.

2.6.2.9 EJTAG Debug Support

The 24Kf core includes an Enhanced JTAG (EJTAG) block for use in the software debug of application and kernel code. In addition to standard user/supervisor/kernel modes of operation, the 24Kf core provides a Debug mode that is entered after a debug exception (derived from a hardware breakpoint, single-step exception, etc.) is taken and continues until a debug exception return (DERET) instruction is executed. During this time, the processor executes the debug exception handler routine.

The EJTAG interface operates through the Test Access Port (TAP), a serial communication port used for transferring test data in and out of the 24Kf core. In addition to the standard JTAG instructions, special instructions defined in the EJTAG specification define what registers are selected and how they are used.

Debug Registers

Three debug registers (*DEBUG*, *DEPC*, and *DESAVE*) have been added to the MIPS Coprocessor 0 (CP0) register set. The *DEBUG* register shows the cause of the debug exception and is used for setting up single-step operations. The *DEPC*, or Debug Exception Program Counter, register holds the address on which the debug exception was taken. This is used to resume program execution after the debug operation finishes. Finally, the *DESAVE*, or Debug Exception Save, register enables the saving of general-purpose registers used during execution of the debug exception handler.

To exit debug mode, a Debug Exception Return (DERET) instruction is executed. When this instruction is executed, the system exits debug mode, allowing normal execution of application and system code to resume.

EJTAG Hardware Breakpoints

There are several types of simple hardware breakpoints defined in the EJTAG specification. These breakpoints stop the normal operation of the CPU and force the system into debug mode. There are two types of simple hardware breakpoints implemented in the 24Kf core: Instruction breakpoints and Data breakpoints. Four instruction and 2 data breakpoints are supported

Instruction breaks occur on instruction fetch operations, and the break is set on the virtual address. Instruction breaks can also be made on the ASID value used by the MMU. A mask can be applied to the virtual address to set breakpoints on a range of instructions.

Data breakpoints occur on load/store transactions. Breakpoints are set on virtual address and ASID values, similar to the Instruction breakpoint. The breakpoints can be set on a load, a store, or both. The breakpoints can also be set based on the value of the load/store operation. Finally, masks can be applied to both virtual address and the load/store value.

2.6.2.10 Register Map - EJTAG

Table 2-9 EJTAG registers

Address ¹	Register Name	R/W	Description
+CB00	CPU_JTAG_MODE	R/W	EJTAG Mode Register

^{1.} Address refers to G-Bus byte address relative to the host CPU block base.

2.6.2.11 EJTAG Pin Description

Table 2-10 EJTAG pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
JTAG_UART1#	E26	I	A high level on this pin enables the EJTAG interface of certain UART1 pins (listed in this table). This pin includes an internal pull-down resistor.	G
UART1_DSR	G25	I	EJ_TRST_N. Active-low Test Reset Input (TRST) for the EJTAG TAP. At power-up, the assertion of EJ_TRST_N causes the TAP controller to be reset.	A
UART1_DCD	F26	I	EJ_TCK. Test clock input (TCK) for the EJTAG TAP	A

Table 2-10 EJTAG pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description	Driver Type ¹
UART1_CTS	H24	I	EJ_TMS. Test mode select input (TMS) for the EJTAG TAP	А
UART1_DTR	C29	I	EJ_TDI. Test data input (TDI) for the EJTAG TAP	Α
UART1_RTS	D28	0	EJ_TDO. Test data output (TDO) for the EJTAG TAP	А

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

2.6.2.12 Electrical Characteristics

EJTAG AC Electrical Characteristics

Table 2-11 EJTAG AC characteristics

Symbol	Units	Minimum	Typical	Maximum
T _{TCK}	ns	25		
T _{TCKH}	ns	10		
T _{TCKL}	ns	10		
T _{SU}	ns	5		
T _H	ns	3		
T _{TDODLY}	ns			5
T _{TDOZ}	ns			5
T _{TRSTL}	ns	25		
T _{rf}	ns			3

2.6.2.13 Timing Diagram

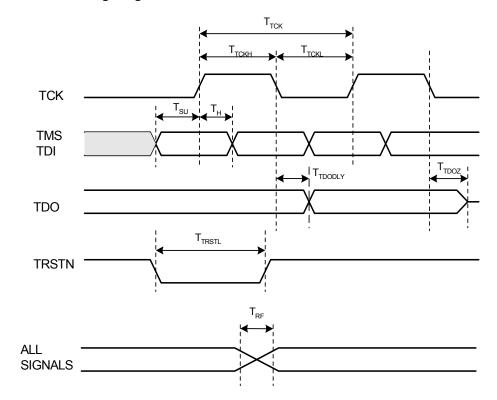


Figure 2-10 EJTAG timing diagram

Local Memory

2.7 Introduction

The local RAM is a 2K Dword (8KB) memory that supports byte, word and dword accesses. This SRAM can be used to share various data items between the G-Bus masters, as well as to store critical RISC CPU code such as, reset vectors or interrupt service routines (ISRs). The local RAM is accessible from the G-Bus and from the CPU L-Bus.

2.8 Features

- 2Kx32 memory
- Supports byte, word and dword accesses
- Supports 8, 16 and 32-bit reads and writes

2.9 Functional Description

The internal SRAM consists of 8KB of memory which is accessible by the processor for instruction fetches as well as data reads and writes. This memory can be used by the software as a general data scratchpad, or can be downloaded with the code in order to run performance critical software.

The internal memory consists of a 2048 x 32-bit synchronous SRAM. Accesses to this memory are performed in a single processor clock cycle so that no wait states are required. The internal memory logic supports 8, 16 and 32-bit reads and writes.

The SRAM introduces 1 wait state on the L-Bus on all the read transactions, and one non-dword write transaction. The dword writes have 0 wait state.

2.9.1 Memory Remapping

The internal memory is located at 0x60000 to 0x61FFF. A remap bit is provided in the CPU configuration register to remap the internal memory address space from its startup address mapping to the beginning of ROM space. Remapping the internal memory to ROM space allows the firmware to execute the code from the internal SRAM for faster access and greater flexibility. The default Remap0 points to 0x60000 and is presented as 0x1FC00000.

Interrupt Controller

2.10 Introduction

The interrupt controller is the central location for interrupt handling. It accepts the interrupts generated by the internal blocks and generates the processor interrupts. It enables and disables each interrupt individually or globally. A 2-level interrupt priority selection can be implemented.

2.11 Features

- Enabling/disabling of individual interrupts
- Global enable/disable
- 2-level interrupt priority selection

2.12 Block Diagram

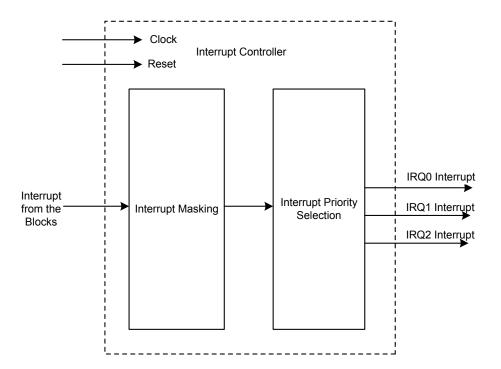


Figure 2-11 Interrupt controller block diagram

2.13 Functional Description

The interrupt controller allows each interrupt to be asserted as three interrupt levels, IRQ0, IRQ1 or IRQ2. This allows the interrupt to be used for application-specific needs, while still fulfilling the real-time requirements. Each interrupt may be individually masked; alternatively, all interrupts may be masked without altering the individual interrupt masks.

The interrupt control for all the processor interrupts is provided in a central location. Each interrupt may be enabled or disabled individually, or a global enable/disable may be enforced. Interrupts must be cleared at the source once the service request is served. All the blocks with cascaded interrupt control provide an interrupt mask for each interrupt source and each source can be cleared individually. This is illustrated below:

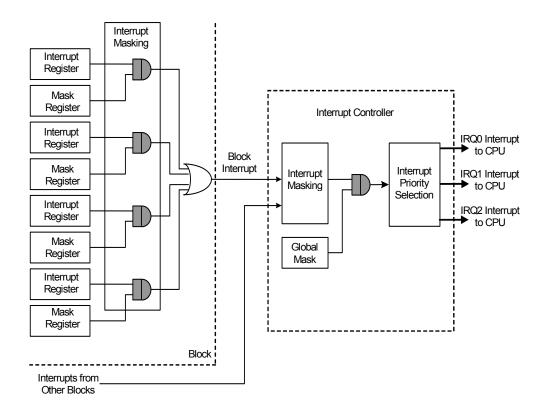


Figure 2-12 Cascaded interrupt structure

Interrupt Priority

Each interrupt may be assigned a priority of IRQ0, IRQ1 or IRQ2 allowing the software to customize the priority of each block.

Global Disable

The interrupt controller provides a global disable control bit. This feature can be used to avoid interrupting critical portions of the code before completion. The global disable does not affect the individual interrupt masks. The software need not perform a save and restore. This saves time by reducing the code size and the interrupt latency if an interrupt is asserted when all the other interrupts are disabled.

2.13.1 Control (mask) Blocks

The control (masking) blocks allow the 40 (possibly edge-detected) interrupt lines to be masked, and routed to three CPU interrupt lines. They also contain registers to generate software interrupts.

2.13.1.1 Register Map - Control Block

Table 2-12 Control block registers

Address	ş ¹				
IRQ0	IRQ1	IRQ2	Register Name ²	R/W/A ³	Description
+E000	+E100	+E300	CPU_XXX_STATUS	R/A	CPU IRQ0/1/2 Status Register
+E004	+E104	+E304	CPU_XXX_RAWSTAT	R/A	CPU IRQ0/1/2 Raw Status Register
+E008	+E108	+E308	CPU_XXX_ENABLESET	R/W/A	CPU IRQ0/1/2 Enable Set Register
+E00C	+E10C	+E30C	CPU_XXX_ENABLECLR	R/W	CPU IRQ0/1/2 Enable Clear Register
+E010	+E110	+E310	CPU_XXX_SOFTSET	R/W	CPU IRQ0/1/2 Soft Set Register
+E014	+E114	+E314	CPU_XXX_SOFTCLR	R/W	CPU IRQ0/1/2 Soft Clear Register
+E018	+E118	+E318	CPU_XXX_STATUS_HI	R/A	CPU IRQ0/1/2 Status Hi High Register
+E01C	+E11C	+E31C	CPU_XXX_RAWSTAT_H I	R/A	CPU IRQ0/1/2 Raw Status High Register
+E020	+E120	+E320	CPU_XXX_ENABLESET _HI	R/W/A	CPU IRQ0/1/2 Enable Set High Register
+E024	+E124	+E324	CPU_XXX_ENABLECLR _HI	R/W	CPU IRQ0/1/2 Enable Clear High Register

^{1.} Address refers to G-Bus byte address relative to the host CPU block base.

^{2.} XXX is IRQ0/IRQ1/IRQ2 (or, IRQ/ FIQ/FIQ respectively) depending on the address.

^{3.} Read/Write/Auto update

2.13.2 Processor Timer Interrupt

The CPU has six interrupt inputs and an internal timer capable of generating an interrupt. The processor interrupt inputs 0, 1 and 2 are connected to the interrupt control blocks previously described. The processor interrupt inputs 3 and 4 are permanently deactivated and the processor interrupt input 5 is connected to the processor timer interrupt output.

2.13.3 Edge Detector

The CPU interrupt controller block receives up to 63 hardware interrupt sources. An edge detector receives these 63 lines, and if needed, an edge detection is performed on selected lines. The output of the edge detector consists of 63 'latched' interrupt lines, driven to three identical control (masking) blocks. Each control block can independently mask each of its 63 inputs, plus one software controlled interrupt.

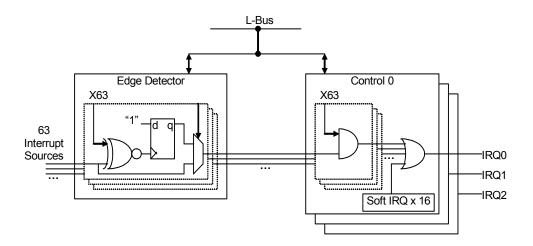


Figure 2-13 Edge detector

The 63 interrupts are assigned as shown in the following table:

Table 2-13 Interrupt sources

Bit	Source
0	Used for software interrupts
1	UARTO
2	UART1
3	Unused
4	Unused
5	Timer0

Table 2-13 Interrupt sources (Continued)

Bit	Source
6	Timer1
7	Unused
8	Unused
9	Host interface channel W0
10	Host interface channel W1
11	Host interface channel R0
12	Host interface channel R1
13	PCI INTA#
14	PCI INTB#
15	PCI INTC#
16	PCI INTD#
17	Unused
18	Unused
19	Front Panel Interface (FIP)
20	PCI local bus fault
21	Infrared receiver
22	I ² C
23	Graphics accelerator
24	VSYNC 0 (Composite analog output)
25	VSYNC 1 (Component analog output)
26	VSYNC 2 (Main analog output)
27	VSYNC 3 (Digital output)
28	VSYNC 4 (Gfxin-vsync: start of v-blanking)
29	VSYNC 5 (Gfxin-vsync: end of v-blanking)
30	VSYNC 6 (Vidin-vsync: start of v-blanking)
31	VSYNC 7 (Vidin-vsync: end of v-blanking)
32	Smartcard
33	HDMI
34	HDMI I ² C
35	V-Bus channel W0

Table 2-13 Interrupt sources (Continued)

Bit	Source
36	V-Bus channel W3
37	Ethernet PHY
38	Ethernet MAC
39	USB 1.1 Embedded Host
40	USB 2.0 Embedded Host
41	Serial ATA
42	Serial ATA DMA
43	XPU channel W0 (only on XPU, do not use in IPU/CPU)
44	XPU channel R0 (only on XPU, do not use in IPU/CPU)
45	XPU write to SP (only on XPU, do not use in IPU/CPU)
46	XPU read from SP (only on XPU, do not use in IPU/CPU)
47	GPIO 24
48	GPIO 25 (the GPIO pin used for this interrupt can be selected from GPIO 16-31)
49	GPIO 26 (the GPIO pin used for this interrupt can be selected from GPIO 16-31)
50	GPIO 27 (the GPIO pin used for this interrupt can be selected from GPIO 16-31)
51	V-Bus channel W4
52	Smartcard #2
53	HDMI CEC (System block)
54	SATA #1
55	SATA DMA #1
56	Ethernet PHY #1
57	Ethernet MAC #1
58	Host interface W2
59	Host interface R2
60	Reserved
61	Reserved
62	Reserved
63	Reserved

For each of the 63 interrupt lines, two bits called rise and fall select the operating mode according to the following table:

Table 2-14 Operating mode selection for interrupt lines

Ride	Fall	Operating Mode
0	0	Level sensitive (active high)
1	1	Level sensitive (active low = inverted)
1	0	Rising edge sensitive
0	1	Falling edge sensitive

Two configuration registers can be read or written, to set or verify the operating mode of all the 63 lines. In order to set/clear the operating mode of certain lines (without changing the others), a read-modify-write operation can be performed on these registers.

Reading the status register returns the individual interrupt lines values at the output of the edge detector. Reading the edge raw status register returns the individual interrupt lines values at the input of the edge detector. For interrupts lines that are in 'level sensitive, active high' mode, the two status registers will return the same value.

Writing the edge raw status register will clear the capture register (for each bit written as 1, of the corresponding interrupt). This should be done before exiting an interrupt service routine to avoid re-entering, only on edge sensitive interrupts.

2.13.3.1 Register Map - Edge Detector

Table 2-15 Edge detector registers

Address ¹	Register Name	R/W/A ²	Description
+E200	CPU_EDGE_STATUS_LO	R/W	CPU Edge Detector Status Low Register
+E204	CPU_EDGE_RAWSTAT_LO	R/W/A	CPU Edge Detector Raw Status Low Register
+E208	CPU_EDGE_CONFIG_RISE_LO	R/W	CPU Edge Detector Configuration Rise Low Register
+E20C	CPU_EDGE_CONFIG_FALL_LO	R/W	CPU Edge Detector Configuration Fall Low Register
+E210	CPU_EDGE_CONFIG_RISE_SET_ LO	R/W	CPU Edge Detector Configuration Rise Set Low Register
+E214	CPU_EDGE_CONFIG_RISE_CLR_ LO	R/W	CPU Edge Detector Configuration Rise Clear Low Register
+E218	CPU_EDGE_CONFIG_FALL_SET_ LO	R/W	CPU Edge Detector Configuration Fall Set Low Register

Table 2-15 Edge detector registers (Continued)

Address ¹	Register Name	R/W/A ²	Description	
+E21C	CPU_EDGE_CONFIG_FALL_CLR_ LO	R/W	CPU Edge Detector Configuration Fall Clear Low Register	
+E220	CPU_EDGE_STATUS_HI	R/W	CPU Edge Detector Status High Register	
+E224	CPU_EDGE_RAWSTAT_HI	R/W/A	CPU Edge Detector Raw Status High Register	
+E228	CPU_EDGE_CONFIG_RISE_HI	R/W	CPU Edge Detector Configuration Rise High Register	
+E22C	CPU_EDGE_CONFIG_FALL_HI	R/W	CPU Edge Detector Configuration Fall High Register	
+E230	CPU_EDGE_CONFIG_RISE_SET_ HI	R/W	CPU Edge Detector Configuration Rise Set High Register	
+E234	CPU_EDGE_CONFIG_RISE_CLR_ HI	R/W	CPU Edge Detector Configuration Rise Clear High Register	
+E238	CPU_EDGE_CONFIG_FALL_SET_ HI	R/W	CPU Edge Detector Configuration Fall Set High Register	
+E23C	CPU_EDGE_CONFIG_FALL_CLR_ HI	R/W	CPU Edge Detector Configuration Fall Clear High Register	

^{1.} Address refers to G-Bus byte address relative to the host CPU block base.

Timers

2.14 Introduction

The SMP8654 has a timer block implemented in the host CPU block. The timer block contains two independent timers, Timer0 and Timer1, each with two modes of operation periodic or free-running. They are identical except that, Timer0 is driven by the system clock, while Timer1 receives the external 27MHz clock source. Each timer is a 16-bit counter which decrements on each input clock (an optional divide-by-16 or divide-by-256 prescaler is supported). When the counter reaches zero, an interrupt is generated and the initial count value is automatically reloaded.

2.15 Features

- Two timers
- Supports independent clock pre-scale for each timer
- Independent interrupt for each timer

^{2.} Read/Write/Auto update.

Supports two modes of operation, periodic and free-running

2.16 Block Diagram

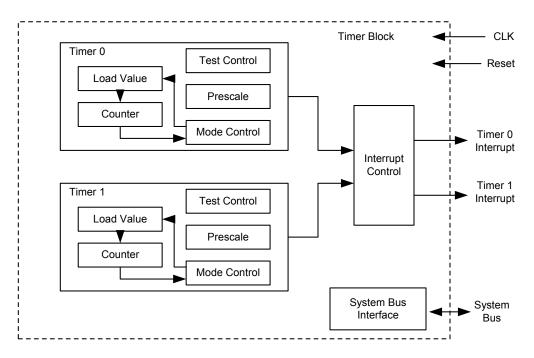


Figure 2-14 Timer block diagram (system overview)

2.17 Functional Description

Timers are primarily used to accurately track long periods of time (such as during timeouts and internal performance monitoring), freeing the processor for more important tasks. Two timers provide great flexibility, allowing small delay times to be programmed in one timer while the second is used for time-out functions, or to allow multiple concurrent tasks access to independent timers.

The timer block includes two timers with scalable processor ticks. They count down from a user-loaded value, which must be reloaded to avoid a time-out. Each timer has an independent clock pre-scale function and an independent interrupt. They can be set to a periodic or a free-running mode.

The timer is implemented as a 16-bit down counter. The timer counts down from the count value programmed in the timer load value register; on reaching zero an interrupt is generated. Depending on the mode, the timer then reloads the load value, continues counting or stops. The timer load value register can be changed at any time; the timer will begin counting from the new value written to the this register.

The timer load value registers hold the initial count value that is reloaded each time the counter reaches 0, when operating in the periodic mode. The value in the timer counter value registers decrement on each clock cycle until they reach 0. They are then automatically reloaded with the values in the timer load value registers, and the interrupt bit INT 5/6 is set. The values can be overwritten at any time, whatever the mode.

The timer control registers allow the selection between the periodic mode or the free-running mode. Pre-scale sets the clock divisor to 1 (00), 16 (01) or 256 (10).

2.17.1 Timer Control

The timer powers up disabled. It can be enabled or disabled using the timer control register. When the timer is disabled, it stops counting and retains its current value. When it is enabled again, it resumes counting from its current value. The timer can be reset at any time to the value in the timer load value register using the timer control register. The counter value immediately loads, irrespective of the timer being enabled.

The interrupts from the timer can be cleared through the timer clear register. Reading the interrupt bit will return the current status of the interrupts. Writing a '1' to the corresponding interrupt bits clears the interrupts.

2.17.1.1 Load Value/Counter

A counter operating off of the system clock drives the timer. The load value register programmed by the firmware controls its period. This register contains the load value for the timer. In all the modes except the free-running mode, this value is loaded into the timer counter before counting down. It may be updated at any time; the new value will be written to the counter immediately. Writing load value of 0 will disable the timer except in the free-running mode; in free-running mode, this register value is ignored.

2.17.1.2 Mode Control

Two modes of operation is available for the timers, namely, periodic and free-running. The timer control register controls the timer reloading and disabling.

Periodic

In the periodic mode, the timer counts down to zero from the load value. An interrupt is generated when the count is zero. After reaching zero, the load value is reloaded into the timer and the timer counts down again. A load value of zero disables the timer.

Free-running

In the free-running mode, the timer counts down to zero from FFFFh. An interrupt is generated when the count is zero. After reaching zero, FFFFh is reloaded into the timer. The load register is ignored in this mode. This mode is identical to the periodic mode with a load value of 65535. When the timer is first enabled, it begins counting down from its current value, and not from FFFFh.

2.17.1.3 Interrupt Control

Each timer may generate an interrupt when it times out. The interrupts from the timers can be cleared through the timer clear registers. Reading the interrupt bit will return the current status of the interrupts. Writing a '1' to the corresponding interrupt bits clears the interrupts.

2.17.1.4 Clock Pre-scale

A clock pre-scale is provided for the timer clock. When used, the pre-scale divides the system clock by powers of two, from 2^2 to 2^{16} in order to achieve higher resolution or longer timer periods as defined below:

Table 2-16 Timer clock pre-scale

Value ¹	Timer clock frequency
0	System clock
1	System clock / 4
2	System clock / 8
3	System clock / 16
•	•
	•
14	System clock / 32,768
15	System clock / 65,536

^{1.} The pre-scale value should not be changed unless the timer is disabled.

2.18 Register Map

2.18.1 Timer Registers

Table 2-17 Timer registers

Address ¹	Register Name	R/W/A ²	Description
+C500	CPU_TIMERO_LOAD	R/W	Timer0 Load Value Register
+C504	CPU_TIMERO_VALUE	R/W/A	Timer0 Counter Value Register
+C508	CPU_TIMERO_CTRL	R/W	Timer0 Control Register
+C50C	CPU_TIMERO_CLR	W	Timer0 Clear Register
+C600	CPU_TIMER1_LOAD	R/W	Timer1 Load Value Register
+C604	CPU_TIMER1_VALUE	R/W/A	Timer1 Counter Value Register
+C608	CPU_TIMER1_CTRL	R/W	Timer1 Control Register
+C60C	CPU_TIMER1_CLR	W	Timer1 Clear Register

^{1.} Address refers to G-Bus byte address relative to the host CPU block base.

UARTs

2.19 Introduction

The SMP8654 contains two instances of Universal Asynchronous Receiver-Transmitter (UART), UART0 and UART1, for supporting asynchronous serial communications.

The two UARTs, UART0 and UART1 are functionally equivalent to the industry-standard 16550, and differ only in a few minor configuration/control register definitions (listed in the Functional Description section below). Each UART includes an independent baud rate generator. Baud rates supported are dependent on the frequency of operation. The baud rate generator may either use the system clock (333MHz typically) or the 27MHz external clock as its reference.

The UARTs also provide debugging with full modem support that allows simultaneous connection to remote systems.

^{2.} Read/Write/Auto update.

2.20 Features

- Supports modem communication
- Supports the 'FIFO mode' in which the transmitter and receiver are each buffered with 16 byte FIFO's to reduce the number of interrupts presented to the CPU
- Holding and shift registers eliminate the need for precise synchronization between the CPU and the serial data
- Supports independently controlled transmit, receive, line status and data set interrupts
- Supports 300 115.2kbps baud rate (higher rate will depend upon the clock frequency). The programmable baud generator divides any input clock by 1 to (2¹⁶ 1) and generates the 16 x clock.
- Supports fully programmable serial-interface with the following characteristics:
 - 5, 6, 7 or 8-bit characters
 - Even, odd, stick or no-parity bit generation and detection
 - 1, 1 ½ or 2-stop bit generation
- Supports false start bit detection
- Supports complete status reporting capabilities
- Supports line break generation and detection
- Supports the following internal diagnostic capabilities:
 - Loopback controls for communications link fault isolation
 - Break, parity, overrun, framing error simulation
- Supports full prioritized interrupt system controls
- Supports receive buffer interrupts for empty, half-full and byte-received
- Supports transmit buffer interrupt for empty

2.21 Block Diagram

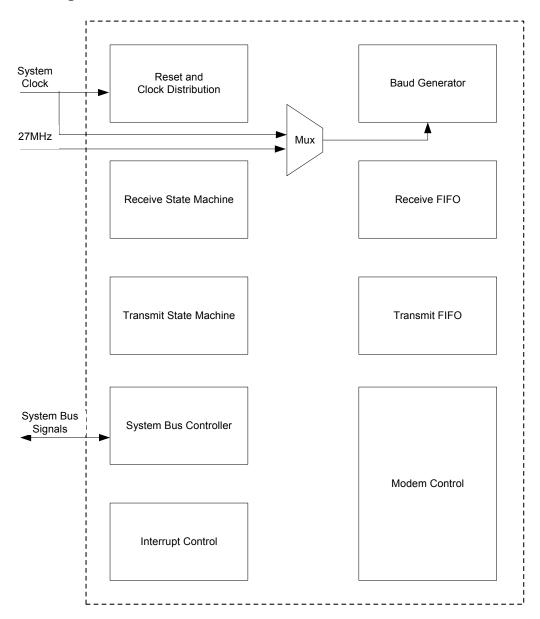


Figure 2-15 UART block diagram

2.22 Functional Description

The Universal Asynchronous Receiver/Transmitter is a peripheral device providing serial communications capabilities. It converts the internal data from parallel to serial format (or vice versa) for bidirectional transmission down a single cable. The device receives a character, generates an interrupt, and stores it in a buffer until the next character is ready. The CPU must fetch the information and clear the interrupt flag before the next character is received.

The two UARTs, UART0 and UART1 in the SMP8654 are essentially compatible with the industry standard 16550. The differences between the SMP8654 UARTs and the 16550 are listed below:

- Registers are 4-byte apart in the SMP8654 UART versus the 1-byte in the 16550
- CPU_UART_RXD and CPU_UART_TXD registers are at two different addresses
- The 16-bit register CPU_UART_CLKDIV is the concatenation of the Multiplier Latch (MS) and Divisor Latch (LS) registers on the 16550
- The register CPU_UART_CLKSEL either selects the system clock (typically 333MHz), or the external clock (27MHz) as the clock source for the baud rate generator

The UART block provides two independent UARTs, UART0 and UART1 for serial communication and debugging. The UARTs include full modem support, allowing simultaneous connections to remote systems. The UARTs are compatible with generic UART devices used on PCs and other systems. Proper start, parity, and stop bits are appended to characters transmitted on the TXD output pin. Similarly, the characters received at the RXD input pin are stripped of the extra bits enveloping them. Receiver and transmitter logic runs on the clock derived from the main clock input (divided by 16) divided by the value in the clock divider control register.

The UART performs serial-to-parallel conversion on data characters received from an external device or a modem, and parallel-to-serial conversion on data characters received from the CPU. The CPU can read the complete status of the UART at any time during the functional operation. Status information reported includes the type and condition of the transfer operations being performed by the UART, as well as any error conditions (parity, overrun, framing or break interrupt).

The UART supports serial data formats consisting of 5-8 data bits, 1-2 stop bits and even/odd/stick/no parity. The baud rate generator uses a selectable clock source, and the UART blocks support baud rates from 300 to 115.2kbps. Its 16-byte transmit buffer interrupts for empty data, and the 16-byte receiver interrupts for empty, half-full, and byte-received data. The UART also detects false start bits, breaks and supports modem communications.

The UART can be put into an alternate mode (FIFO mode) to relieve the CPU of excessive software overhead. In this mode internal FIFOs are activated allowing 16-byte (plus 3-bit of error data per byte in the RCVR FIFO) to be stored in both the receive and the transmit modes.

2.22.1 UART Data Formats

The UART includes a programmable baud rate generator that is capable of dividing the timing reference clock input by divisors of 2 to 65535 and by 16. The UART has complete modem-control capability, and a processor-interrupt system. Interrupts can be programmed to the user's requirements, minimizing the computing required to handle the communications link.

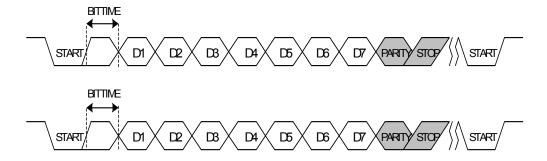
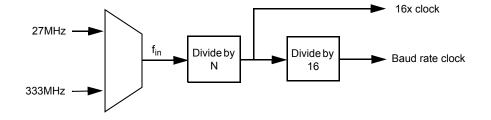



Figure 2-16 UART data formats

Baud rate ($f_{baud\ rate}$) = Input clock frequency (f_{in}) / (16xN) = bits/sec, where N = 1 to 2^{16} -1

Bit time = 1 / Baud rate = sec/bit

Start bit

TXD and RXD are normally high. To transmit a character drive the TXD line low for one bit time. The receiver always samples the RXD line; when it detects a start bit it starts shifting a new character in.

Data

A character can be programmed for 5-8 data bits. Both the receiving and transmitting UARTs should be programmed for the same settings or communication fails.

Parity

The parity generation and checking can be enabled or disabled. If the parity is disabled, then no parity bit is transmitted and the receiver will not expect a parity bit. If the parity is enabled, then it can be an even, odd or a stick parity.

- Even parity: The parity bit is 1 if the character has an odd number of 1's
- Odd parity: The parity bit is 1 if the character has an even number of 1's
- Stick parity: The parity bit can be forced to be either '1' or '0'

Stop Bit

The stop bits ('1') are the last bits to be transmitted/received for each character. The number of stop bits can be programmed to 1, 1½ or 2-bit times. The stop bits act as spacers between characters when transmitted back to back. Both the receiving and the transmitting UARTs need to be programmed for the same settings. The communication may fail if the number of stop bits expected by the receiver is greater than the number of stop bits actually received.

Break

A break is detected if the RXD line is held low longer than character time, which is the time taken to transmit or receive a character including start, parity and stop bits. This usually happens if the RXD line is disconnected or if the transmitting UART forces a break or is turned off. To force a break, the break bit in the line control register needs to be set. An interrupt is generated if a break is detected.

Modes

While only a few modes are standard, nearly limitless combinations are possible. Any of the following variables can be combined to create distinct modes: baud rate, FIFO/non-FIFO, data bits, stop bits and parity.

Interrupts

UART operation and line speed are controlled by the UART line control register and a few other registers. The UARTS generate data ready (DR) or character time-out, buffer empty (THRE), line status (OE, PE, FE, AND BI), and modem status (DCTS, DDSR, RI, and DCD) interrupts.

The data ready interrupt (DR) will be asserted when the receiver buffer depth is equal to the number of characters programmed in the trigger register.

The THRE interrupt will be asserted if the transmitter buffer depth is less than or equal to the number of characters programmed in the trigger register.

The line status interrupt is asserted when a receive overrun occurs (OE) or if the received parity is different from the expected value (PE) or, if a valid stop bit is not detected (FE) or, if a break is received when the RXD signal is at a low state for more than one character transmission time from start bit to stop bit (BI).

The modem status interrupt bit DCTS, is asserted when the CTSN (Clear to Send) pin changes, or when the DSRN (data set ready) pin changes or, when the RIN (ring indicator) pin is at a low value or, when the DCDN (data carrier detect) pin is changing.

If more than one category of interrupt is asserted, only the highest priority ID will be given. The line and modem status interrupts are cleared by reading the corresponding status register (LSR, MSR). The receiver data available interrupt will be cleared when all the data is read from the receiver buffer or the FIFO. The transmitter buffer empty will be cleared when the data is written to the TXD register, or if the IIR register is read and the THRE interrupt ID is set. The transmit and receive FIFOs have the effective depth of sixteen characters when enabled and a depth of one character when disabled.

2.22.2 UART Shared Function

2.22.2.1 GPIO Function

There are seven UART pins which can individually be used as GPIOs if the UART functionality is not required (see the UART 'Pin Description' table for more details). CPU_UART_GPIO_MODE: This register selects the UART mode/GPIO mode (0 = UART, 1 = GPIO) for each pin.

Common values are:

- 7F00 = All pins are in the UART mode (power-up value)
- 7F6E = All pins are in the GPIO mode (UART function is disabled)

• 7F6E = TXD-RXD are in the UART mode (allowing a 2 wire serial protocol), and the other pins are in the GPIO mode.

The CPU_UART_GPIO_DIR register determines the direction of the GPIOs (0 = input, 1 = output). This affects the pins in the GPIO mode only. The CPU_UART_GPIO_DATA register gives the value of the GPIO pin.

2.23 Register Map

2.23.1 UART Registers

Table 2-18 Register map - UARTs

Address ¹ UART0	Address UART1	Register Name	R/W/A ²	Description
+C100	+C200	CPU_UART_RXD ³	R/A	Receive Buffer Register
+C104	+C204	CPU_UART_TXD ³	W	Transmit Buffer Register
+C108	+C208	CPU_UART_INTEN	R/W	Interrupt Enable Register
+C10C	+C20C	CPU_UART_INTID	R/A	Interrupt Identification Register
+C110	+C210	CPU_UART_FIFOCTL	R/W	FIFO Control Register
+C114	+C214	CPU_UART_LINECTL	R/W	Line Control Register
+C118	+C218	CPU_UART_MODEMCTL	R/W	Modem Control Register
+C11C	+C21C	CPU_UART_LINESTAT	R/W	Line Status Register
+C120	+C220	CPU_UART_MODEMSTAT	R/W	Modem Status Register
+C124	+C224	CPU_UART_SCRATCH	R/W	Scratch Pad Register
+C128	+C228	CPU_UART_CLKDIV	R/W	UART Clock Divider Control Register
+C12C	+C22C	CPU_UART_CLKSEL	R/W	UART Clock Select Control Register
+C130	+C230	CPU_UART_GPIO_DIR	R/W	GPIO Direction Register
+C134	+C234	CPU_UART_GPIO_DATA	R/W	GPIO Data Register
+C138	+C238	CPU_UART_GPIO_MODE ⁴	R/W	GPIO Mode Register

^{1.} Address refers to G-Bus byte address relative to the host CPU block base.

^{2.} Read/Write/Auto update.

^{3.} These registers are at two different addresses.

^{4.} The CPU_UART_GPIO_MODE register must be written at address xx38, but read at xx3C.

2.24 Pin Description

2.24.1 **UART Pins**

Table 2-19 UART pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
UARTO_RX	F27	В	UARTO receive data input.	A
			Alternate function: GPIO18	
UARTO_TX	D29	В	UARTO transmit data output.	Α
			Alternate function: GPIO22	
UART1_CTS	H24	В	UART1 clear to send. Flow control signal.	Α
			Alternate function: GPIO26	
UART1_DCD	F26	В	UART1 data carrier detect. Data set status signal.	А
			Alternate function: GPIO28	
UART1_DSR	G25	В	UART1 data set ready. Data set status signal.	A
			Alternate function: GPIO27	
UART1_DTR	C29	В	UART1 data terminal ready. Data terminal status signal.	А
			Alternate function: GPIO31	
UART1_RTS	D28	В	UART1 request to send. Flow control signal.	Α
			Alternate function: GPIO30	
UART1_RX	C30	В	UART1 receive data input.	Α
			Alternate function: GPIO25	
UART1_TX	E27	В	UART1 transmit data output.	Α
			Alternate function: GPIO29	

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

2.25 Electrical Characteristics

2.25.1 UART AC characteristics

Table 2-20 UART AC characteristics

Parameter	Minimum	Typical	Maximum	Units
T _{BIT}	8.68			μs
Baud Rate (1/ T _{BIT})			115.2	Kbps

2.26 Timing Diagrams

Baud rate ($f_{baud \ rate}$) = Input clock frequency (f_{in}) / (16xN) = bits/sec, where N = 1 to 2^{16} -1

Bit time = 1/Baud rate = sec/bit

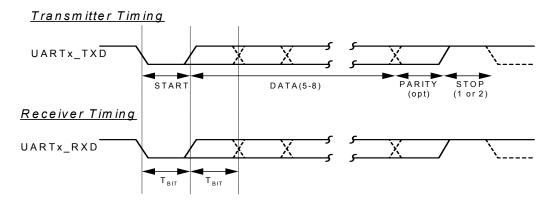


Figure 2-17 UART timing diagram

Smartcard Interface

2.27 Introduction

The security subsystem in the SMP8654 contains two identical smartcard interfaces. The smartcard interfaces support ISO/IEC7816 standard asynchronous protocols. They may be used for applications such as DVB-CSA conditional access and proprietary IPTV DRM solutions. The smartcard interface controllers are connected to the card readers via IC card interfaces, which perform all the supply, protection and control functions.

2.28 Features

- 2 smartcard interfaces
- Support ISO/IEC7816 standard asynchronous protocols
- May be used for applications requiring DVB-CSA conditional access

2.29 Block Diagram

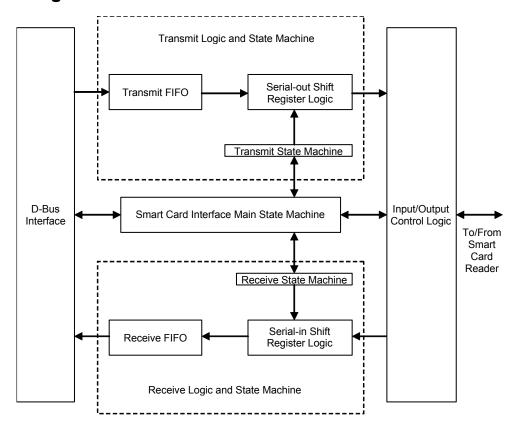


Figure 2-18 Smartcard interface block diagram

2.30 Functional Description

The smartcard module contains a D-Bus interface, transmit logic, main state machine and output control logic sub modules. The D-Bus interface module contains all the registers. The transmit logic contains the state machine, transmit fifo and the transmit output shift register logic sub modules.

The transmit state machine waits for the byte(s) from the D-Bus interface. When it gets a byte, it tries to send it to the smartcard reader. When it completes the transfer it asserts an interrupt to indicate the completion of the transmission. After the interrupt has been asserted, the D-Bus interface (CPU) supplies the next byte. If the FIFO is enabled, then more bytes can be written into the FIFO. This reduces the number of interrupts to the CPU and increases the performance.

The main state machine of the card controls the state of the card by doing the card activation, cold reset, warm reset, clock stopping and the deactivation of the card.

The main smartcard interface state machine contains the following states:

- 1. Unpowered idle state: Initial state after reset.
- 2. Activate card state: The card is activated.
- 3. Cold reset state: Cold reset is applied to the card.
- 4. Powered idle state: The card is powered and ready for use (read/write).
- 5. Warm reset state: Warm reset is applied to the card.
- 6. Clock stop state: The clock to the card is stopped.
- 7. Deactivate card state: The card is deactivated.

The default state after reset is the Unpowered idle state. The state machine should be in the powered idle state in order to communicate to the card. The initialization sequence from the unpowered idle to the powered idle state can be done either entirely by the hardware or by both the hardware and the software.

If the software performs the initialization sequence, then it should change the state by writing into the STATE REG register.

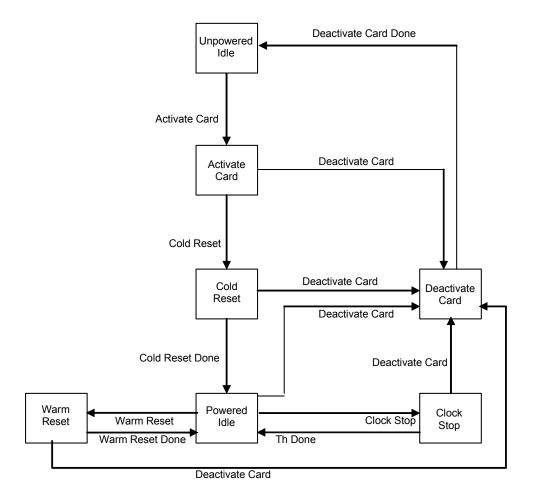


Figure 2-19 Smartcard interface state machine

The receive logic contains the receive state machine, receive fifo and the receive input shift register logic. The receive state machine waits for any activity on the smartcard data line. As soon as it detects a transfer, it tries to catch the byte(s) in the shift register. After receiving one byte, it interrupts the CPU. If the receive FIFO is enabled, then more bytes can be read from the smartcard into the FIFO. This reduces the number of interrupts to the CPU and increases the performance.

Before any write/read to the smartcard, registers CLK_HIGH_VAL, CLK_LOW_VAL, EGT_ETU_REG, PARAM_REG, SCARD_CTRL_REG, SOFT_OUT_REG and INTEN REG should be programmed to the desired values.

To write to the smartcard without the FIFO, data is written to the registers TX_BYTE_REG or TX_WORD_REG or TX_DWORD_REG. This starts the write protocol to the smartcard. After the data is transmitted an interrupt is asserted. More data can be sent in the sane manner given above.

To write to the smartcard with the FIFO, write data to the registers TX_BYTE_REG or TX_WORD_REG or TX_DWORD_REG. Up to 16 bytes can be written into the transmit FIFO (FIFO depth = 16 bytes). The register STATE_REG gives the number of bytes in the transmit FIFO. If this is less than 16, then more bytes need to be written into the FIFO.

To read from the smartcard without the FIFO, wait for the RX_DONE interrupt. This interrupt is set once one byte is received. Then, read the data from the register RX_BYTE_REG. To receive more data repeat the steps given above.

To read from the smartcard with the FIFO, wait for the RX_DONE interrupt. This interrupt is set once the receive FIFO reaches the RFIFO_THRESHOLD value. Then, read the data from the registers RX_BYTE_REG or RX_WORD_REG or RX_DWORD_REG. Read until the FIFO is not empty. To receive more data repeat the steps given above.

Writing into the register TX_BYTE_REG sends one byte to the smartcard. Writing into the register TX_WORD_REG sends two bytes to the smartcard. Writing into the TX_DWORD_REG register sends four bytes to the smartcard.

If FIFO is enabled, then the data will be written into the FIFO. Then, from the FIFO the data will be sent to the smartcard.

Reading the register RX_BYTE_REG gets one byte from the smartcard. Reading the register RX_WORD_REG gets two bytes from the smartcard. Reading the register RX_DWORD_REG gets four bytes from the smartcard.

The register CLK_HIGH_VAL gives the smartcard output clock high value in number of sysclks. The register CLK_LOW_VAL gives the smartcard output clock low value in number of sysclks. The register TIMEOUT_LOAD gives the time-out value programmed in number of smartcard clocks. The register PARAM_REG gives the Tc, Tb, Tg and Th counter load values programmed in number of 256 smartcard clocks. The register EGT_ETU_REG gives the EGT and ETU count load values. The ETU load value is programmed in number of smartcard clocks and the EGT load value is programmed in number of ETU units.

By using the register SOFT_OUT_REG, the smartcard pin values can be directly controlled. The smartcard control register activates/deactivates the card. The smartcard state register controls the states of the smartcard interface state machine.

2.30.2 GPIO Function

All the 14 smartcard pins can individually be used as GPIOs if the smartcard functionality is not required (see the 'Pin Description' table in the following sections for details). The smartcard pins are in GPIO input mode after a hard or soft reset.

The register GPIO_MODE_REG selects between the smartcard mode and GPIO mode for each pin. When written, bits[6:0] contain the mode (0 = smartcard, 1 = GPIO) and bits [14:8] act as write masks. Only bits with write mask = 1 are changed. Common values are:

7F7F = All pins in the GPIO mode (power-up value; smartcard function is disabled).

7F00 = All pins in the smartcard mode.

7F6E = SCARD_RST and SCARD_CTL [0] are in the smartcard mode.

The register GPIO_OE_REG determines the direction of the GPIOs (0 = input, 1 = output). It affects pins in GPIO mode only and uses a write mask mechanism. The GPIO pin values are given by the register GPIO_DATA_REG.

2.31 Register Map

2.31.1 Smartcard Interface Registers

Table 2-21 Register map - Smartcard interface

Address ¹ SCARD0	SCARD1	Register Name	R/W/C ²	Description
+C300	+C380	TX_BYTE_REG	W	Smartcard Transmit Byte Register
+C304	+C384	TX_WORD_REG	W	Smartcard Transmit Word Register
+C308	+C388	TX_DWORD_REG	W	Smartcard Transmit Dword Register
+C30C	+C38C	Reserved		
+C310	+C390	RX_BYTE_REG	R	Smartcard Receive Byte Register
+C314	+C394	RX_WORD_REG	R	Smartcard Receive Word Register
+C318	+C398	RX_DWORD_REG	R	Smartcard Receive Dword Register
+C31C	+C39C	Reserved		
+C320	+C3A0	CLK_HIGH_VAL	R/W	Smartcard Clock High Value Register
+C324	+C3A4	CLK_LOW_VAL	R/W	Smartcard Clock Low Value Register
+C328	+C3A8	TIMEOUT_LOAD	R/W	Smartcard Time-out Value Register

Table 2-21 Register map - Smartcard interface (Continued)

Address ¹ SCARD0	SCARD1	Register Name	R/W/C ²	Description
+C32C	+C3AC	PARAM_REG	R/W	Smartcard Parameters Register
+C330	+C3B0	EGT_ETU_REG	R/W	Smartcard EGT and ETU Register
+C334	+C3B4	SOFT_OUT_REG	R/W	Smartcard Software Output Register
+C338	+C3B8	SCARD_CTRL_REG	R/W	Smartcard Control Register
+C33C	+C3BC	STATE_REG	R/W	Smartcard State Register
+C340	+C3C0	INT_REG	R/C	Smartcard Interrupt Register
+C344	+C3C4	INTEN_REG	R/W	Smartcard Interrupt Enable Register
+C348	+C3C8	ALT_ETU_CNT	R	Alternate ETU Count Register
+C34C	+C3CC	STATUS_REG	R	Smartcard Status Register
+C350	+C3D0	CRC_REG	R	Smartcard CRC Register
+C354	+C3D4	CRC_INIT_REG	R/W	Smartcard CRC Initial Value Register
+C358	+C3D8	SCARDx_GPIO_DIR	R/W	Smart Card0/1 GPIO Direction Register
+C35C	+C3DC	SCARDx_GPIO_DATA	R/W	Smart Card0/1 GPIO Data Register
+C360	+C3E0	SCARDx_GPIO_MODE	R/W	Smart Card0/1 GPIO Mode Register
+C364	+C3E4	RX_O_TX_IDLE	R/W	Receiver to Transmitter Idle Time Register

Address refers to G-Bus byte address relative to the security subsystem register base.
 Read/Write/Clear.

2.32 Pin Description

2.32.1 Smartcard Interface Pins

Table 2-22 Smartcard interface pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
SCARD0_CLK	B28	В	Smartcard 0 clock. Alternate function: GPIO71	А
SCARD0_CTL0	G23	В	Smartcard 0 control 1. Alternate function: GPIO74	А
SCARD0_CTL1	F24	В	Smartcard 0 control 2. Alternate function: GPIO75	А
SCARD0_CTL2	E25	В	Smartcard 0 control 3. Alternate function: GPIO76	А

Table 2-22 Smartcard interface pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description	Driver Type ¹
SCARD0_FC#	C27	В	Smartcard 0 function code. Alternate function: GPIO72	А
SCARD0_IO	D26	В	Smartcard 0 IO. Alternate function: GPIO73	А
SCARD0_RST	A29	В	Smartcard 0 reset. Alternate function: GPIO70	А
SCARD1_CLK	A27	В	Smartcard 1 clock. Alternate function: GPIO78	А
SCARD1_CTL0	F23	В	Smartcard 1 control 1. Alternate function: GPIO81	А
SCARD1_CTL1	E24	В	Smartcard 1 control 2. Alternate function: GPIO82	А
SCARD1_CTL2	D25	В	Smartcard 1 control 3. Alternate function: GPIO83	А
SCARD1_FC#	B27	В	Smartcard 1 function code. Alternate function: GPIO79	А
SCARD1_IO	C26	В	Smartcard 1 IO. Alternate function: GPIO80	А
SCARD1_RST	A28	В	Smartcard 1 reset. Alternate function: GPIO77	А

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

3

Security Subsystem

3.1 Block Diagram of Security Subsystem

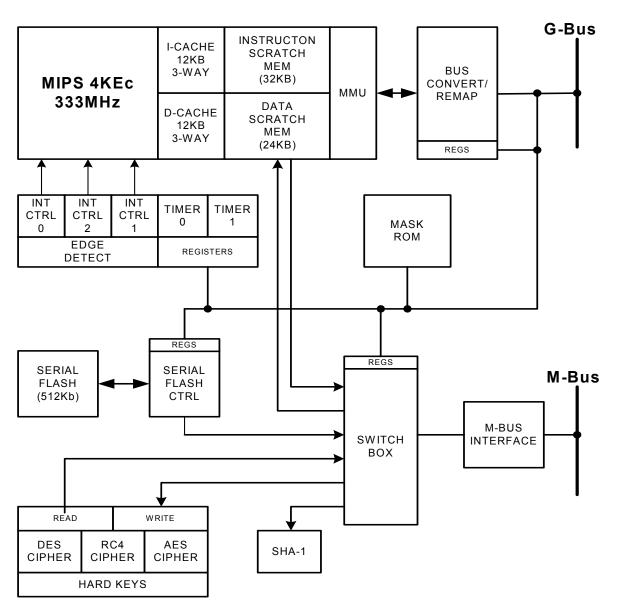


Figure 3-1 Security subsystem block diagram

3.2 Introduction

The SMP8654 includes a variety of features designed to ensure that the DRM/CA software runs with robust security:

- Security CPU (XPU)
- Secure boot loader chip boots from the embedded flash only (trusted boot block)
- Embedded serial flash
- Parallel flash data can be encrypted and digitally signed
- DRAM data can be encrypted
- Secure PKI on-chip key storage, keys are not externally accessible.
- Unique ID programmable at production (inside embedded flash)
- As a PCI device, access to internal resources (registers, DRAM etc.) can be restricted by a hardware based lock mechanism

The security subsystem block of the SMP8654 includes a dedicated 333MHz MIPS 4KEc CPU (~509 conforming DMIPS). The application software for the XPU is loaded from external flash memory. In addition to the XPU processor itself, the security subsystem block contains the following additional resources:

- Boot ROM: Upon hardware reset, the XPU processor executes from the boot ROM.
- RSA public keys: On-chip ROM.
- Serial flash interface: Controls the embedded serial flash located in the chip package.
- Cipher block: For acceleration of AES, (3) DES and RC4 cipher operations.
- Interrupt controller
- 2 programmable timers

The XPU accesses the G-Bus as a master. As a master, the XPU can access all the G-Bus mapped local resources. Other components of the security subsystem can be accessed by either the XPU or another G-Bus master, if access permissions are programmed to allow. The bus converter in the security subsystem performs a bus protocol adaptation and a configurable address translation (remap). The security subsystem connects to the rest of the chip via the G-Bus and the M-Bus.

3.3 Features

- Dedicated 333MHz MIPS 4KEc CPU to securely execute the DRM and the conditional access software
- 32KB program and 24KB data memory
- Encrypted DRAM and flash memory, secure boot loader, secure PKI, encrypted I/O interfaces.
- Supports up to 4 DRM solutions simultaneously
- Supports a wide variety of DRM/CA solutions
 - Available from Sigma Designs Inc.,
 - * WM DRM-ND and WM DRM-PD
 - * DTCP/IP
 - * HDCP for DVI and HDMI
 - * CPRM for DVD-R and DVD-RW playback
 - * CSS for DVD-Video playback
 - * VCPS for DVD+R/+RW
 - * SSL
 - * Macrovision copy protection for analog video outputs
 - * Widevine Cypher® Virtual SmartCardTM
 - Third party solutions (requires the purchase of SMP8654 security SDK)
 - * Irdeto Access
 - * SecureMedia
 - * ARIB, ATSC, DVB-CI and DVB-CSA

Note: The OEM is responsible for licensing and purchasing any production keys and programming them (in the encrypted form) into the on-chip serial flash during OEM product production. Sigma Designs provides the tools needed to do this.

Note: DRM software and/or keys are not included with SDKs and Development Kits. Once your license(s) are verified, software and/or keys for required features will be available via our developer website.

CPU of the Security Subsystem (XPU)

3.4 Description

The SMP8654 uses a separate 333MHz MIPS 4KEc CPU (~509 conforming DMIPS) to securely execute conditional access and DRM/CA software. The application software for this XPU resides in flash memory (encrypted and digitally signed) to facilitate upgrades.

The encryption and decryption keys are stored (in the encrypted form) in the on-chip serial ROM. Additional keys may be encrypted and loaded into the serial flash during the OEM product production. To ensure security, keys are not available to the software running on the host CPU.

The XPU core is a high-performance, low-power, 32-bit MIPS RISC core. It is a 32-bit privileged resource architecture. A Memory Management Unit (MMU) contains 4-entry instruction and data Translation Lookaside Buffers (ITLB/DTLB) and a 32 dual-entry joint TLB (JTLB) with variable page sizes. The 4KEc core includes a Multiply/Divide Unit (MDU) that implements single cycle MAC instructions, which enable the DSP algorithms to be performed efficiently. It allows 32-bit x 16-bit MAC instructions to be issued every cycle, while a 32-bit x 32-bit MAC instruction can be issued every 2 cycles.

The XPU contains 3-way set associative 12KB instruction and 12KB data caches. The load and fetch cache misses only block until the critical word becomes available. The pipeline resumes execution while the remaining words are being written to the cache. Both caches are virtually indexed and physically tagged to allow them to be accessed in the same clock that the address is translated.

3.4.1 XPU MIPS Requirements

The list below gives the MIPS requirements for various functions performed by the XPU:

Table 3-1 MIPS requirements for various functions performed by the XPU

function	Typical MIPS needed
XPU baseline	TBD
- WM DRM-ND	TBD
- WM DRM-PD	TBD
- DTCP/IP	TBD
- HDCP for DVI and HDMI	TBD
- CPRM for DVD-R and DVD-RW playback	TBD
- CSS for DVD-Video playback	TBD
- Verance audio watermark detection	TBD
- VCPS for DVD+R/+RW	TBD

Hardware Cipher Block

3.5 Description

The cipher block for the XPU implements encryption/decryption 'on-the-fly' using a pair of DMA channels (one read and one write), a 'switch box' for steering the data streams, hardware cipher engines and a hardware SHA-1 module. Using these elements, the following types of transfers may be implemented ('E/D/S' denotes encryption/decryption/SHA-1 operations):

- DSP: DSP DMA (optional E/D/S)
- ISP: ISP DMA (optional E/D/S)
- System memory: DSP DMA (optional E/D/S)
- System memory: ISP DMA (optional E/D/S)
- DSP: System memory DMA (optional E/D/S)
- ISP: System memory (optional E/D/S)

3.5.1 DES Encryption/Decryption Unit

The DES encryption/decryption unit can either encrypt or decrypt a 64-bit data block using the DES or the Triple DES algorithm. The supported modes are DES ECB, CBC, OFB and Triple DES TECB, TCBC and TOFB, both in encryption and decryption. The configuration is unique for a group of 64-bit data blocks. The number of blocks in a data group is 1 to 255. The IV register is used in the OFB and CBC chaining modes (ignored in the ECB mode). It must be programmed before the encryption/decryption is started, and gets automatically updated after each block is processed. The IV is updated without user intervention in the following modes: OFB, TOFB, CBC, TCBC both encryption and decryption. These modes are chained modes in which the output depends on the outputs of the previous blocks. The IV value at the end of a group is the value which would be required for an additional block in the group. It means that Encrypting 100 data blocks in CBC mode and then again 100 data blocks in CBC mode without writing any value in the IV between the two executions will be exactly the same as encrypting in one shot the 200 data blocks. This is to over run the limitation of 255 blocks in a group. There is thus no limitation in actual groups in either modes. The number of key pairs is 8 (even/odd).

Key format

Data Format

The data interface (input and output) is a standard valid/ready interface. Data block[63:0] = 64'h0011223344556677. The bytes will be sent in the order: 00 11 22 33 44 55 66 77. Thus the left most byte of the data block is sent first. The left most byte of the output block will be out first. If the encrypted/decrypted bytes received are in the order: 00, 11, 22, 33, 44, 55, 66 and 77, then output enciphered, deciphered block is 64'h0011223344556677.

Table 3-2 Performance

	DES - 64-bit to 8-byte	Triple DES - 64- bit to 8- byte
One Block	50 Cycles	86 Cycles
Several blocks	34 Cycles	49 Cycles

The total number of clock cycles represents the time between the start of the ciphering and the rising edge of the DES_END. If the number of the blocks is higher than one, then the blocks are received and sent while the other blocks are encrypted.

3.5.2 AES Encryption/Decryption Unit

The AES encryption/decryption unit can either encrypt or decrypt a 128, 192 or 256-bit data block using the AES algorithm. The supported modes are ECB, OFB, CBC, CFB and CTR, both in encryption and decryption. The supported key lengths are 128, 192 and 256-bit independent of the data block size. The configuration is unique for a group of data blocks. The number of blocks in a data group is up to 255. The number of key pairs is 3 (even/odd).

The key registers (0x1E60 - 0x1E67) are write only while the IV registers is read and write capable. Although writing to the key register is permitted, as the AES module is activated, the contents of the key and IV vector registers are over written with the contents in the code word RAM. When read from the key register, the D-Bus will return values of zeroes. Read of IV vector registers is permitted at the end of each block ciphering, to enable the continuation of the block ciphering in the chained modes.

In the ECB mode the IV registers are ignored. In the OFB, CBC and the CFB modes, these registers are used for IV storage. In the CTR mode these registers store the counter value.

The IV or counter is updated by the module in the following modes: OFB, CBC, CFB, and CTR (during both encryption and decryption). When the cipher is in a chaining mode, the output depends on the outputs of the previous blocks. The IV value at the end of a group is the value which would be required for an additional block in the group. It means that encrypting 100 data blocks in OFB mode, and then again 100 data blocks in any chaining modes without writing any value in the IV between the 2 executions will be exactly the same as encrypting in one step the 200 data blocks. This over runs the limitation of 255 blocks in a group. Thus there is no limitation in actual group size in any chaining mode.

In the CTR mode, the IV is composed of 3 components: a nonce (typically first 32-bit vector), an initial vector and a 32-bit counter. The counter is incremented for every data block. At the end of the group, the value taken by the counter is the value which would be needed for an additional block in the previous group.

Data Format

The data interface (input and output) is a standard valid/ready interface. Data block[127:0] = 128'h00112233445566778899aabbccddeeff. The bytes will be sent in the order: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff. The left most byte of the data block is sent first. The left most byte of the output block will be out first. If the encrypted/decrypted bytes received are in the order, 00, 11, 22, 33, 44, 55, 66, 77...ff, then the output enciphered, deciphered block is 128'h00112233445566778899aabbccddeeff.

Table 3-3 Performance

Size of block (byte)	16	16	16	24	24	24	32	32	32
Size of Key ¹	16	24	32	16	24	32	16	24	32
Total Cycles	95	115	130	150	160	170	225	230	245

^{1.} In clock cycle (333MHz clock)

Boot ROM

The boot ROM contains the initial boot code, and the RSA keys used to verify the secondary boot code. During system start-up, the device begins executing from the boot ROM. It then continues booting from the serial flash after authenticating the digital signature of the code.

Serial Flash

The SMP8654 contains an embedded 1Mb serial flash memory. The flash memory contains the system boot code (in conjunction with the boot ROM) and any necessary encryption/decryption keys for CPPM, CPRM, DTCP/IIP, etc. The serial flash image is encrypted and digitally signed using a 2048-bit RSA key. The boot ROM code verifies the signature, before executing. Only code and keys signed by Sigma Designs may reside in the serial flash.

3.5.1 Register Map

Table 3-2. Register map - Serial flash interface

Address ¹	Register Name	R/W/A ²	Description
+F300	SFLA_STATUS	R/A	Serial Flash Status Register
+F304	SFLA_READ_STATUS	R	Serial Flash Read Status Register
+F308	SFLA_READ_PARAMETERS	R/W	Serial Flash Read Parameters Register
+F30C	SFLA_DRIVE_PADS	R/W	Serial Flash Drive Pads Register
+F310	SFLA_DRIVER_SPEED	R/W	Serial Flash Driver Speed Register
+F314	Reserved		
+F318	Reserved		
+F31C	Reserved		
+F320	SFLA_N_FOR_SEND_GET	R/W	Serial Flash Status Register
+F324	Reserved		
+F328	SFLA_MBUS_XFER_ADDR	R/W/A	Serial Flash M-Bus Transfer Address Register
+F32C	SFLA_MBUS_XFER_SIZE	R/W/A	Serial Flash M-Bus Transfer Size Register
+F330	SFLA_READ_DATA	R/A	Serial Flash Read Data Register
+F334	Reserved		
+F338	Reserved		
+F33C	Reserved		
+F340	SFLA_SEND_1	W	Serial Flash Send 1 Register
+F344	SFLA_SEND_8	W	Serial Flash Send 8 Register
+F348	SFLA_SEND_16	W	Serial Flash Send 16 Register
+F34C	SFLA_SEND_32	W	Serial Flash Send 32 Register

Table 3-2. Register map - Serial flash interface (Continued)

Address ¹	Register Name	R/W/A ²	Description
+F350	SFLA_SEND_GET_1	W	Serial Flash Send Get 1 Register
+F354	SFLA_SEND_GET_8	W	Serial Flash Send Get 8 Register
+F358	SFLA_SEND_GET_16	W	Serial Flash Send Get 16 Register
+F35C	SFLA_SEND_GET_32	W	Serial Flash Send Get 32 Register
+F360	SFLA_CHIP_SELECT	W	Serial Flash Select Register
+F364	SFLA_CHIP_DESELECT	W	Serial Flash Deselect Register
+F368	SFLA_SEND_N	W	Serial Flash Send N Register
+F36C	SFLA_SEND_N	W	Serial Flash Send N Register
+F370	SFLA_GET_SLAVEOUT	W	Serial Flash Get Slave Output Register
+F374	SFLA_WAIT_TIMER	R/W	Serial Flash Wait Timer Register
+F378	SFLA_SEND_GET_N	W	Serial Flash Send Get N Register
+F37C	SFLA_SEND_GET_N_	W	Serial Flash Send Get N Register
+F380	SFLA_ASYNC_READ_BYTE	R/W	Serial Flash Asynchronous Read Byte Register
+F384	SFLA_ASYNC_READ_WORD	R/W	Serial Flash Asynchronous Read Word Register
+F388	Reserved		
+F38C	SFLA_ASYNC_READ_DWORD	R/W	Serial Flash Asynchronous Read Dword Select Register
+F390	SFLA_ASYNC_READ_DATA	R	Serial Flash Asynchronous Read Data Register
+F394	SFLA_ASYNC_READ_SIZE	R	Serial Flash Asynchronous Read Size Register
+F398	SFLA_ASYNC_READ_VALID	R	Serial Flash Asynchronous Read Valid Register

Address refers to G-Bus byte address relative to the XPU block register base.
 Read/Write/Auto update.

XPU Timers

3.6 Introduction

The SMP8654 has a timer block implemented in the security subsystem. The timer block contains two independent timers, Timer0 and Timer1, each with two modes of operation periodic or free-running. They are identical except that, Timer0 is driven by the system clock, while Timer1 receives the external 27MHz clock source. Each timer is a 16-bit counter which decrements on each input clock (an optional divide-by-16 or divide-by-256 pre-scaler is supported). When the counter reaches zero, an interrupt is generated and the initial count value is automatically reloaded.

3.7 Features

- Two timers
- Independent clock pre-scale for each timer
- Independent interrupt for each timer
- Two modes of operation, periodic and free-running

3.8 Block Diagram

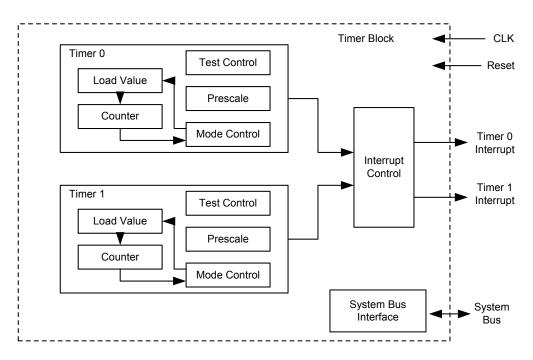


Figure 3-1 Timer block diagram (system overview)

3.9 Functional Description

Timers are primarily used to accurately track long periods of time (such as during timeouts and internal performance monitoring), freeing the processor for more important tasks. Two timers provide great flexibility, allowing small delay times to be programmed in one timer while the second is used for time-out functions, or to allow multiple concurrent tasks access to independent timers.

The timer block includes two timers with scalable processor ticks. They count down from a user-loaded value, which must be reloaded to avoid a time-out. Each timer has an independent clock pre-scale function and an independent interrupt. They can be set to a periodic or a free-running mode.

The system bus interface block interfaces the timer registers to the processor through the system bus. The timer is implemented as a 16-bit down counter. The timer counts down from the count value programmed in the timer load value register; on reaching zero an interrupt is generated. Depending on the mode, the timer then reloads the load value, continues counting or stops. The timer load value register can be changed at any time; the timer will begin counting from the new value written to the this register.

The timer load value registers hold the initial count value that is reloaded each time the counter reaches 0, when operating in the periodic mode. The value in the timer counter value registers decrement on each clock cycle until they reach 0. They are then automatically reloaded with the values in the timer load value registers, and the interrupt bit INT 5/6 is set. The values can be overwritten at any time, whatever the mode. The timer control registers allow the selection between the periodic mode or the free-running mode. Prescale sets the clock divisor to 1 (00), 16 (01) or 256 (10).

3.9.1 Timer Control

The timer powers up disabled. It can be enabled or disabled using the timer control register. When the timer is disabled, it stops counting and retains its current value. When it is enabled again, it resumes counting from its current value. The timer can be reset at any time to the value in the timer load value register using the timer control register. The counter value immediately loads, irrespective of the timer being enabled.

The interrupts from the timer can be cleared through the timer clear register. Reading the interrupt bit will return the current status of the interrupts. Writing a '1' to the corresponding interrupt bits clears the interrupts.

3.9.1.1 Load Value/Counter

A counter operating off of the system clock drives the timer. The load value register programmed by the firmware controls its period. This register contains the load value for the timer. In all the modes except the free-running mode, this value is loaded into the timer counter before counting down. It may be updated at any time; the new value will be written to the counter immediately. Writing load value of 0 will disable the timer except in the free-running mode; in free-running mode, this register value is ignored.

3.9.1.2 Mode Control

Two modes of operation is available for the timers, namely, periodic and free-running. The timer control register controls the timer reloading and disabling.

Periodic

In the periodic mode, the timer counts down to zero from the load value. An interrupt is generated when the count is zero. After reaching zero, the load value is reloaded into the timer and the timer counts down again. A load value of zero disables the timer.

Free-running

In the free-running mode, the timer counts down to zero from FFFFh. An interrupt is generated when the count is zero. After reaching zero, FFFFh is reloaded into the timer. The load register is ignored in this mode. This mode is identical to the periodic mode with a load value of 65535. When the timer is first enabled, it begins counting down from its current value, and not from FFFFh.

3.9.1.3 Interrupt Control

Each timer may generate an interrupt when it times out. The interrupts from the timers can be cleared through the timer clear registers. Reading the interrupt bit will return the current status of the interrupts. Writing a '1' to the corresponding interrupt bits clears the interrupts.

3.9.1.4 Clock Pre-scale

A clock pre-scale is provided for the timer clock. When used, the pre-scale divides the system clock by powers of two, from 2^2 to 2^{16} in order to achieve higher resolution or longer timer periods as defined below:

83

Table 3-1 Timer clock pre-scale

Value ¹	Timer clock frequency
0	System clock
1	System clock / 4
2	System clock / 8
3	System clock / 16
•	•
•	•
•	
14	System clock / 32,768
15	System clock / 65,536

^{1.} The pre-scale value should not be changed unless the timer is disabled.

XPU Interrupt Controller

3.10 Introduction

The interrupt controller is the central location for interrupt handling. It accepts the interrupts generated by the internal blocks and generates the processor interrupts. It enables and disables each interrupt individually or globally. A 2-level interrupt priority selection can be implemented.

3.11 Features

- Enabling/disabling of individual interrupts
- Global enable/disable
- 2-level interrupt priority selection

3.12 Block Diagram

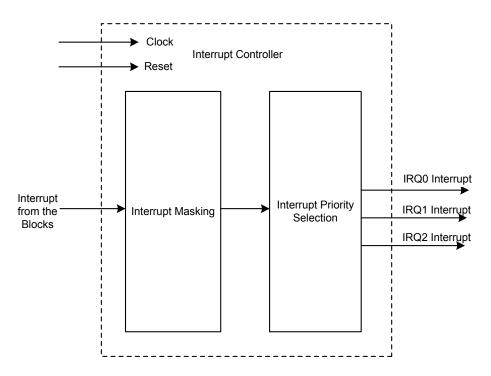


Figure 3-2 Interrupt controller block diagram

3.13 Functional Description

The interrupt controller allows each interrupt to be asserted as three interrupt levels, IRQ0, IRQ1 or IRQ2. This allows the interrupt to be used for application-specific needs, while still fulfilling the real-time requirements. Each interrupt may be individually masked; alternatively, all interrupts may be masked without altering the individual interrupt masks.

The interrupt control for all the processor interrupts is provided in a central location. Each interrupt may be enabled or disabled individually, or a global enable/disable may be enforced. Interrupts must be cleared at the source once the service request is served. All the blocks with cascaded interrupt control provide an interrupt mask for each interrupt source and each source can be cleared individually. This is illustrated below:

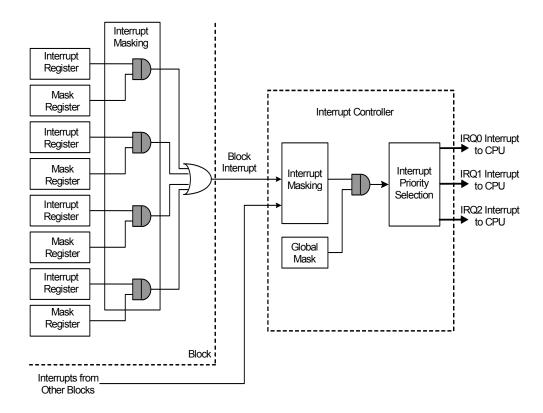


Figure 3-3 Cascaded interrupt structure

Interrupt Priority

Each interrupt may be assigned a priority of IRQ0, IRQ1 or IRQ2, allowing the software to customize the priority of each block.

Global Disable

The interrupt controller provides a global disable control bit. This feature can be used to avoid interrupting critical portions of the code before completion. The global disable does not affect the individual interrupt masks. The software need not perform a save and restore. This saves time by reducing the code size and the interrupt latency if an interrupt is asserted when all the other interrupts are disabled.

3.13.1 Control (mask) Blocks

The control (masking) blocks allow the 31 (possibly edge-detected) interrupt lines to be masked, and routed to three XPU interrupt lines. They also contain registers to generate software interrupts.

3.13.2 Processor Timer Interrupt

The XPU has six interrupt inputs and an internal timer capable of generating an interrupt. The processor interrupt inputs 0, 1 and 2 are connected to the interrupt control blocks previously described. The processor interrupt inputs 3 and 4 are connected to 0 (inactive) and the processor interrupt input 5 is connected to the processor timer interrupt output.

3.13.3 Edge Detector

The XPU interrupt controller block receives up to 31 hardware interrupt sources. An edge detector receives these 31 lines, and if needed, an edge detection is performed on selected lines. The output of the edge detector consists of 31 'latched' interrupt lines, driven to three identical control (masking) blocks. Each control block can independently mask each of its 31 inputs, plus one software controlled interrupt.

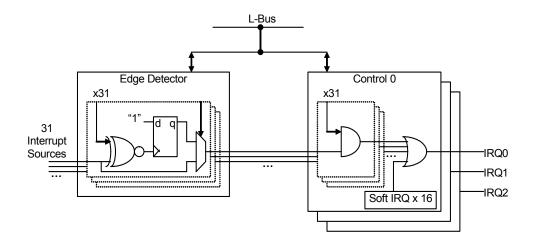


Figure 3-4 Edge detector

The 31 interrupts are assigned as shown in the following table:

Table 3-2 Interrupt sources

Bit	Source
0	Unused
1	UARTO
2	UART1
3	Unused
4	Unused
5	XPU Timer0

Table 3-2 Interrupt sources (Continued)

Bit	Source
6	XPU Timer1
7	DVD loader
8	Unused
9	Host interface channel W0
10	Host interface channel W1
11	Host interface channel R0
12	Host interface channel R1
13	PCI INTA#
14	PCI INTB#
15	PCI INTC#
16	PCI INTD#
17	Reserved
18	Reserved
19	Reserved
20	PCI local bus fault
21	Reserved for external interrupt
22	I ² C
23	Graphics accelerator
24	VSYNC 0 (Component analog output)
25	VSYNC 1 (Composite analog output)
26	VSYNC 2 (Main analog output)
27	VSYNC 3 (Digital output)
28	Unused
29	Unused
30	VSYNC 6 (Vidin-vsync: start of v-blanking)
31	VSYNC 7 (Vidin-vsync: end of v-blanking)

For each of the 31 interrupt lines, two bits called rise and fall select the operating mode according to the following table:

Table 3-3 Operating mode selection for interrupt lines

Rise	Fall	Operating Mode
0	0	Level sensitive (active high)
1	1	Level sensitive (active low = inverted)
1	0	Rising edge sensitive
0	1	Falling edge sensitive

Two configuration registers can be read or written, to set or verify the operating mode of all the 31 lines. In order to set/clear the operating mode of certain lines (without changing the others), a read-modify-write operation can be performed on these registers.

Reading the status register returns the individual interrupt lines values at the output of the edge detector. Reading the edge raw status register returns the individual interrupt lines values at the input of the edge detector. For interrupts lines that are in 'level sensitive, active high' mode, the two status registers will return the same value.

Writing the edge raw status register will clear the capture register (for each bit written as 1, of the corresponding interrupt). This should be done before exiting an interrupt service routine to avoid re-entering, only on edge sensitive interrupts.

Bus accessibility

3.14 Description

In the SMP8654 some restrictions are placed on the bus accesses. For example, the XPU will have access to certain areas of the DRAM that are inaccessible by the host CPU.

The following table shows the four top level busses that interconnect the top level blocks of the chip and their master/slave connections

89

Table 3-4 Top level bus connections

Bus	Master Group ¹	Master	Slave
G-Bus	G0	GWD/GRD task during simulation	Security subsystem
	G0	Security subsystem	Video decoder
	G1	Video decoder	Audio block
	G1	Audio block	Transport demultiplexer
	G1	Transport demultiplexer	Video decoder
	G2	Host CPU block	DRAM controller
	G3	Host interface	System block
			Host CPU block
			Host interface
M-Bus	D1	Video decoder	DRAM controller
	D1	Audio block	
	D1	Transport demultiplexer	
	D3	Host interface	
V-Bus	D2	Video output	DRAM controller
Direct load port	D1	Video decoder	DRAM controller

G0...G3 are groups of G-Bus masters. D1...D3 are groups of DMA masters (i.e. M-Bus, V-Bus and the direct load port) and are therefore relevant to only one slave, the DRAM controller. Typically, a hierarchy G0>G1>G2>G3 is implemented, meaning that G0 has the maximum number of accesses and G3 the least.

The bus accessibility is handled at the slave level, and is similar (with minor differences) to all the slaves described above.

Every time a slave is accessed it will, first check which of the masters is initiating the transaction. The initiating master ID is converted into a group code. A check on address is being accessed is placed. Whether the master group is allowed to access the requested address is verified. Depending on the outcome the request is either serviced or ignored. Any number masters from the same group can have accesses to the same address.

The information about group accessibilities and address accessibilities is stored in the accessibility configuration registers, which are accessible to group G0 (security subsystem) only.

3.14.1 Memory Area Accessibility

The memory area (256MB) is configurable on a 4KB page basis using the memory access-registers. These registers can be used in the increasing order, depending on how many areas are required (up to five). This is particularly important when less than 128MB of memory is implemented on the DRAM controller. For example, if only 64MB of area is present, then an access to any address above 64MB aliases to the address minus 64MB, defeating the protection mechanism.

Reset Condition

Upon hardware reset, only the XPU (G0), and no other resource on the SMP8654 will have full access to the DRAM. A DRAM controller reset does not affect the access control registers.

Register Area Accessibility

The access registers are (64KB) configurable on a dword basis using the registers DC_REG_ACCESS_X. Unlike the DRAM itself, the DRAM controller registers are not accessible by the M-Bus, V-Bus or the direct load port. The group information contains four 2-bit fields (corresponding to 3 master groups). Within each 2-bit field,

- Bit 0 if set, allows write access to the corresponding group
- Bit 1 if set, allows read access to the corresponding group

The accessibility control for the transport demux, the video decoder and audio block is identical to the one from the DRAM controller, except that, in the DRAM controller, total memory space is 256MB, configurable with a granularity of 4KB. Transport demux memory space is 128KB, configurable with a granularity of 4-byte and only two configuration registers are there for the register space accessibility.

The accessibility control for the security subsystem is identical to the one from the DRAM controller, except that, in the DRAM controller, total memory space is 256MB, configurable with a granularity of 4KB.

The XPU memory space is 4MB, configurable with a granularity of 256-byte; there are 6 registers for memory space accessibility, and three registers for register space accessibility and power-up values are discussed below.

Power-up values when the PROTECTED BUSSES directive is present:

```
XPU\_MEM\_ACCESS0 = 'h03 00 0000
```

XPU_MEM_ACCESS1 = 'h00_00_00000 // Overridden by XPU_MEM_ACCESS0 -> unused

XPU_MEM_ACCESS2 = 'h00_00_0000 // Overridden by XPU_MEM_ACCESS0 -> unused

XPU_MEM_ACCESS3 = 'h00_00_0000 // Overridden by XPU_MEM_ACCESS0 -> unused

XPU REG ACCESS0 = 'h57 00 2000

 $XPU_REG_ACCESS1 = 'h03_00_7FE0$

XPU REG ACCESS2 = 'hFF 00 0000

With these values,

- 1. The XPU ROM is writable by all the resources, but readable only by the XPU. This is done for quickturn emulation where the ROM is replaced by a RAM to download the contents before starting the XPU. On the real chip, writability by any other resource will have no effect since a ROM will be implemented.
- 2. The XPU bridge registers are read-write accessible for all the resources, allowing the PCI to start the XPU once the ROM is loaded. One of the first instructions in the XPU ROM should make this registers inaccessible to prevent the CPU or PCI from resetting the XPU. On the real chip, the XPU starts automatically.
- 3. Other resources within the XPU register space are read/write accessible to the XPU only.

4

IPU Subsystem

4.1 Block Diagram

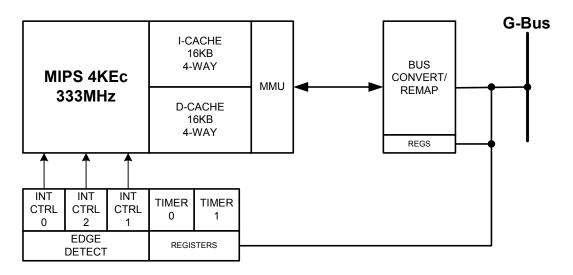


Figure 4-1 Interrupt processing subsystem

4.2 Introduction

A dedicated MIPS processor (32-bit 4KEc core) is integrated to off load certain low-latency processing requirements from the main CPU. Currently, the IPU (Interrupt Processing Unit) primarily handles interrupts generated by the video processing subsystem, but may also be used to off load other system functions and accelerate performance-critical tasks. The IPU executes at 333MHz and includes 16KB instruction and data caches.

In addition to the IPU processor itself, the interrupt processing subsystem contains the following additional resources:

- The remap control registers block
- A performance monitoring block
- An interrupt controller block and,
- A timer/real time clock block

The IPU accesses the G-Bus as a master. As a master, the IPU can access all the G-Bus mapped local resources. Other components of the interrupt processing subsystem can be accessed by either the IPU or another G-Bus master, if access permissions are programmed to allow. The bus converter in the interrupt processing subsystem performs a bus protocol adaptation and a configurable address translation (remap). The interrupt processing subsystem connects to the rest of the chip via the G-Bus and the M-Bus.

4.3 Features

- Dedicated 333MHz MIPS 4KEc processor for interrupt processing
- 16KB instruction and 16B data caches

IPU Processor

4.4 Description

The SMP8654 uses a separate 333MHz MIPS 4KEc CPU (~509 conforming DMIPS) for better interrupt processing capability.

The IPU core is a high-performance, low-power, 32-bit MIPS RISC core. It is a 32-bit privileged resource architecture. A Memory Management Unit (MMU) contains 4-entry instruction and data Translation Lookaside Buffers (ITLB/DTLB) and a 32 dual-entry joint TLB (JTLB) with variable page sizes. The 4KEc core includes a Multiply/Divide Unit (MDU) that implements single cycle MAC instructions, which enable the DSP algorithms to be performed efficiently. It allows 32-bit x 16-bit MAC instructions to be issued every cycle, while a 32-bit x 32-bit MAC instruction can be issued every 2 cycles.

The XPU contains 4-way set associative 16KB instruction and 16KB data caches. The load and fetch cache misses only block until the critical word becomes available. The pipeline resumes execution while the remaining words are being written to the cache. Both caches are virtually indexed and physically tagged to allow them to be accessed in the same clock that the address is translated.

The IPU contains timer and interrupt controller resources which are identical to the XPU subsystem. See the XPU section for a description of these components.

5

DRAM Controllers

5.1 Block Diagram of DRAM Controller

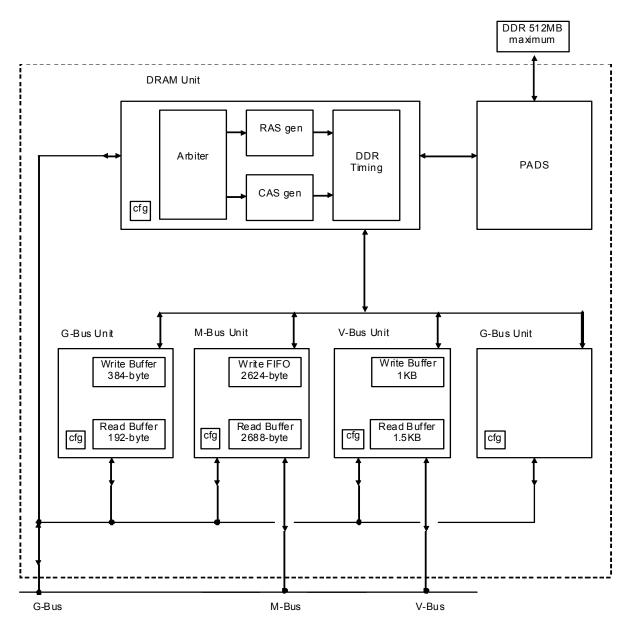


Figure 5-1 DRAM controller block diagram

95

5.2 Introduction

The SMP8654 contains two identical double-data rate synchronous DRAM (DDR-SDRAM) controllers operating at up to 333MHz. Each DRAM controller supports up to 512MB of DDR-2 memory. Because the DDR technology transfers data on both edges of the clock, the maximum effective burst data bandwidth of each controller is 2.6GB/sec. No more than 80% of the memory bandwidth should be used (~2.1GB/sec for each 32-bit interface). The contents of the DRAM memory may also be encrypted (proprietary algorithm) to protect the contents.

Compatible external memory devices attached to the memory interface provide the data storage capability necessary for all the functions performed by the SMP8654. These functions include:

- Multiple audio, video and data buffers
- Temporary data storage for hardware function blocks
- Program and data memory for the on-chip CPUs, DSPs and RISC processors
- Transport stream buffers

The DRAM controllers supports memory devices which conform to JEDEC standard JESD79-2B. The electrical interface to the external memories supports JEDEC SSTL_1.8 compliant signaling.

5.3 Features

- Two 32-bit DRAM controllers
- Double-data rate synchronous DRAM (up to DDR-667)
- Effective aggregate burst data bandwidth of the 2 DRAM interfaces is up to 5.2GB/ sec
- Interfaces up to 1GB of external DDR-2 SDRAM

5.4 Functional Description

The two SMP8654 DRAM controllers (DRAM controller 0 and DRAM controller 1) can interface to up to 1GB of external DDR SDRAM, using two independent 32-bit wide interfaces. The two DRAM controllers interface with the different modules of the SMP8654 through:

- A G-Bus for flat addressing of the DRAM, and configuration registers.
- An M-Bus for DMA transfers to/from all the blocks except the video output block
- A V-Bus for DMA transfers to/from the video output block
- A direct load port to interface to the video decoder for motion compensation loads

As shown in the block diagram, the memory controller connects to all four of the primary device buses. Each bus connects to the controller via an interface unit, which contains command queues as well as FIFOs for read and/or write data. The interface units in turn connect to the DRAM unit which actually controls the external memory.

Any G-Bus master can program the configuration registers of all four units. Also, a G-Bus master can access the entire DRAM space via the G-Bus unit.

Each of the DRAM controllers occupies two sections on the G-Bus space: A 512MB section for direct memory accesses and a 64KB section for configuration register accesses.

Within the DRAM units, an arbiter analyzes the pending requests from the many DMA channels in the various functional units. Based on the channel priority, the bank access requested and the currently available banks, the arbiter determines order of the service requested by the various channels. The DRAM units are designed to maximize utilization of the DRAMs, while simultaneously controlling read and write access latency.

The SMP8654 device uses a sophisticated delay-lock loop (DLL) technique to optimize critical timings in the DRAM interface. These timings are automatically updated on a periodic basis to maintain the critical characteristics under changing voltage and temperature conditions, and are not accessible to the customers.

5.4.1 Memory Configurations

The two 32-bit DRAM controller interfaces can connect up to 1GB of DDR-2 SDRAM (512MB per controller).

Table 5-1 Typical memory configurations

Total Memory (MB)	Bus Width (DRAM0/DRAM1)	Memory Chip Configuration
256	32/32	Four 32Mx16
512	32/32	Four 64Mx16
1024	32/32	Four 128Mx16

Many factors affect the external memory configuration needed to support a particular application. In addition to the basic requirement of picture buffer areas needed to support the video decoding process and any necessary graphics planes, other storage requirements must also be considered. Additional factors which come into play may include:

- Font sets and graphics elements which must be maintained in the off-screen display memory
- Multiple graphics buffers required for 'instant' updates (animation effects)
- Use of video and graphics input ports
- Nature of processing tasks being performed on the host CPU

Determining the optimum memory configuration requires that the application requirements be well defined. More demanding applications may require an analysis of the memory bandwidth utilization.

The DRAM registers control the DRAM refresh timing, CAS latency, and DRAM organization (total size, row/column size and the number [1x32 or 2x16] of DDR chips used). They also control the programmable delay lines affecting the data output delay (write transactions) and the input delay (read transactions). The registers allow the monitoring of the DRAM bandwidth usage.

5.4.2 Memory Connection Diagram

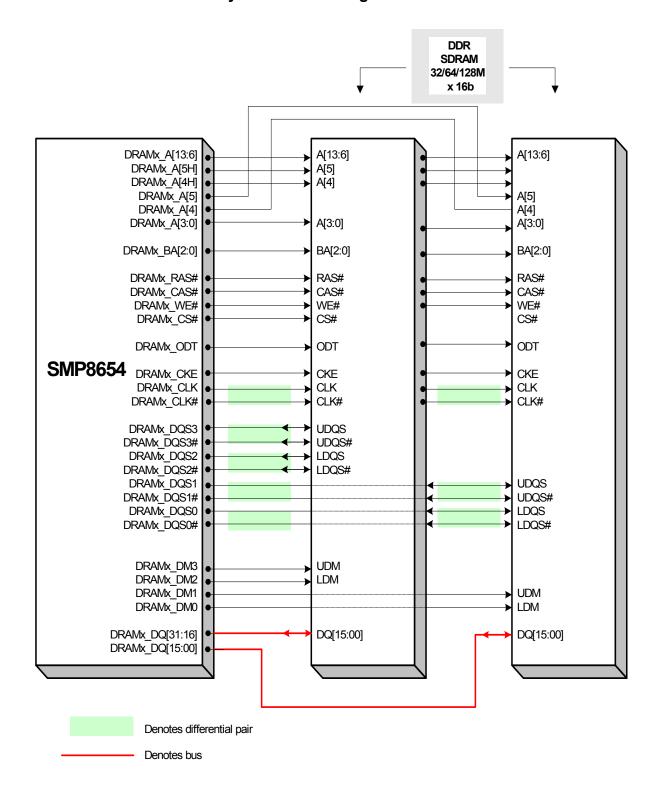


Figure 5-2 Memory Connection diagram

5.4.3 Memory Bandwidth Considerations

For complex applications, the available memory bandwidth may limit what can be done with SMP8654. In these cases the total available memory bandwidth (assuming DDR-667 DRAM) is as follows:

- For each 32-bit interface, maximum memory bandwidth is 2.6GB/s (2.1GB/s for DDR-533)
- Should not exceed 80% of maximum, resulting in 2.1GB/s available memory bandwidth for each 32-bit interface (1.7GB/s for DDR-533)

5.4.3.1 Memory Bandwidth Requirements for Video

Table 5-2 Memory bandwidth requirements for video

function	Source Format (frames per second)	Memory bandwidth needed
MPEG-4.10 (H.264) video	1920 x 1080 x 30	1.1GB/s (0.95GB/s decode only)
decode and display	1280 x 720 x 60	1.0GB/s
	720 x 576 x 50	0.45GB/s
	720 x 576 x 25	0.22GB/s
	720 x 480 x 60	0.45GB/s
	720 x 480 x 30	0.22GB/s
SMPTE 421M (VC-1) video	1920 x 1080 x 30	0.97GB/s
decode and display	1280 x 720 x 60	0.86GB/s
	720 x 576 x 50	0.31GB/s
	720 x 576 x 25	0.15GB/s
	720 x 480 x 60	0.31GB/s
	720 x 480 x 30	0.15GB/s
MPEG-2 video decode and dis-	1920 x 1080 x 30	0.41GB/s
play	1280 x 720 x 60	0.37GB/s
	720 x 576 x 50	0.14GB/s
	720 x 576 x 25	0.07GB/s
	720 x 480 x 60	0.14GB/s
	720 x 480 x 30	0.07GB/s
Displaying 32-bit graphics	1920 x 1080 x 60	498MB/s
	1920 x 1080 x 50	415MB/s
	1920 x 1080 x 30	249MB/s
	1920 x 1080 x 25	207MB/s
	1280 x 720 x 60	221MB/s
	1280 x 720 x 50	184MB/s
	720 x 576 x 50	83MB/s
	720 x 576 x 25	41MB/s
	720 x 480 x 60	83MB/s
	720 x 480 x 30	41MB/s

Table 5-2 Memory bandwidth requirements for video (Continued)

function	Source Format (frames per second)	Memory bandwidth needed
Displaying 24-bit graphics (24-	1920 x 1080 x 60	498MB/s
bit data is written and read as	1920 x 1080 x 50	415MB/s
32-bit data)	1920 x 1080 x 30	249MB/s
	1920 x 1080 x 25	207MB/s
	1280 x 720 x 60	221MB/s
	1280 x 720 x 50	184MB/s
	720 x 576 x 50	83MB/s
	720 x 576 x 25	41MB/s
	720 x 480 x 60	83MB/s
	720 x 480 x 30	41MB/s
Displaying 16-bit graphics	1920 x 1080 x 60	249MB/s
	1920 x 1080 x 50	207MB/s
	1920 x 1080 x 30	124MB/s
	1920 x 1080 x 25	104MB/s
	1280 x 720 x 60	111MB/s
	1280 x 720 x 50	92MB/s
	720 x 576 x 50	41MB/s
	720 x 576 x 25	21MB/s
	720 x 480 x 60	41MB/s
	720 x 480 x 30	21MB/s
Displaying 8-bit graphics	1920 x 1080 x 60	124MB/s
	1920 x 1080 x 50	104MB/s
	1920 x 1080 x 30	62MB/s
	1920 x 1080 x 25	52MB/s
	1280 x 720 x 60	55MB/s
	1280 x 720 x 50	46MB/s
	720 x 576 x 50	21MB/s
	720 x 576 x 25	10MB/s
	720 x 480 x 60	21MB/s
	720 x 480 x 30	10MB/s
Additional bandwidth for Type 1	1920 x 1080i x 30	93MB/s
deinterlacing of main video	1920 x 1080i x 25	78MB/s
	720 x 576i x 25	16MB/s
	720 x 480i x 30	16MB/s
Additional bandwidth for Type 2 (motion adaptive) deinterlacing	1920 x 1080i x 30	187MB/s
of main video	1920 x 1080i x 25	156MB/s
	720 x 576i x 25	31MB/s
	720 x 480i x 30	31MB/s
Additional bandwidth for simul- taneous HD+SD output		
- On-the-fly mode		0MB/s
- Buffered mode		42MB/s
Video decoder RISC	-	3MB/s (assuming 24Mbps bit- stream)

5.4.3.2 Memory Bandwidth Requirements for Audio

Table 5-3 Memory bandwidth requirements for audio

function	Typical memory bandwidth needed
Decoding, output formatting and routing	
- Dolby Digital 5.1	29MB/s
- Dolby Digital Plus 2.0	TBD
- Dolby Digital Plus 5.1	TBD
- Dolby Digital Plus 7.1	TBD
- Dolby TrueHD 5.1	TBD
- Dolby TrueHD 7.1	TBD
- MPEG-1 Layers I, II 2.0	75MB/s
- MPEG -1 Layer III (mp3) 2.0	65MB/s
- MPEG-4 AAC-LC 2.0	TBD
- MPEG-4 AAC-LC 5.1	49MB/s
- MPEG-4 HE-AAC 5.1	41MB/s
- MPEG-4 BSAC 2.0	TBD
- LPCM 7.1	70MB/s
- WMA9 2.0	53MB/s
- WMA Pro 5.1	32MB/s
- ATRAC3 2.0	1MB/s
Encoding	
- Dolby Digital 5.1	TBD
Other	
- Watermark detection	1MB/s
- Post processing	TBD

For example, displaying a HD MPEG-4.10 (H.264) video + SD MPEG-4.10 (H.264) + 32-bit HD graphics + 8-bit HD subtitle requires, 1.1 + 0.22 + 0.25 + 0.06 = 1.6GB/s of memory bandwidth to display it on the TV. This does not include the additional memory bandwidth required for writing the graphics and the subpicture data, deinterlacing, audio, and the CPU/XPU requirements. Note that the display on the TV must always be at 30 (25) frames or 60 (50) fields per second.

To assist in calculating the needed memory bandwidth for various applications, additional typical memory bandwidth values for various other operations are:

Table 5-4 Typical memory bandwidth values

function	Typical memory bandwidth needed
XPU baseline	1MB/s
- WM DRM-ND and WM DRM-PD	6MB/s (16Mbps bitstream max.)
- DTCP/IP	3MB/s
- HDCP for DVI and HDMI	1MB/s
- CPRM for DVD-R and DVD-RW playback	1MB/s
- CSS for DVD-Video playback	1MB/s
- Verance audio watermark detection	1MB/s
- VCPS for DVD+R/+RW	1MB/s

5.4.4 Memory Size Requirements

The following tables list some of the major software/firmware components and the typical amount of DRAM they require.

Table 5-5 Video Decoding DRAM requirements (MB, includes all needed buffers, no deinterlacing or type 1 deinterlacing)

	MPEG-2	MPEG-4.2	MPEG-4.10 (H.264)	SMPTE 421M (VC-1)
352x240 352x288	1	1	3	2
352x480i 352x576i	2	2	5	3
720x480i 720x576i	4	4	7	4
1280x720p	7	8	13	8
1920×1080i	16	17	36	18

Table 5-6 Video Decoding DRAM requirements (MB, includes all needed buffers, type 2 deinterlacing used)

	MPEG-2	MPEG-4.2	MPEG-4.10 (H.264)	SMPTE 421M (VC-1)
352x240 352x288	2	2	3	2
352x480i 352x576i	3	3	5	3
720x480i 720x576i	4	5	8	5
1280x720p	9	9	14	10
1920x1080i	19	20	39	21

Table 5-7 Typical Firmware DRAM requirements (MB)

Firmware	Total DRAM Required	DRAM Bank 1	DRAM Bank 0
Video decoding (HD MPEG-4.10)	39	39	
Audio decoding	5		5
Linux (11) + MRUA/DCC-HD/DirectFB (11) + kernel mode drivers (8)	30		30
XPU	4		4
2D graphics accelerator	1		1
Simultaneous HD + SD output	2	2	
Total	81	41	40

5.5 Pin Description

5.5.1 DRAM Controller Pins

Table 5-8 DRAM controller pin descriptions

Pin Name	Pin Id	Direction	Description
DRAM0_A0	M27	0	Memory address bit 0
DRAM0_A1	N30	0	Memory address bit 1
DRAM0_A10	P29	0	Memory address bit 10
DRAM0_A11	P28	0	Memory address bit 11
DRAM0_A12	R25	0	Memory address bit 12
DRAM0_A13	N25	0	Memory address bit 13. Memory address bus provides the SDRAM with the row address for the active commands, and the column address and the auto-precharge value for read/write commands.
DRAM0_A2	P26	0	Memory address bit 2
DRAM0_A3	T25	0	Memory address bit 3
DRAM0_A4	N29	0	Memory address bit 4
DRAM0_A4H	M25	0	Memory address bit 4H
DRAM0_A5	R26	0	Memory address bit 5
DRAM0_A5H	P25	0	Memory address bit 5H
DRAM0_A6	N28	0	Memory address bit 6
DRAM0_A7	T27	0	Memory address bit 7
DRAM0_A8	N26	0	Memory address bit 8
DRAM0_A9	T28	0	Memory address bit 9
DRAM0_BA0	R28	0	Bank address output 0
DRAM0_BA1	R30	0	Bank address output 1. BA[1:0] define to which SDRAM bank an active, read, write or precharge command is being applied.
DRAM0_BA2	R29	0	Bank address output 2. BA[1:0] define to which SDRAM bank an active, read, write or precharge command is being applied.
DRAM0_CAS#	M28	0	Column address strobe. Memory command output. In conjunction with CAS# and WE#, this signal determines the memory operation requested (active-low).

Table 5-8 DRAM controller pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description
DRAM0_CK	M30	0	Non-inverted clock output. CK and CK# are a differential clock signal pair. The SDRAM0 address and control signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. SDRAM output (read) data is referenced to the crossings of CK and CK# in both directions.
DRAM0_CK#	L30	0	Inverted clock output. CK and CK# are a differential clock signal pair. The SDRAM address and control signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. SDRAM output (read) data is referenced to the crossings of CK and CK# in both directions (active-low).
DRAM0_CKE	T30	0	Clock enable. A high level activates, and a low level deactivates the internal clock signals in the SDRAM. This signal is driven low to activate the SDRAM power-down modes.
DRAM0_CS#	L27	0	Chip select (active low)
DRAM0_DM0	W26	0	Write data mask for bits [07:00] of memory data
DRAM0_DM1	AB29	0	Write data mask for bits [15:08] of memory data
DRAM0_DM2	K28	0	Write data mask for bits [23:16] of memory data
DRAM0_DM3	H28	0	Write data mask for bits [31:24] of memory data. Write data is masked when the corresponding DM bit is sampled high by the SDRAM during a write access.
DRAM0_DQ0	U25	В	Memory data bus bit 0 (LSB)
DRAM0_DQ1	Y26	В	Memory data bus bit 1
DRAM0_DQ10	AA28	В	Memory data bus bit 10
DRAM0_DQ11	AB30	В	Memory data bus bit 11
DRAM0_DQ12	AD30	В	Memory data bus bit 12
DRAM0_DQ13	W30	В	Memory data bus bit 13
DRAM0_DQ14	AB28	В	Memory data bus bit 14
DRAM0_DQ15	Y29	В	Memory data bus bit 15
DRAM0_DQ16	H27	В	Memory data bus bit 16
DRAM0_DQ17	L25	В	Memory data bus bit 17
DRAM0_DQ18	K25	В	Memory data bus bit 18
DRAM0_DQ19	K26	В	Memory data bus bit 19
DRAM0_DQ2	V26	В	Memory data bus bit 2

Table 5-8 DRAM controller pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description
DRAM0_DQ20	L26	В	Memory data bus bit 20
DRAM0_DQ21	H26	В	Memory data bus bit 21
DRAM0_DQ22	K29	В	Memory data bus bit 22
DRAM0_DQ23	J25	В	Memory data bus bit 23
DRAM0_DQ24	E29	В	Memory data bus bit 24
DRAM0_DQ25	J28	В	Memory data bus bit 25
DRAM0_DQ26	G29	В	Memory data bus bit 26
DRAM0_DQ27	G30	В	Memory data bus bit 27
DRAM0_DQ28	J30	В	Memory data bus bit 28
DRAM0_DQ29	D30	В	Memory data bus bit 29
DRAM0_DQ3	W27	В	Memory data bus bit 3
DRAM0_DQ30	H29	В	Memory data bus bit 30
DRAM0_DQ31	F28	В	Memory data bus bit 31 (MSB)
DRAM0_DQ4	Y28	В	Memory data bus bit 4
DRAM0_DQ5	U26	В	Memory data bus bit 5
DRAM0_DQ6	W25	В	Memory data bus bit 6
DRAM0_DQ7	U27	В	Memory data bus bit 7
DRAM0_DQ8	W28	В	Memory data bus bit 8
DRAM0_DQ9	AC29	В	Memory data bus bit 9
DRAM0_DQS0	V28	В	Data strobes for bits 07:00 of memory data
DRAM0_DQS0#	V29	В	Data strobes for bits 07:00 of memory data
DRAM0_DQS1	AA29	В	Data strobes for bits [15:08] of memory data
DRAM0_DQS1#	AA30	В	Data strobes for bits [15:08] of memory data
DRAM0_DQS2	J27	В	Data strobes for bits [23:16] of memory data
DRAM0_DQS2#	J26	В	Data strobes for bits [23:16] of memory data
DRAM0_DQS3	F30	В	Data strobes for bits [31:24] of memory data bus. Output by the SMP8654 with the write data; output by the SDRAM with the read data.
DRAM0_DQS3#	F29	В	Data strobes for bits [31:24] of memory data bus. Output by the SMP8654 with the write data; output by the SDRAM with the read data.
DRAM0_ODT	K30	0	On die termination

Table 5-8 DRAM controller pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description
DRAMO_RAS#	L28	0	Memory command output. In conjunction with WE#, this signal determines the memory operation requested.
DRAM0_VREFSSTL0	AA27	I	SSTL-2 voltage reference input (1.25V)
DRAM0_VREFSSTL1	U24	I	SSTL-2 voltage reference input (1.25V)
DRAM0_VREFSSTL2	P24	I	SSTL-2 voltage reference input (1.25V)
DRAM0_VREFSSTL3	L24	I	SSTL-2 voltage reference input (1.25V)
DRAM0_VREFSSTL4	G27	I	SSTL-2 voltage reference input (1.25V)
DRAM0_WE#	U29	0	Write enable (active-low). Memory command output. In conjunction with CAS# and WE#, this signal determines the memory operation requested.
DRAM1_A0	D14	0	Memory address bit 0
DRAM1_A1	A15	0	Memory address bit 1
DRAM1_A10	B16	0	Memory address bit 10
DRAM1_A11	C16	0	Memory address bit 11
DRAM1_A12	F17	0	Memory address bit 12
DRAM1_A13	F15	0	Memory address bit 13. Memory address bus provides the SDRAM with the row address for the active commands, and the column address and the auto-precharge value for read/write commands.
DRAM1_A2	E16	0	Memory address bit 2
DRAM1_A3	F18	0	Memory address bit 3
DRAM1_A4	B15	0	Memory address bit 4
DRAM1_A4H	F14	0	Memory address bit 4H
DRAM1_A5	E17	0	Memory address bit 5
DRAM1_A5H	F16	0	Memory address bit 5H
DRAM1_A6	C15	0	Memory address bit 6
DRAM1_A7	D18	0	Memory address bit 7
DRAM1_A8	E15	0	Memory address bit 8
DRAM1_A9	C18	0	Memory address bit 9
DRAM1_BA0	C17	0	Bank address output 0
DRAM1_BA1	A17	0	Bank address output 1. BA[1:0] define to which SDRAM bank an active, read, write or precharge command is being applied.

Table 5-8 DRAM controller pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description
DRAM1_BA2	B17	0	Bank address output 2. BA[1:0] define to which SDRAM bank an active, read, write or precharge command is being applied.
DRAM1_CAS#	C14	0	Column address strobe (active-low). Memory command output. In conjunction with WE#, this signal determines the memory operation requested.
DRAM1_CK	A14	0	Non-inverted clock output. CK and CK# are a differential clock signal pair. SDRAM address and control signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. SDRAM output (read) data is referenced to the crossings of CK and CK# in both directions.
DRAM1_CK#	A13	0	Inverted clock output. CK and CK# are a differential clock signal pair. SDRAM address and control signals are sampled on the crossing of the positive edge of CK and the negative edge of CK#. SDRAM output (read) data is referenced to the crossings of CK and CK# in both directions (active-low).
DRAM1_CKE	A18	0	Clock enable. A high level activates, and a low level deactivates the internal clock signals in the SDRAM. This signal is driven low to activate the SDRAM power-down modes.
DRAM1_CS#	D13	0	DRAM1 chip select (active-low).
DRAM1_DM0	E21	0	Write data mask for bits [07:00] of memory data
DRAM1_DM1	B24	0	Write data mask for bits [15:08] of memory data
DRAM1_DM2	C12	0	Write data mask for bits [23:16] of memory data
DRAM1_DM3	C10	0	Write data mask for bits [31:24] of memory data. Write data is masked when the corresponding DM bit is sampled high by the SDRAM during a write access.
DRAM1_DQ0	F19	В	Memory data bus bit 0 (LSB)
DRAM1_DQ1	E22	В	Memory data bus bit 1
DRAM1_DQ10	C23	В	Memory data bus bit 10
DRAM1_DQ11	A24	В	Memory data bus bit 11
DRAM1_DQ12	A26	В	Memory data bus bit 12
DRAM1_DQ13	A21	В	Memory data bus bit 13
DRAM1_DQ14	C24	В	Memory data bus bit 14
DRAM1_DQ15	B22	В	Memory data bus bit 15
DRAM1_DQ16	D10	В	Memory data bus bit 16

Table 5-8 DRAM controller pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description
DRAM1_DQ17	F13	В	Memory data bus bit 17
DRAM1_DQ18	F12	В	Memory data bus bit 18
DRAM1_DQ19	E12	В	Memory data bus bit 19
DRAM1_DQ2	E20	В	Memory data bus bit 2
DRAM1_DQ20	E13	В	Memory data bus bit 20
DRAM1_DQ21	E10	В	Memory data bus bit 21
DRAM1_DQ22	B12	В	Memory data bus bit 22
DRAM1_DQ23	F11	В	Memory data bus bit 23
DRAM1_DQ24	В7	В	Memory data bus bit 24
DRAM1_DQ25	C11	В	Memory data bus bit 25
DRAM1_DQ26	В9	В	Memory data bus bit 26
DRAM1_DQ27	A9	В	Memory data bus bit 27
DRAM1_DQ28	A11	В	Memory data bus bit 28
DRAM1_DQ29	A6	В	Memory data bus bit 29
DRAM1_DQ3	D21	В	Memory data bus bit 3
DRAM1_DQ30	B10	В	Memory data bus bit 30
DRAM1_DQ31	C8	В	Memory data bus bit 31 (MSB)
DRAM1_DQ4	C22	В	Memory data bus bit 4
DRAM1_DQ5	E19	В	Memory data bus bit 5
DRAM1_DQ6	F21	В	Memory data bus bit 6
DRAM1_DQ7	D19	В	Memory data bus bit 7
DRAM1_DQ8	C21	В	Memory data bus bit 8
DRAM1_DQ9	B25	В	Memory data bus bit 9
DRAM1_DQS0	C20	В	Data strobes for bits 07:00 of memory data
DRAM1_DQS0#	B20	В	Data strobes for bits [15:08] of memory data
DRAM1_DQS1	B23	В	Data strobes for bits [23:16] of memory data
DRAM1_DQS1#	A23	В	Data strobes for bits [31:24] of memory data bus. Output by the SMP8654 with the write data; output by the SDRAM with the read data.
DRAM1_DQS2	D11	В	Data strobes for bits 07:00 of memory data
DRAM1_DQS2#	E11	В	Data strobes for bits [15:08] of memory data

Table 5-8 DRAM controller pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description
DRAM1_DQS3	A8	В	Data strobes for bits [23:16] of memory data
DRAM1_DQS3#	B8	В	Data strobes for bits [31:24] of memory data bus. Output by the SMP8654 with the write data; output by the SDRAM with the read data.
DRAM1_ODT	A12	0	On die termination
DRAM1_RAS#	C13	0	DRAM1 row address strobe (active-low). Memory command output. In conjunction with CAS# and WE#, this signal determines the memory operation requested.
DRAM1_VREFSSTL0	D23	I	SSTL-2 voltage reference input (1.25V)
DRAM1_VREFSSTL1	G19	I	SSTL-2 voltage reference input (1.25V)
DRAM1_VREFSSTL2	G16	I	SSTL-2 voltage reference input (1.25V)
DRAM1_VREFSSTL3	G13	I	SSTL-2 voltage reference input (1.25V)
DRAM1_VREFSSTL4	D9	I	SSTL-2 voltage reference input (1.25V)
DRAM1_WE#	B19	0	DRAM1 write enable (active-low). Memory command output. In conjunction with CAS# and WE#, this signal determines the memory operation requested.

5.6 Electrical Characteristics

All DRAM I/O signals conform to the electrical characteristics specified for SSTL-1.8 Class II interface as specified in the JEDEC standard, JESD79D-2B, dated January 2005. Refer to the JEDEC standard for details regarding switching levels, drive performance, etc.

6

System Block

6.1 Block Diagram of System Block

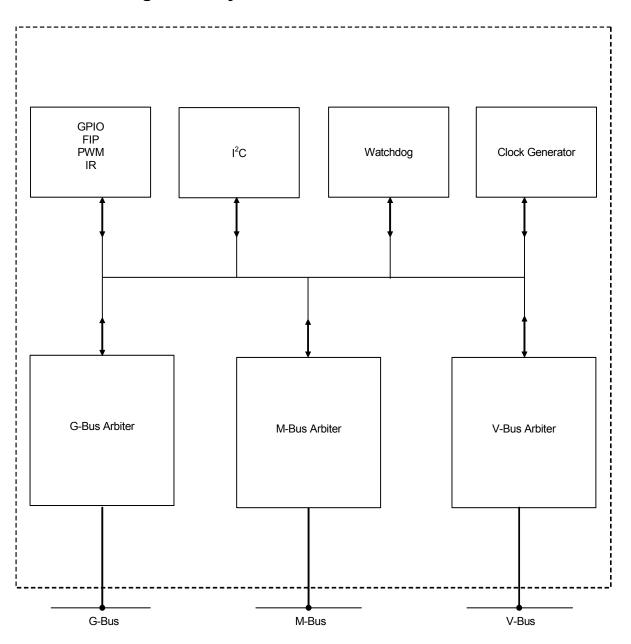


Figure 6-1 Block diagram of system block

6.2 Introduction

The SMP8654 system block contains the following modules:

A GPIO block containing General Purpose I/O (GPIO), Front Panel Interface (FIP)
 Controller, Pulse Width Modulator (PWM) and infrared decoder

- Two I²C masters and one I²C slave
- A clock generator
- System bus arbiters

Many SMP8654 sub-blocks require shared accesses to the internal system buses. The bus arbiters allocate the access to the individual system buses based on the priority of the device. A bus bridge unit allows each of the above blocks to be configured through the G-Bus.

As shown in the block diagram, the system block connects to each of the three primary device data buses previously mentioned. The system controller unit provides the arbitration logic for the four primary internal buses. The M-Bus and V-Bus arbiters implement a bandwidth allocation algorithm allowing each bus master to be assigned a certain minimum and maximum bandwidth allocation in increments of 2⁻⁸ of the total available bandwidth.

When certain constraints are met in the allocation of minimum and maximum bandwidth, each master can be guaranteed to receive its minimum bandwidth, and often receives more.

GPIO Block

6.3 General Purpose I/O (GPIO)

The SMP8654 provides 16 dedicated general-purpose input/output (GPIO) pins to help reduce or eliminate external "glue logic" often needed for system implementation. In addition to these dedicated GPIO pins, an additional 68 GPIO pins can be made available since certain other chip interfaces can have GPIO capability as an alternate function. The total number of available GPIO pins, therefore, depends on the usage of these shared interfaces. Shared GPIO pins are listed later in this section.

115

6.3.1 Dedicated GPIO

The system block contains a GPIO controller module which supports the 16 dedicated GPIO pins. The GPIO pins are individually configurable as inputs or outputs, and are controlled by software commands issued to registers within the module. All pins default to input mode upon device reset. Registers configure the direction and output value, or read the input value, of each pin. Because the control of the GPIO registers by the host CPU involves hardware elements (write buffers, shared buses) with variable latency, the GPIO pins should not be used for applications requiring precise control of timing. Generally, the GPIO pins should be used for low-speed or non-critical control and signaling applications.

6.3.1.1 Dedicated GPIO Features

- Supports 16 independently controllable inputs/outputs
- Up to four pins may be specified to provide CPU interrupts
- Masking function simplifies software control of individual GPIO pins
- 'Special function' can be used as needed which share GPIO pins
 - Two pulse-width modulators (PWMs)
 - Two I²C master interfaces
 - One I²C slave interface
 - One Front Panel Interface controller
 - One HDMI CEC

6.3.1.2 **GPIO** Controller Operation

Direction of each GPIO pin is established by the contents of the direction register. The value of pins set as outputs is controlled by writing to the Output Data Register. When writing to this register, the 16 data bits corresponding to the state of the 16 GPIO pins is placed in the lower 16 bits of the 32-bit value written by the CPU. The upper 16 bits function as a "mask" value: a logic zero in any of the upper 16 bits causes the corresponding data bit (lower 16 bits) to NOT be written (previous value is retained). As an example, a logic zero in bit position 24 causes Output Data Register bit 8 to be unchanged during a write. Conversely, a logic one in bit position 24 causes bit 8 to be written into the Output Data Register. The block diagram of the GPIO controller module is as shown below:

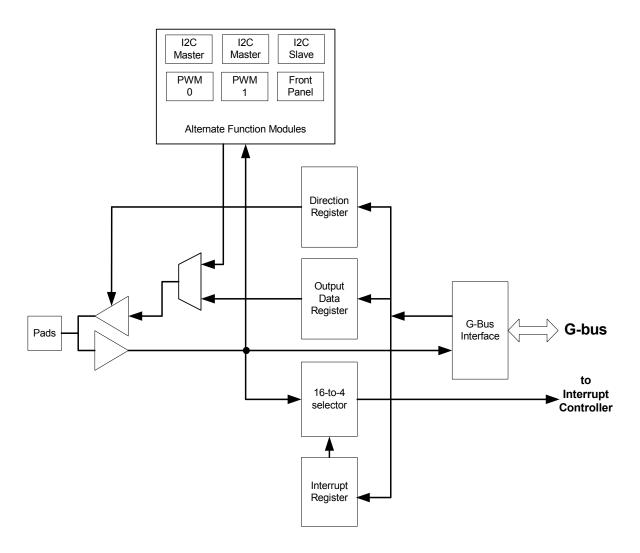


Figure 6-2 GPIO controller block diagram

The GPIO controller includes both "alternate functions" and "selectable inputs" for greater flexibility.

6.3.1.3 Alternate functions and Selectable Inputs

As described above, the system block contains several special-function modules which, if used, share various GPIO pins for their I/O. The alternate functions implemented include 2 PWM modules, 2 I²C master controllers, one I²C slave controller, and a 4-wire serial Front Panel Interface Controller (FIP). When alternate functions are enabled the matching GPIO pins cannot be used for GPIO any more.

Selectable inputs are input functions only (e.g., PCI Interrupt A). They are assigned by default to particular pins at reset, but can be reassigned to a different pin under register control. Pins used as selectable inputs should be configured as GPIO pins in input mode.

The following table shows the GPIO alternate functions and selectable inputs in detail:

GPIO	Alternate Fu	ınction	Selectable Inputs
15	PWM Gene	rator 0	
14	PWM Gene	rator 1	
13			HDMI CEC
12			Infrared Remote Input
11	120 Martan 4	sda	(PCI) Interrupt Input D
10	I ² C Master 1	sck	(PCI) Interrupt Input C
9			(PCI) Interrupt Input B
8			(PCI) Interrupt Input A
7	01 120	sda	
6	Slave I ² C	sck	
5		clk	
4		stb	
3	Front Panel Interface	dout	
2	(FIP)	din	
1	I ² C Master C	sda	
0	l ² C Master 0	sck	

6.3.1.4 GPIO Pin State During Initialization

The following figure depicts the state of GPIO pins during device initialization:

(*) CONDITION UNTIL CHANGED BY SOFTWARE WRITE TO GPIO REGISTERS

Figure 6-3 Behavior of GPIO pins during chip initialization

6.3.2 Additional GPIO

In addition to the 16 dedicated GPIO pins described above, certain other interfaces in the device can be utilized as GPIO pins if the interface is not used in the application. The table below lists all such "auxiliary" GPIO pins. Note that the GPIO pin numbering is not contiguous since several internal register bits are not brought out to physical pins of the device.

Table 6-1 Additional GPIO pins

GPIO#	Primary function	Ball #	GPIO#	Primary function	Ball #
16	Unavailable	-	50	ETH0_TX_ER	AJ1
17	Unavailable	-	51	ETH1_TXCLK	AG6
18	UARTO_RX	F27	52	ETH1_TX_EN	AF7
19	Unavailable	-	53	ETH1_TXD0	AF6
20	Unavailable	-	54	ETH1_TXD1	AK7
21	Unavailable	-	55	ETH1_TXD2	AJ7
22	UARTO_TX	D29	56	ETH1_TXD3	AH7
23	Unavailable	-	57	ETH1_RXCLK	AH6
24	Unavailable	-	58	ETH1_RX_DV	AJ5
25	UART1_RX	C30	59	ETH1_RX_ER	AH4
26	UART1_CTS	H24	60	ETH1_RXD0	AH5
27	UART1_DSR	G25	61	ETH1_RXD1	AG5
28	UART1_DCD	F26	62	ETH1_RXD2	AK6
29	UART1_TX	E27	63	ETH1_RXD3	AJ6
30	UART1_RTS	D28	64	ETH1_CRS	AK5
31	UART1_DTR	C29	65	ETH1_COL	AE7
32	ETH0_TXCLK	AG1	66	ETH1_MDC	AJ4
33	ETH0_TX_EN	АЈЗ	67	ETH1_MDIO	AK4
34	ETH0_TXD0	AG2	68	ETH1_MDINT#	AK3
35	ETH0_TXD1	AG3	69	ETH1_TX_ER	AG7
36	ETH0_TXD2	AH1	70	SCARD0_RST	A29
37	ETH0_TXD3	AH2	71	SCARD0_CLK	B28
38	ETH0_RXCLK	AF4	72	SCARD0_FC#	C27
39	ETH0_RX_DV	AE4	73	SCARD0_IO	D26

Table 6-1 Additional GPIO pins (Continued)

GPIO#	Primary function	Ball #	GPIO#	Primary function	Ball #
40	ETH0_RX_ER	AE2	74	SCARD0_CTL0	G23
41	ETH0_RXD0	AE5	75	SCARD0_CTL1	F24
42	ETH0_RXD1	AF1	76	SCARD0_CTL2	E25
43	ETH0_RXD2	AF2	77	SCARD1_RST	A28
44	ETH0_RXD3	AF3	78	SCARD1_CLK	A27
45	ETH0_CRS	AE3	79	SCARD1_FC#	B27
46	ETH0_COL	AK2	80	SCARD1_IO	C26
47	ETH0_MDC	AE1	81	SCARD1_CTL0	F23
48	ETH0_MDIO	AD6	82	SCARD1_CTL1	E24
49	ETH0_MDINT#	AD5	83	SCARD1_CTL2	D25

6.3.3 Register Map

6.3.3.1 GPIO Registers

Table 6-2 Register map - GPIO

Address ¹	Register Name	R/W/A ²	Description
+0500	SYS_GPIO_DIR	R/W	GPIO Direction Register
+0504	SYS_GPIO_DATA	R/W	GPIO Data Register
+0508	SYS_GPIO_INT	R/W	GPIO Interrupt Register
+0510	SYS_GPIO15_PWM	R/W	GPIO15 PWM Register
+0514	SYS_GPIO14_PWM	R/W	GPIO14 PWM Register
+1B830 ³	TDMX_GPIO_DATA	R/W	Transport Demux GPIO Data Register
+1B834	TDMX_GPIO_DIR	R/W	Transport Demux GPIO Direction Register
+1B838	TDMX_GPIO_SEL	R/W	Transport Demux GPIO Selection Register
+C130 ⁴	CPU_UARTO_GPIO_DIR	R/W	UARTO GPIO Direction Register
+C134	CPU_UARTO_GPIO_DATA	R/W	UARTO GPIO Data Register
+C138	CPU_UARTO_GPIO_MODE	R/W	UARTO GPIO Mode Register
+C230	CPU_UART1_GPIO_DIR	R/W	UART1 GPIO Direction Register
+C234	CPU_UART1_GPIO_DATA	R/W	UART1 GPIO Data Register

SMP8654-DS-A-10 SMP8654 Datasheet

Table 6-2 Register map - GPIO (Continued)

Address ¹	Register Name	R/W/A ²	Description
+C238	CPU_UART1_GPIO_MODE	R/W	UART1 GPIO Mode Register

- 1. Address refers to G-Bus byte address relative to the system block register base (0x10000).
- Read/Write/Auto update.
 The TDMX_GPIO_xxx addresses are relative to the transport demux memory base 0x14000.
 The UART GPIO addresses are relative to the CPU block register base 0x60000.

6.3.4 Pin Description

6.3.4.1 GPIO Pins

The SMP8654 provides 16 general-purpose I/O (GPIO) pins which may be individually configured as inputs or outputs and used for design-specific applications.

Table 6-3 GPIO pin description

Pin Name	Pin Id	Direction	Description	Driver Type ¹
GPIO0	D5	В	General-purpose IO pin 0	A
			Alternate function: I ² C Master 0.	
GPIO1	E6	В	General-purpose IO pin 1	Α
			Alternate function: I ² C Master 0.	
GPIO2	F7	В	General-purpose IO pin 2	Α
			Alternate function: Front Panel Interface (FIP).	
GPIO3	G8	В	General-purpose IO pin 3	A
			Alternate function: Front Panel Interface (FIP).	
GPIO4	А3	В	General-purpose IO pin 4	A
			Alternate function: Front Panel Interface (FIP).	
GPIO5	B4	В	General-purpose IO pin 5	A
			Alternate function: Front Panel Interface (FIP).	
GPIO6	C5	В	General-purpose IO pin 6	A
			Alternate function: Slave I ² C.	
GPIO7	D6	В	General-purpose IO pin 7	Α
			Alternate function: Slave I ² C.	
GPIO8	E7	В	General-purpose IO pin 8	Α
			Selectable input: (PCI) Interrupt Input A.	
GPIO9	F8	В	General-purpose IO pin 9	Α
			Selectable input: (PCI) Interrupt Input B.	

Table 6-3 GPIO pin description (Continued)

Pin Name	Pin Id	Direction	Description	Driver Type ¹
GPIO10	A4	В	General-purpose IO pin 10 Alternate function: I ² C Master 1. Selectable input: (PCI) Interrupt Input C.	Α
GPIO11	B5	В	General-purpose IO pin 11 Alternate function: I ² C Master 1. Selectable input: (PCI) Interrupt Input D.	A
GPIO12	C6	В	General-purpose IO pin 12 Selectable input: Infrared Remote input.	А
GPIO13	D7	В	General-purpose IO pin 13 Selectable input: HDMI CEC.	А
GPIO14	E8	В	General-purpose IO pin 14 Alternate function: PWM generator 1.	A
GPIO15	F9	В	General-purpose IO pin 15 Alternate function: PWM generator 0.	A

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

6.4 Front Panel Controller Interface (FIP)

6.4.1 Introduction

The Front Panel Controller Interface (FIP) directly supports the NEC uPD16311, NEC uPD16312, PTC PT6311 and PTC PT6312. Other front panel controllers may be used by interfacing to the UART or the GPIO.

6.4.2 Features

- Supports NEC uPD16311 and uPD16312
- Supports PT6311 and PT6312
- Interrupt driven
- Works on a fixed clock rate of 27MHz

6.4.3 Block Diagram

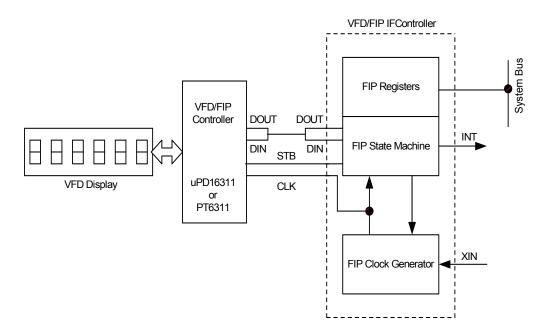


Figure 6-4 FIP block diagram

6.4.4 Functional Description

This block is designed to connect directly to the NEC uPD16311, NEC uPD16312, PT6311 or PT6312 VFD/FIP controller chips. The VFD/FIP controller chips mentioned are commonly used to control VFD displays used in consumer appliances. When enabled PIO[5:2] are used as control pins DOUT, DIN, STB and CLK.

In some applications DIN and DOUT are connected together on both sides (SMP8654 and the VFD controller/FIP controller chip) to save one communication line. In this case, the tristate mode needs to be enabled and an external pull-up resistor connected.

The FIP command register is used to provide a command to a VFD/FIP device to set the display mode, data read/write mode, address of the display memory and the display control. The display data register stores the display data. The LED data is stored by the LED data register.

The key data registers are used to the store key data. The FIP controller will serially shift out the key data from its key input storage RAM after a write to the FIP command register.

The switch data register is used to store the switch input data. It is valid after a write to the FIP command register.

The configuration register controls the enabling of the FIP controller interface. The configuration register value is used to divide the input clock and generate the FIP clock (default = 27d).

Frequency (FIP_CLK) = Frequency (XIN) / (FIP_CLK_DIV + 1); where, FIP_CLK_DIV should be greater than 2, and values 0, 1 and 2 default to 2.

The configuration register also issues an interrupt on the completion of read or write transactions. The interrupt status register is used to clear the interrupts. It is recommended to clear this register before enabling the interrupts.

SMP8654-DS-A-10 SMP8654 Datasheet

6.4.5 Register Map

6.4.5.1 FIP Registers

Table 6-4 FIP registers

Address ¹	Register Name	R/W/A ²	Description
+0540	FIP_COMMAND	R/W	FIP Command Register
+0544	FIP_DISPLAY_DATA	R/W	FIP Display Data Register
+0548	FIP_LED_DATA	R/W	FIP LED Data Register
+054C	FIP_KEY_DATA1	R	FIP Key Data1 Register
+0550	FIP_KEY_DATA2	R	FIP Key Data2 Register
+0554	FIP_SWITCH_DATA	R	FIP Switch Data Register
+0558	FIP_CONFIG	R/W	FIP Configuration Register
+055C	FIP_INT	R/C ³	FIP Interrupt Status Register

Address refers to G-Bus byte address relative to the system block register base.
 Read/Write/Auto update.
 Read/Clear.

6.4.6 Pin Description

6.4.6.1 FIP Pins

Table 6-5 FIP pin description

Pin Name	Pin Id	Direction	Description	Driver Type ¹
GPIO2	F7	В	FIP serial data input	Α
GPIO3	G8	В	FIP serial data output	Α
GPIO4	А3	В	FIP data strobe	Α
GPIO5	B4	В	FIP serial I/O clock	Α

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

6.4.7 Electrical Characteristics

6.4.7.1 FIP AC Electrical Characteristics

Table 6-6 FIP AC characteristics

Symbol	Units	Minimum	Typical	Maximum
T _{CKL}	ns	500		
T _{CKH}	ns	500		
T _{DV}	ns	0		10
T _{SU}	ns	10		
T _H	ns	6		
T _{STBDLY}	ns	1250		
T _{PWSTB}	ns	1000		

6.4.8 Timing Diagram

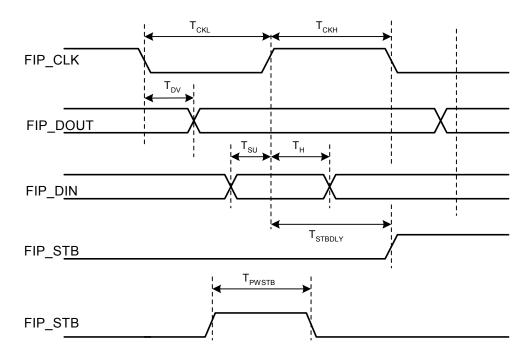


Figure 6-5 FIP timing diagram

6.5 Infrared Decoder

6.5.1 Introduction

The infrared input allows the interfacing to an external IR receiver. The NEC and Philips RC5/RC6 Mode 6A IR formats, commonly used by consumer equipment are supported.

6.5.2 Features

- Supports RC5 and RC6 Mode 6A formats
- Supports RC5 extended format
- Supports NEC format
- Interrupt driven
- Contains error detection

6.5.3 Block Diagram

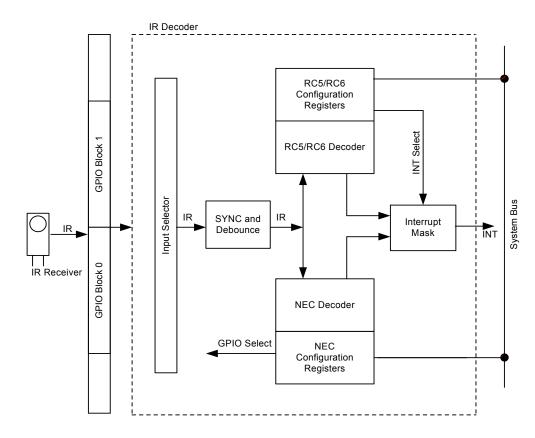


Figure 6-6 Infrared decoder block diagram

6.5.4 Functional Description

This block enables the user to receive the IR scan codes from a RC5/RC6 Mode 6A/ NEC standard compliant remote control.

The control register sets the number of bits to be captured in one frame. It also sets the predevider value for the NEC IR decoder. Using this register a GPIO pin may be selected to be used as an input for the NEC and RC5/RC6 Mode 6A IR decoder block.

The decoder data register contains the last scan code captured. This register can be used to detect whether a RC5/RC6 Mode 6A scan code, or a NEC scan code was received.

SCIF [X*8-1:0]; X={1,2} LCIF [X*8-1:0] X={3, ..., 16}

6.5.4.1 Supported RC6 Mode 6A Formats

SCC [7:0] or LCC [15:0]

MB [2:0]

LB

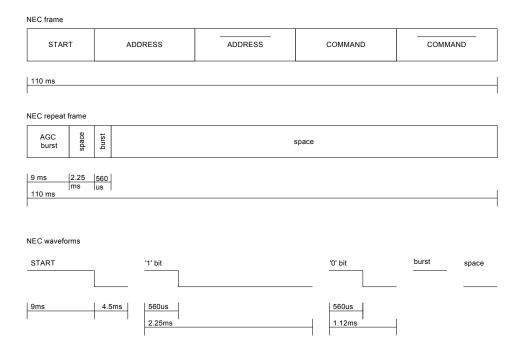
HEADER	CTRL FIELD	INFORMATION FIELD		LO
RC6A frame				T = 444.44 us
LB He	ader Leader bit, duration 8T (6T	high, 2T low)	6T	2T
SB He	ader Start bit, duration 2T (T hig	h, T low)	ТТ	
	ader Mode bits, duration 3 * 2T, Mode 6A MB[2:0]='110'		0: <u>T</u> T	1: T T
	ader Trailer bit, duration 4T, Mode 6A T= '0'		0: <u>2</u> T 2T	_
	ort Customer Code, duration 8 ong Customer Code, duration 16		0: <u>T</u> T	1: T T
	ort Customer Information Field, ng Customer Information Field, o		0: <u>T</u> T	1: T T
SFT Lea	ad out = Signal Free Time, dura	tion 6T	6T	

6.5.4.2 Supported RC5 Formats (Standard and Extended)

A frame is emitted from a RC5 compliant IR remote control once a key is pressed. If the key is held down, the same frame will be sent repeatedly. If the same key is pressed again (after releasing), the same frame will be sent again, except that the T bit will be inverted.

The extended RC5 format supports 128 commands rather than 64. This is achieved by using the 2nd start bit of the standard RC5 format as bit C6.

S: Start bit, T: Toggle bit, A[4:0]: 5 system address bits, C[5:0]: 6 system command bits (supported in the RC5 standard format), C[6:0]: 7 system command bits (supported only in the RC5 extended format)


Table 6-7 RC5 timing parameters

	Minimum	Typical	Maximum	Units
t _{bit}	1.334	1.778	2.222	ms
t _{frame}		24.889		ms

6.5.4.3 Supported NEC Format

A frame is emitted from a NEC compliant IR remote control once a key is pressed. After the START condition is transmitted, ADDRESS and ADDRESS# are sent (LSB first). The ADDRESS# represents the bit compliment of ADDRESS. Then the COMMAND and COMMAND# are transmitted wherein COMMAND# represents the bit compliment of COMMAND; transmission is LSB first. If the key is held down, a repeat frame is being sent by the remote.

START: Start condition, ADDRESS: 8-bit system address, COMMAND: 8-bit system command

Table 6-8 NEC timing parameters

	Minimum	Typical	Maximum	Units
t _{frame}		110		ms

6.5.4.4 Universal IR Receiver

The SMP8654 contains two universal IR receivers. These modules permit most scancode formats (e.g. RC5, RC6, NEC, RCMM, RCRF8, etc.) to be supported. Any incoming IR signal is captured, and the scancodes along with all the edges within a scancode are time-stamped. This allows the software to process the scancode from the memory via a user programmable software and without any latency issues.

The two separate Universal IR receivers (Universal IR Receiver 0 and 1) are present in order to be able to capture two different IR sources (e.g., a keyboard and a consumer electronics remote control) simultaneously. The two blocks operate independent of each other.

The features of the universal IR decoder are,

- Supports up to 2 IR sources
- Contains debounce and noise filter
- Supports Timestamp mode or Delta mode
- Scancodes are timestamped for subsequent processing by the software
- Supports any IR protocol or format
- Supports any scancode length
- Timebase is either variable system clock or a fixed 27MHz clock
- Interrupt driven
- GPIO pin user selectable

6.5.5 Register Map

6.5.5.1 Infrared Decoder Registers

Table 6-9 Infrared decoder registers

Address ¹ IR0	IR1	Register Name	R/W/A/C ²	Description
+0518	-	IR_NEC_CONTROL	R/W	Infrared NEC Control Register
+051C	-	IR_NEC_DECODER_DATA	R	Infrared NEC Decoder Data Register
+0520	-	IR_RC5_DECODER_CONTROL	R/W	Infrared RC5 Decoder Control Register
+0524	-	IR_RC5_DECODER_CLK_DIV	R/W	Infrared RC5 Decoder Clock Divisor Register

Table 6-9 Infrared decoder registers (Continued)

Address ¹ IR0	IR1	Dogistor Namo	D/W/A/C2	Description
IRU	IKI	Register Name	R/W/A/C ²	Description
+0528	-	IR_RC5_DECODER_DATA	R	Infrared RC5 Decoder Data Register
+052C	-	IR_INT_STATUS	R/C	Infrared Interrupt Status Register
+05E0	-	IR_RC6_DECODER_CONTROL	R/W	Infrared RC6 Decoder Control Register
+05E4	-	IR_RC6_T_CONTROL	R/W	Infrared RC6 Tolerance Control Register
+05E8	-	IR_RC6_DATA_OUT0	R	Infrared RC6 Data Out0 Register
+05EC	-	IR_RC6_DATA_OUT1	R	Infrared RC6 Data Out1 Register
+05F0	-	IR_RC6_DATA_OUT2	R	Infrared RC6 Data Out2 Register
+05F4	-	IR_RC6_DATA_OUT3	R	Infrared RC6 Data Out3 Register
+05F8	-	IR_RC6_DATA_OUT4	R	Infrared RC6 Data Out4 Register
+0800	+8880	IR_UNIVERSAL_DEBOUNCE_ DENOISE	R	Infrared Universal Debounce Denoise Register
+0804	+0884	IR_UNIVERSAL_CONFIG	R	Infrared Universal Configuration Register
+0808	+0888	IR_UNIVERSAL_CLK_DIV	R	Infrared Universal Clock Divisor Register
+080C	+088C	IR_UNIVERSAL_TIMEOUT	R	Infrared Universal Timeout Register
+0810	+0890	IR_UNIVERSAL_SUBTRACT	R	Infrared Universal Subtract Register
+0814	+0894	IR_UNIVERSAL_MEM_ADDRE SS	R	Infrared Universal Memory Address Register
+0818	+0898	IR_UNIVERSAL_SCANCODE_ TIME_STAMP_CLK_DIV	R	Infrared Universal Scan- code Timestamp Clock Divi- sor Register
+081C	+089C	IR_UNIVERSAL_SCANCODE_ TIME_STAMP_MEM1	R	Infrared Universal Scan- code Timestamp Memory1 Register
+0820	+08A0	IR_UNIVERSAL_SCANCODE_ TIME_STAMP_MEM2	R	Infrared Universal Scan- code Timestamp Memory2 Register

Address refers to G-Bus byte address relative to the system block register base.
 Read/Write/Auto update/Clear.

6.5.6 Pin Description

6.5.6.1 Infrared Decoder Pin

Table 6-10 Infrared decoder pin description

Pin Name	Pin Id	Direction	Description	Driver Type ¹
GPIO12	C6	В	Default pin assigned to the IR decoder input function (may be mapped to any other GPIO pin under the software control).	А

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

Inter Integrated Circuits (I²C)

6.6 Introduction

The SMP8654 provides 3 I²C interfaces - I²C Master 0, I²C Master 1 and I²C Slave. The I²C master and slave interfaces together enable the SMP8654 to read from and write to external devices. The two identical I²C master controllers, which support the synchronous Inter Integrated Circuits (I²C) serial protocol, enable the host CPU to access an external I²C slave device using a simplified register interface. A separate slave interface allows the SMP8654 to be the target of I²C transactions initiated by an external master. Both interfaces accommodate bidirectional data transfer, have programmable address width of up to 8-bit with sequential byte read or write capability, and generate interrupts whenever bytes are transmitted or received.

6.7 Features

- 2 identical I²C master interfaces and one I²C slave interface
- Supports synchronous Inter Integrated Circuits (I²C) serial protocol
- Supports bidirectional data transfer
- Supports programmable address width up to 8-bit
- Capable of sequential byte read or write
- Generates interrupts when bytes are received/transmitted
- Supports programmable I²C bus clock rate

- Supports transmission of device address and register address to do device, page and address selection to perform read and write accesses.
- Each of the interfaces support 100Kbps or 400Kbps bit rates

6.8 Block Diagram

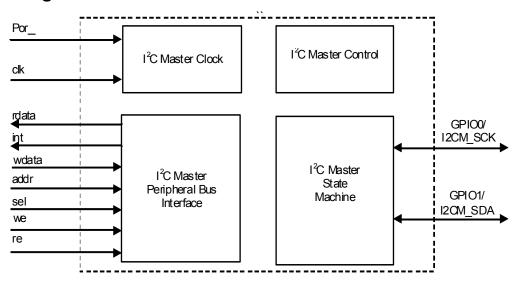


Figure 6-7 I²C master block diagram

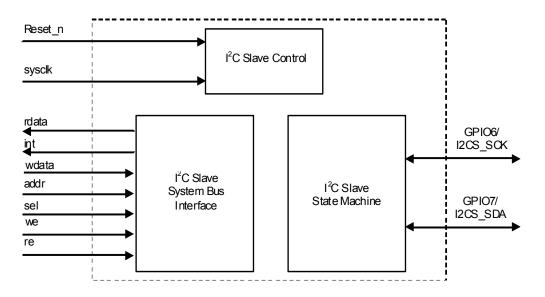


Figure 6-8 I²C slave block diagram

6.9 Functional Description

6.9.1 I²C Master (0 and 1)

This I²C master controller enables the host CPU to access an external I²C slave device using a simplified register interface.

A configuration register controls the status of the I²C master. When enabled, the I²C master connects to the GPIO pins. When disabled, the state machine is reset and the I²C master disconnects from the GPIO port. When the bit DEVADRDIS is set to '1', the I²C host controller will not transfer the device address. When set to '0', the device address will be transmitted before the register address or data. When the bit REGADRDIS is set to '1', the I²C host controller will not transfer the register address data, but will only read or write the serial data. When set to '0', normal transfers will occur with the address being shifted out followed by the data being read or written. The register address register stores the address to be sent to the external I²C slave devices, if the bit ADRDIS is not set.

First, the software will configure the I²C controller by programming the register CONFIG and selecting the proper value of the register CLKDIV. Then, the software may program the device address register DEVADR with an address and/or data to be written to or read from the external I²C slave device. To access an external I²C slave device, the CPU should program the registers DEVADR and/or ADR/DATAOUT. To do a burst read or a burst write the register BYTECNT needs to be set as well.

The direction and the start of the transfer is determined by a bit in the register STARTXFER. Writing to this bit starts the I²C state machine. It will handle all the proper hardware signalling.

The state machine starts by asserting a start condition on the I²C bus, followed by shifting the seven bits contained in the register DEVADR. It checks for an acknowledge signal from the addressed slave device. If there is no acknowledgement, then a bit is set in the register I²C STATUS. In case the bit ADRDIS was set to '0', then the state machine will take the data from the register ADR. Then in the case of a write it will shift out the eight bits in the register DATAOUT or, in case of a read it will shift the data into the register DATAIN.

The I^2C bus consists of two bidirectional lines, the serial data (SD) line, and the serial clock (SCLK) line. A start condition on the I^2C bus is indicated by asserting the SD low when the SCLK is high. Subsequent device address and data are shifted at the rate of 1-bit per SCLK (see the I^2C master timing diagram).

The transmitter on the I^2C bus sets the data on the SD line during the low phase of the clock, the receiver on the I^2C bus samples the data on during the high phase of the clock. When the host I^2C controller is done transmitting or receiving data on the I^2C bus it will assert a stop condition by releasing the SD line during the high phase of the SCLK. The clock divider register is used to generate the I^2C bus SCLK by applying the equation: $SCLK = SYS CLK / (2 \times CLKDIV)$.

When the start transfer register is written to, the I²C state machine starts a read/write access on the I²C bus. A read/write direction bit is sent out to the I²C slave devices. It is written with a '1' for reads, and written with a '0' for writes. For a sequential read/write the bit RWDIR needs to be programmed only once to start the transmission of the sequence.

Setting the bit DUMMY to '1' will enable the DUMMY write, where no data transfer is required. This is useful when the host CPU is trying to do a random read from particular I²C slave memory devices, the I²C state machine would shift the device address followed by the address, if not disabled, then returns to IDLE without shifting out the data in the register DATAOUT. This bit should be written to '0' for normal I²C bus accesses.

At the end of a transfer a 'stop condition' or a 'no stop condition' is issued. Therefore the next transfer will begin with a 'repeated start'. The value written to the byte count register (plus one) will indicate the number of bytes to be written to or read from the external I²C slave devices. It is used when the firmware is doing a sequential read or write. After every sequence, this register needs to be reprogrammed.

During the I²C writes, as soon as the register STARTXFER is written to by the processor, a start condition is automatically asserted. When the transfer starts, the bit I2CIDLE in the register STATUS is cleared to 0. The device address in the bit DEVADR will be serially shifted out followed by the bit RWDIR in the register STARTXFER, and the 8-bit write data is stored in the register DATAOUT.

Once the transaction is completed, the I²C host controller asserts a stop condition. Then the I2CIDLE bit will be set to '1'. During a sequential write to an external I²C slave device, the bit DOUTEMPTY is set in the register STATUS after every byte is shifted out. The state machine then holds the I²C bus SCLK low, until the host CPU supplies new data to the register DATAOUT. The I²C state machine keeps repeating the loop until all the bytes have been shifted out.

During the I²C reads, as soon as the register STARTXFER is written to by the processor, a Start Condition is automatically asserted on the I²C bus. When the transfer starts, the bit I2CIDLE in the register STATUS is cleared to 0. The device address in the bit DEVADR will be serially shifted out followed by the bit RWDIR. The external device begins driving the read data on the serial data line, and the I²C host controller will start sampling the data and store them in the register DATAIN. The transaction is completed, as soon as the I²C host controller initiates a stop condition. The bit I2CIDLE will be set to '1'. During a read from the external device, the 8 bits which are received from the external I²C slave devices are stored in the data in register. The bit DATARDY in the register STATUS will be set to '1' when this register contains valid data.

During a sequential read from an external I²C slave device, the bit DATAREADY is set in the register STATUS after every byte is shifted in. The state machine then holds the I²C bus SCLK low until the host CPU reads the register DATAIN. The I²C state machine keeps repeating the loop until all bytes have been shifted in.

6.9.2 I²C Slave

The SDA and SCL are the two pins that control the operation of the 2-wire-bus. The SDA is the bidirectional open-drain serial data IO and the SCL is the serial interface input clock controlled by the master. The SMP8654 acts as a slave device and the device address register is used to select the 7-bit slave address of the SMP8654. This register also enables the I^2C slave.

The data received and transmitted through the SDA must be stable while the SCL is high. The data on SDA can change their states only when the SCL is low. The start signal is the falling edge of SDA when the SCL is high. The start signal informs all the slave devices that a data transfer sequence is initiated. In contrast, the stop signal is signalled by the rising of the SDA while the SCL is high. When the serial interface is not active, the logic level of the SDA and the SCL are both high, due to external pull-up resistors.

The first data transferred after the start signal is the 7-bit slave address and the bit R/W. When the bit R/W is high, the master reads from the registers in the slave. When the bit R/W is low, the master writes to the registers inside the slave. If the transmitted slave address matches the address programmed by the address register, then the SMP8654 acknowledges being selected by bringing the SDA low on the ninth pulse of the SCL clock. Otherwise, the SMP8654 does not acknowledge, and both the SDA and the SCL are high and the device remains in inactive mode.

In order to write the data to the SMP8654, the master needs to provide the 7-bit slave address and set the bit R/W to 0. Then the master needs to provide the data to the SMP8654. An interrupt will be generated and the SMP8654 software will need to read the data register. If an external master reads the device, then this 8-bit data will be sent to that master. During a write from the external device, the 8-bit data that was received from the external I²C master device is stored here. The bit DATARDY in the register STATUS will be set to '1' when this register contains valid data. It means that the register DATAIN has valid data in it. This bit is cleared when the register DATAIN is read by the host CPU.

If the I²C slave controller data has not been read fast enough by the host CPU before the next byte from the external I²C master, then an 'overflow' error occurs and an interrupt is asserted. The register DATAIN needs to be read once to clear it from the corrupted (last) data. This way the register DATAIN, the status register, a pending 'overflow' interrupt and 'data ready' are all cleared for a new transaction.

If the host does not send new bytes to the I^2C slave before the master read access, then an 'underflow' error occurs and an interrupt is asserted. The interrupt is cleared when the slave is supplied with new the data.

If a master is reading, and the data is not ready (inside the I^2C slave), then the I^2C slave can hold the bus until the data becomes ready by forcing the I^2C clock to low. The bus hold register can be used for this bus holding function.

When the master reads from the slave, and the data is not ready, the slave will hold the bus if the bit HOLDEN is 1. At the same time it will start a time-out counter (count down) by loading the value bit HOLDCOUNT. The slave will end the bus holding when either the data is read, or the counter expires (becomes zero). If the counter expires before the data is ready, then an 'underflow' interrupt is issued.

If the interrupt mode bit is 0, then the 'doutempty' interrupt is issued as soon as the current data is read by an I²C master. That means that the bus hold register always contains the data provided that the interrupt is serviced. It also means that, a succession of bytes needs be provided to the slave. Inside the slave module are two registers, DATAOUT and SHIFT. When the slave detects that the master is starting a read transfer, it moves the data from the register DATAOUT to the register SHIFT and immediately issues a 'doutempty' interrupt to the host; so that the host will have more time to service the interrupt (interrupt service latency). Thus, there will always be an extra interrupt at the end of the transfer.

SMP8654-DS-A-10 SMP8654 Datasheet

> If the interrupt mode bit is 1, then the 'doutempty' interrupt is issued only if a byte is requested by a master read. When the slave detects that the master is starting a read transfer, it issues a 'doutempty' interrupt to the host and holds the I²C bus (by forcing the I²C clock to low) until, either the data is provided by the host CPU or the bus holding times out. Thus, there will be no extra interrupt, but the I²C bus speed may reduce.

> Also, in the I²C master write, after receiving one byte the slave will hold the bus until the host CPU reads the byte. Here the overflow does not occur and the bytes are not missed.

6.10 **Register Maps**

6.10.1 I²C Master 0 and 1 Registers

Table 6-11 Register map - I ²C master 0 and 1

Address ¹ Master 0	Master 1	Register Name	R/W/A ²	Description
+0480	+0400	I2C_MASTER_CONFIG	R/W	I ² C Master Configuration Register
+0484	+0404	I2C_MASTER_CLK_DIV	R/W	I ² C Master Clock Divisor Register
+0488	+0408	I2C_MASTER_DEV_ADDR	R/W	I ² C Master Device Address Register
+048C	+040C	I2C_MASTER_ADR	R/W	I ² C Master Address Register
+0490	+0410	I2C_MASTER_DATAOUT	R/W	I ² C Master Data Out Register
+0494	+0414	I2C_MASTER_DATAIN	R	I ² C Master Data In Register
+0498	+0418	I2C_MASTER_STATUS	R	I ² C Master Status Register
+049C	+041C	I2C_MASTER_STARTXFER	R/W	I ² C Master Start Transfer Register
+04A0	+0420	I2C_MASTER_BYTE_CNT	R/W	I ² C Master Byte Count Register
+04A4	+0424	I2C_MASTER_INTEN	R/W	I ² C Master Interrupt Enable Register
+04A8	+0428	I2C_MASTER_INT	R/C ³	I ² C Master Interrupt Register

^{1.} Address refers to G-Bus byte address relative to the system block register base.

Read/Write/Auto update.
 Read/Clear.

6.10.2 I²C Slave Registers

Table 6-12 I²C slave registers

Address ¹	Register Name	R/W/A ²	Description
+04C0	I2C_SLAVE_ADDR_REG	R/W	I ² C Slave Device Address Register
+04C4	I2C_SLAVE_DATAOUT	R/W	I ² C Slave Data Out Register
+04C8	I2C_SLAVE_DATAIN	R	I ² C Slave Data In Register
+04CC	I2C_SLAVE_STATUS	R	I ² C Slave Status Register
+04D0	I2C_SLAVE_INTEN	R/W	I ² C Slave Interrupt Enable Register
+04D4	I2C_SLAVE_INT	R/C ³	I ² C Slave Interrupt Register
+04D8	I2C_BUS_HOLD	R/W	I ² C Bus Hold Register

Address refers to G-Bus byte address relative to the system block register base.
 Read/Write/Auto update.
 Read/Clear.

6.11 Pin Description

6.11.1 I²C Master and Slave Interface Pins

Table 6-13 I²C master and slave interface pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
GPIO0	D5	В	I2CM0_SCK. I ² C master 0 interface serial clock.	А
GPIO1	E6	В	I2CM0_SDA. I ² C master 0 interface serial data.	А
GPIO6	C5	В	I2CS_SCK. I ² C slave interface serial clock.	А
GPIO7	D6	В	I2CS_SDA. I ² C slave interface serial data.	А
GPIO10	A4	В	I2CM1_SCK. I ² C master 1 interface serial clock.	А
GPIO11	B5	В	I2CM1_SDA. I ² C master 1 interface serial data.	А

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

6.12 Electrical Characteristics

6.12.1 I²C Master and Slave Interface AC Characteristics

Table 6-14 I²C master and slave interface AC characteristics

Parameter	Description	Minimum	Typical	Maximum	Units
F _{SCL}	SCL clock frequency			400	KHz
T _{HIGH}	SCL clock high time	1.3			μs
T _{LOW}	SCL clock low time	0.6			μs
T _{BUF}	Bus free time	1.3			μs
T _{SU;DAT}	Data setup time	250			ns
T _{HD;DAT}	Data hold time	0			ns
T _{SU;STA}	Setup time, START condition	0.6			μs
T _{HD;STA}	Hold time, START condition	0.6			μs
T _{SU;STO}	Setup time, STOP condition	0.6			μs

6.13 Timing Diagrams

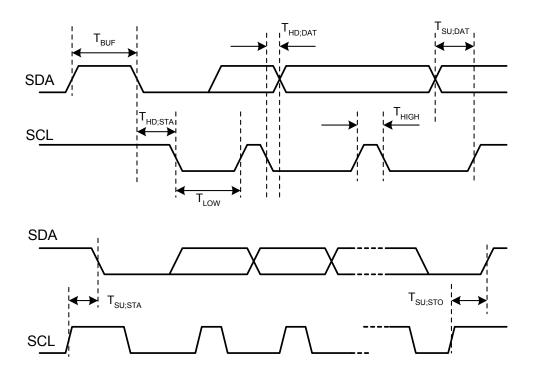


Figure 6-9 I²C master transfer timing diagram

6.14 Introduction

Operation of the SMP8654 can be optionally monitored by the 'watchdog' circuit to detect system failures resulting from software 'crashes'. The watchdog circuit is a special down-counter which can trigger a reset if allowed to count down to a value of one.

The watchdog controls the WDO pin only (there is no internal reset). Hence, the WDO pin should be connected on the board to the manual reset pin of the power up reset circuit or, equivalent in order to function properly.

6.15 Block Diagram

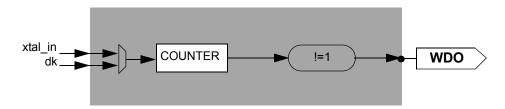


Figure 6-10 Watchdog block diagram

6.16 Functional Description

The Watchdog control WDO output pad (WDO) should be connected externally to a power-up circuit in order to generate a global reset pulse when the WDO is set to 0 (V_{SS}). On reset, WDO default value is 1 (V_{DD}).

The WATCHDOG_COUNTER register is 0 on reset and completely determines the value of the WDO pad as follows:

Table 6-15 WDO pad values

WATCHDOG_COUNTER	WDO
0	1
1	0
>1	1

Moreover, if the WATCHDOG_COUNTER register is greater than 1, then it is decremented at each cycle of the source clock which can be selected by the WATCHDOG_CONFIGURATION register as follows:

Table 6-16 Register WATCHDOG_CONFIGURATION values

WATCHDOG_CONFIGURATION	Value
Bit[0]	Source Clock ¹
0	System clock
1	XTAL_IN
Bit[31] ²	Mode
0	Normal mode (default)
1	Disabled mode

If the system clock is slower than XTAL_IN, then XTAL_IN cannot be used as the source clock for the watchdog counter.

In the disabled mode, everything works as usual except that the WDO pad is forced to 1. This can be used to debug a production code which is using the watchdog to avoid resets during the debugging session. Note that the counter is still working normally, so that it is possible to know if it triggered by reading 1 in the WATCHDOG COUNTER register.

The normal usage of the watchdog is to set the WATCHDOG_COUNTER to a non zero value in the software, which makes the counter not reach the value 1. If the software crashes, it will stop updating the WATCHDOG_COUNTER, which will then eventually reach a value of 1 and the whole system will be reset.

The delay can be computed using the system clock (default). If the system clock frequency is not constant, then XTAL_IN (always at 27MHz, see note above) can be used.

Writing 1 in WATCHDOG_COUNTER register causes an immediate reset of the system if the WDO pad has been connected as explained above. The WDO pad can also be used as a general purpose output; writing 0 or 1 in the WATCHDOG_COUNTER changes the value of the WDO pad.

^{2.} The WATCHDOG_CONFIGURATION register must only be written using byte access, so that the bit 31 is not changed during a write in bit 0.

6.17 Register Map

6.17.1 Watchdog Registers

Table 6-17 Watchdog registers

Address ¹	Register Name	R/W/A ²	Description
+FD00	SYS_WATCHDOG_COUNTER	R/W/A	Watchdog Counter Register
+FD04	SYS_WATCHDOG_CONFIGUR ATION	R/W/A	Watchdog Configuration Register

^{1.} Address refers to G-Bus byte address relative to the system block base.

6.18 Pin Description

6.18.1 Watchdog Pins

Table 6-18 Watchdog pin description

Pin Name	Pin Id	Direction	Description	Driver Type ¹
WDO	F2	0	Watchdog Control Output	D

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

Clock Generator

6.19 Introduction

The clock generator contains audio clocks, video clocks, system clock and a CPU clock. The clock generator creates two high speed (up to 500MHz) clocks from a 27MHz external clock using two programmable PLLs, and creates the main system clock and multiple video and audio clocks by dividing either one of the high speed clocks or the 27MHz reference.

The clock generator module receives seven different clock inputs, and generates 13 separate clock and timer tick outputs. The clock generator module contains four independent frequency synthesizers based on phase-locked loops (PLLs). Every PLL except one, can use any of the seven input sources as its reference clock.

^{2.} Read/Write/Auto update.

6.20 Features

- Creates two high speed clocks (up to 500MHz)
- Contains audio clocks, video clocks, system clock and a CPU clock
- Supports programmable PLLs

6.21 Block Diagram

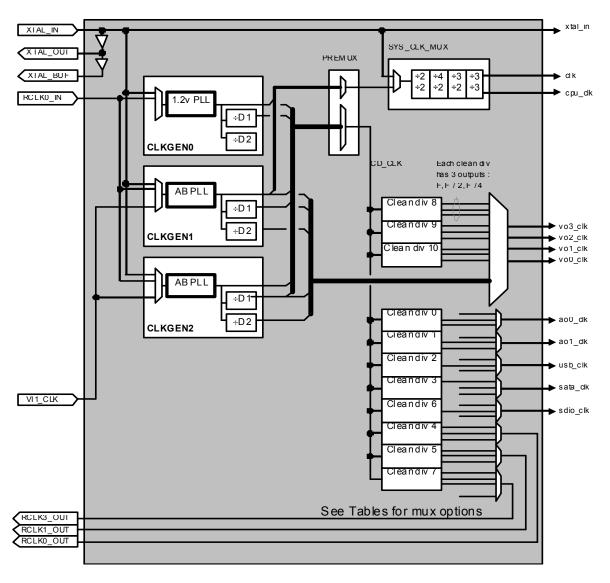


Figure 6-11 Clock generator block diagram

6.22 Functional Description

6.22.1 PLL Clock Generators

The SMP8654 has 3 PLL-based clock generators (CLKGEN0, 1 and 2). the input for each PLL can be selected from one of the 3 sources (XTAL_IN, RCLK0_IN or VI1_IN). The three PLL registers determine the multiplying and dividing factors. When the PLL bypass bit is set, the post-dividers are driven by the PLL input (rather than the PLL output). The direct output is not affected by the bypass. The PLL output frequency is equal to, $F_{Out} = F_{In} * (N+2) / (M+2)$.

The CG1 and CG2 have PLLs and each produces the outputs as follows:

- $PLLx_1 = PLLx_0 / D1 (D1 = 2-15)$
- $PLLx_2 = PLLx_0 / D2 (D2 = 2-15)$

Note: N and M should be such that In*(N+1)/(M+1) is within the range 700MHz to 1.4GHz.

6.22.2 System Pre-mux

Two clocks CD_CLK and PLL_SYSCLK can be derived from the PLLs as follows:

SYS	1	2	3
PLL_SYSCLK	PLL1_0	NA	NA

	CD	2	3	4	5	6	7
С	D_CLK	PLL1_0	PLL1_1	PLL2_0	PLL2_1	NA	NA

The CD_CLK is the source clock for the fractional dividers. For proper operation of the clean dividers, CD_CLK should be in the range 150-400MHz.

The PLL_SYSCLK is fed in the system or the CPU divider which derives the system clock, the CPU clock and the video decoder DSP clock.

6.22.3 System Mux

The bit S in the register SYS_SYSCLK_MUX selects whether XTAL_IN (0=power up value) or PLL_SYSCLK (1) is fed into the dividers.

Ratio controls the dividers ratio as follows:

Table 6-19 Dividers ratio

Ratio	System Clock	CPU clock
0000 (power up value)	÷ 2	÷ 2
0001	÷ 4	÷ 2
0010	÷ 3	÷ 2
0011	÷ 3	÷ 3

The ratio and S bits can be changed while the CPU clock, system clock and the video decoder clock are being used (Glitch free).

6.22.4 Clean Dividers

The SMP8654 has 11 clean dividers to divide CD_CLK. Each clean divider produces three output frequencies: CDx / 1, CDx / 2 and CDx / 4. The clean dividers are used as follows:

- 1. CD0 and CD1 are used to generate the audio clocks.
- 2. CD2 is used to generate the USB clock.
- 3. CD3 is not used.
- 4. CD4, 5 and 7 are used to generate RCLK0,1 and 3 respectively.
- 5. CD6 is not used in SMP8654.
- 6. CD8 to CD10 are used to generate the video clocks.

Each clean divider can be turned off individually by writing 1 to the 'P' field of the register SYS_CLEANDIVX_CTRL.

The divider registers determine the post-dividers ratio (must be between 2 and 15). The PLL output (PLL input when bypass is activated) is divided by D1 to generate CK1, and divided by D2 to generate CK2. The clean dividers generate an output frequency equal to, $F_{Out} = CD_CLK / (2 + divider \times 2^{-27})$.

Table 6-20 System clock frequencies

SysClk	Divider	F _{Out}
148.5MHz	0x593AC687	11289600Hz = 44100 * 256 (use for 44.1KHz sampling rate)
	0x50AE0000	12288000Hz = 48000 * 256 (use for 48KHz sampling rate)
	0x20570000	24576000Hz = 96000 * 256 (use for 96/192KHz sampling rate)
162MHz	0x62CBC14E	11289600Hz
	0x59780000	12288000Hz
	0x24BC0000	24576000Hz

6.22.5 Audio, Video, RCLK Muxing

The SYS_AVCLK_MUX register controls the last stage of muxing to generate 4 video clocks, 2 audio clocks and 4 RCLKs (sent to the RCLK out pins).

When a value is written to the register SYS_AVCLK_MUX, each field set to 0 indicates to keep the value. After booting, each clock is driven by XTAL_IN, until a source has been selected.

Note: For video clocks the bit VO0 controls muxing of the VO0_CLK and the HDMI_CLK simultaneously.

Table 6-21 Video clock muxing

Value	VOO - HDMI	VO1
0	Keep	Кеер
1	CD8 - CD8	CD8
2	CD8/ 2 - CD8	CD8/ 2
3	CD8/ 4 - CD8	CD8/ 4
4	CD8/ 2 - CD8/ 2	CD9
5	CD8/ 4 - CD8/ 2	CD9/ 2
6	Off - Off	CD9/ 4
7	Off - Off	CD10
8	Off - Off	CD10/ 2
9	Off - Off	CD10/ 4
10	PLL1_1 - PLL1_2	PLL1_1

Table 6-21 Video clock muxing (Continued)

Value	VOO - HDMI	V01
11	PLL1_2 - PLL1_2	PLL1_2
12	PLL2_1 - PLL2_2	PLL2_1
13	Off - Off	PLL1_0
14	Off - Off	RCLK0in
15	Off - Off	Off

Table 6-22 Audio clock and RCLK muxing

Value	R3	R1	R0	A01	A00	USB	SATA
0	Keep	Keep	Кеер	Кеер	Кеер	Keep	Keep
1	CD7	CD5	CD4	RCLK0_in	RCLK0in	CD2 / 2	CD3
2	CD7/ 2	CD5 / 2	CD4 / 2	CD1 / 2	CD0 / 2	PLL2_1	PLL2_2
3	CD7/ 4	CD5 / 4	CD4 / 4	CD1 / 4	CD0 / 4	RCLK0in	RCLK0in
4	RCLK0in						
5	NA	_					
6	NA	=					
7	VI1_CLK	_					
8	NA	=					
9	NA	=		Not Ap	plicable		
10	PLL1_1	_					
11	PLL1_2	=					
12	PLL2_1	=					
13	PLL2_2	_					
14	NA	_					
15	NA	=					

6.22.6 Host Interface Clock Muxing

The register SYS_HOSTCLK_MUX controls the last stage of muxing to generate the USB and the SATA clocks located in the host interface.

When a value is written to the register SYS_HOSTCLK_MUX, each field set to 0 indicates to keep the value.

Table 6-23 Host interface clock muxing

Value	USB (48MHz)	SATA (100MHz)
0	Кеер	Кеер
1	CD2/ 2	CD3
2	PLL2_2	PLL2_2
3	Reserved	VCXO1in
4 to 15	Reserved	Reserved

Note:	The two host clocks can be generated from a clean divider, a PLL or an external source. The best
	option is to use the clean dividers, to avoid an external source and to leave the PLL2 available for
	other functions.

Note: After booting, each clock is driven by XTAL_IN. Once a source has been selected for that clock, it is not possible to revert to XTAL_IN.

6.22.7 Counters

There are 3 dedicated counters and 5 configurable counters (i.e., the source clock is selectable). The counters can be read or written, and increment by one for each period of the associated clock.

SYS_CLK_CNT: System clock counter

SYS_XTAL_IN_CNT: 27MHz counter

SYS RND CNT: Counter used for random number generation.

SYS_CFG_CNT0-4: For each configurable counter, a 4-bit field of the register SYS_CNT_CFG selects the source clock. Fields written as 0 remain unchanged. The counters operate correctly only if the selected clock frequency is lower than the system clock.

Table 6-24 Counters

Value	CNT0, CNT1, CNT2, CNT3 and CNT4
0	Keep
1	CD0 / 4
2	CD1 / 4
3	NA
4	NA
5	CD4 / 4
6	CD5 / 4
7	NA
8	CD7 / 4
9	CD8 / 4
10	CD9 / 4
11	CD10 / 4
12	NA
13	VI1_CLK
14	PLL1_1
15	PLL2_1

6.23 Register Map

6.23.1 Clock Generation Registers

Table 6-25 Clock generation registers

Address ¹	Register Name	R/W/A ²	Description
+0000	SYS_CLKGEN0_PLL	R/W	System Clock Generator 0 PLL Register
+0008	SYS_CLKGEN1_PLL	R/W	System Clock Generator 1 PLL Register
+000C	SYS_CLKGEN1_DIV	R/W	System Clock Generator 1 Divider Register
+0010	SYS_CLKGEN2_PLL	R/W	System Clock Generator 2 PLL Register
+0014	SYS_CLKGEN2_DIV	R/W	System Clock Generator 2 Divider Register
+0030	SYS_HOSTCLK_MUX	R/W	System Clock Host Clock Mux Register
+0034	SYS_SYSCLK_PREMUX	R/W	System Clock Premux Register
+0038	SYS_AVCLK_MUX	R/W	System AV Clock Mux Register
+003C	SYS_SYSCLK_MUX	R/W	System Clock Mux Register

Address refers to G-Bus byte address relative to the clock generator base.
 Read/Write/Auto update.

6.23.2 Clean Dividers Registers

Table 6-26 Clean dividers registers

Address ¹	Register Name	R/W/A ²	Description
+0080	SYS_CLEANDIVO_DIV	R/W	System Clock Clean Divider 0 Divider Register
+0084	SYS_CLEANDIVO_CTRL	R/W/A	System Clock Clean Divider 0 Control Register
+0088	SYS_CLEANDIV1_DIV	R/W	System Clock Clean Divider 1 Divider Register
+008C	SYS_CLEANDIV1_CTRL	R/W/A	System Clock Clean Divider 1 Control Register
+0090	SYS_CLEANDIV2_DIV	R/W	System Clock Clean Divider 2 Divider Register
+0094	SYS_CLEANDIV2_CTRL	R/W/A	System Clock Clean Divider 2 Control Register
+0098	SYS_CLEANDIV3_DIV	R/W	System Clock Clean Divider 3 Divider Register
+009C	SYS_CLEANDIV3_CTRL	R/W/A	System Clock Clean Divider 3 Control Register

SMP8654-DS-A-10 SMP8654 Datasheet

Table 6-26 Clean dividers registers (Continued)

Address ¹	Register Name	R/W/A ²	Description
+00A0	SYS_CLEANDIV4_DIV	R/W	System Clock Clean Divider 4 Divider Register
+00A4	SYS_CLEANDIV4_CTRL	R/W/A	System Clock Clean Divider 4 Control Register
+00A8	SYS_CLEANDIV5_DIV	R/W	System Clock Clean Divider 5 Divider Register
+00AC	SYS_CLEANDIV52_CTRL	R/W/A	System Clock Clean Divider 5 Control Register
+00B0	SYS_CLEANDIV6_DIV	R/W	System Clock Clean Divider 6 Divider Register
+00B4	SYS_CLEANDIV6_CTRL	R/W/A	System Clock Clean Divider 6 Control Register
+00B8	SYS_CLEANDIV7_DIV	R/W	System Clock Clean Divider 7 Divider Register
+00BC	SYS_CLEANDIV7_CTRL	R/W/A	System Clock Clean Divider 7 Control Register
+00C0	SYS_CLEANDIV8_DIV	R/W	System Clock Clean Divider 8 Divider Register
+00C4	SYS_CLEANDIV8_CTRL	R/W/A	System Clock Clean Divider 8 Control Register
+00C8	SYS_CLEANDIV9_DIV	R/W	System Clock Clean Divider 9 Divider Register
+00CC	SYS_CLEANDIV9_CTRL	R/W/A	System Clock Clean Divider 9 Control Register
+00D0	SYS_CLEANDIV10_DIV	R/W	System Clock Clean Divider 10 Divider Register
+00D4	SYS_CLEANDIV10_CTRL	R/W/A	System Clock Clean Divider 10 Control Register
+00D8	SYS_CLEANDIV11_DIV	R/W	System Clock Clean Divider 11 Divider Register
+00DC	SYS_CLEANDIV11_CTRL	R/W/A	System Clock Clean Divider 11 Control Register

Address refers to G-Bus byte address relative to the clock generator base.
 Read/Write/Auto update.

6.23.3 Clock Counter Registers

Table 6-27 Clock counter registers

Address ¹	Register Name	R/W/A ²	Description
+0040	SYS_CLK_CNT	R/W/A	System Clock Counter Register
+0044	SYS_RND_CNT	R/W/A	System Clock Random Generator Counter Register
+0048	SYS_XTAL_IN_CNT	R/W	System XTAL In Counter Register
+004C	SYS_CNT_CFG	R/W	System Clock Counter Configuration Register
+0050	SYS_CFG_CNT0	R/W/A	System Clock Configuration Counter 0 Register
+0054	SYS_CFG_CNT1	R/W/A	System Clock Configuration Counter 1 Register
+0058	SYS_CFG_CNT2	R/W/A	System Clock Configuration Counter 2 Register
+005C	SYS_CFG_CNT3	R/W/A	System Clock Configuration Counter 3 Register
+0060	SYS_CFG_CNT4	R/W/A	System Clock Configuration Counter 4 Register

^{1.} Address refers to G-Bus byte address relative to the clock generator base.

6.24 Pin Description

6.24.1 Clock Generator Pins

Table 6-28 Clock generator pin description

Pin Name	Pin Id	Direction	Description	Driver Type ¹
XTAL_IN	F1	I	27MHz crystal oscillator input	
XTAL_OUT	G1	0	Crystal oscillator output	
XTAL_BUF	F4	0	Buffered crystal oscillator output	D
RCLK0_IN	G2	I	PLL reference clock input #0	I
RCLK0_OUT	G3	0	PLL reference clock output #0	D
RCLK1_OUT	H1	0	Auxiliary clock output #1	D
RCLK3_OUT	H2	0	Auxiliary clock output #3	D

The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

^{2.} Read/Write/Auto update.

6.25 Electrical Characteristics

6.25.1 System Clock Characteristics

Table 6-29 System clock characteristics

Symbol	Description	Minimum	Typical	Maximum	Units
F _{REF}	Reference clock frequency		27.000		MHz
	Reference clock tolerance			30	ppm
DERIVED CLOCKS					
F _{MEMCK}	DDR clock frequency			201	MHz
F _{VIDCLK}	Video output pixel clock frequency			148.5	MHz
F _{PCICLK}	PCI clock frequency			66	MHz
F _{AUDCLK}	Audio clock frequency			50	MHz
Delta (F _{MEMCK})	DDR clock long-term jitter			350	ps
Delta (F _{VIDCLK})	Video clock long-term jitter			500	ps
Delta (F _{PCICLK})	PCI clock long-term jitter			950	ps
Delta (F _{AUDCLK})	Audio clock long-term jitter			950	ps

7

Host Interface

7.1 Block Diagram of Host Interface

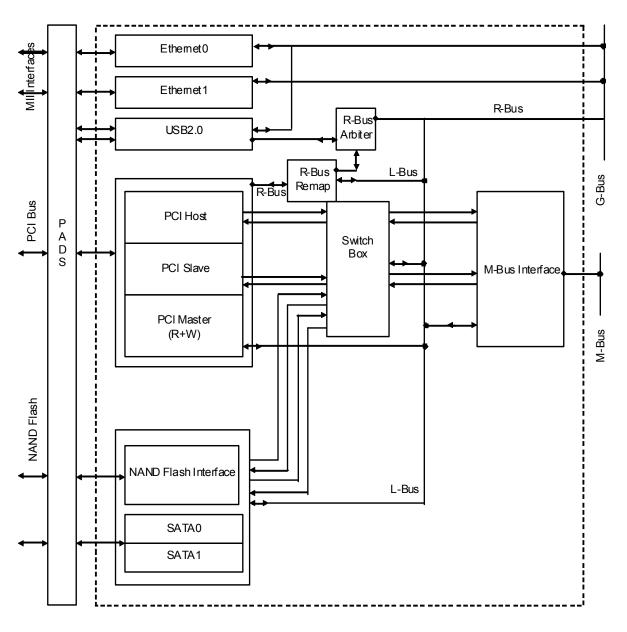


Figure 7-1 Host interface block diagram

7.2 Introduction

The host interface unit provides the interface between the primary internal buses (G-bus and M-bus) and the PCI, SATA, Ethernet and USB interfaces. As a G-Bus slave, the host interface occupies two sections of the G-Bus space: A 64KB section for configuration registers accesses, and a 64MB section for linear access to an external flash memory.

The SMP8654 supports a PCI for system-level interconnection. The PCI bus implementation is a version 2.1 compliant, 32-bit wide bus capable of operating at 33 or 66MHz. The electrical interface supports both 3.3V and 5V signaling. The interface supports both master and target operation, as well as ACPI power management (v.2.2). On-chip logic optionally implements the PCI bus configuration and arbitration functions (up to 3 external masters) so that no external PCI 'host' device is needed. This allows the design of small, tightly-embedded systems in which the SMP8654 hosts the PCI bus.

PCI Master/Slave/Host Interface

7.3 Introduction

The 32-bit PCI master/slave/host interface (33 or 66MHz) is designed for both reads and writes with programmable burst length, and is compliant with PCI v2.1 specifications. It supports 3.3V and 5V operation and PCI power management per the PCI Bus Power Management Specification Revision 1.2. Only D0 and D3 power states are supported; PME#'s are not supported. Up to 4 external PCI devices may be controlled by the SMP8654 in the PCI host mode.

7.4 Features

- Supports both reads and writes
- Supports programmable burst length
- Compliant with PCI v2.1 specifications
- PCI host supports up to 3 external PCI devices
- Supports AES, 3DES or DES encrypted/decrypted content

7.5 Functional Description

The host, as a PCI master, can perform G-Bus accesses through the PCI slave interface, the R-Bus and the R-Bus to G-Bus bridge. The entire G-Bus space (128MB) or a portion of it is mapped into the PCI space (configured through startup bits). The R-Bus is a single master (the PCI interface), single slave (the R-Bus to G-Bus bridge) bus.

The PCI slave block contains specific PCI configuration registers, and registers for the DRAM read/write operations. When these registers are accessed, the data is sent to, or received from the M-Bus interface through 8-bit ports. The M-Bus interface, programmed by any G-Bus master through the G-Bus to L-Bus bridge and L-Bus will exchange the data with the DRAM controller via the M-Bus.

The PCI master interface (which is also programmed through the L-Bus), can initiate data block moves to/from the host memory to 8-bit ports connected to the M-Bus interface.

An external PCI host can access the G-bus address space via the PCI slave interface. The slave interface also provides the PCI configuration register block and registers for the DRAM read/write operations. This allows for direct SDRAM access through the PCI slave interface. The PCI master interface can initiate block data moves between the SDRAM and the PCI host memory.

The host uses the PCI configuration space registers to auto-detect and configure PCI devices. Prior to the host reading the configuration block, several registers in the block must be initialized. Initialization of these registers is performed by the boot code stored in the internal serial flash memory. The boot code establishes the following nominal register values:

Table 7-1 Default values for PCI register fields

Default Value (Hex)
0x1105
0x8654
0x048000
0x00
0x1105
0x0000

The SMP8654 can function as the PCI host. To support this, it includes the PCI bus arbitration logic and 3 REQ#/GNT# pairs. In addition, it adds 3 IDSEL pins to support agent configuration cycle selection. These added pins and capabilities allow up to 3 external PCI masters and/or slave devices to be connected to the SMP8654 PCI bus without requiring an external host.

The following figures show the general connection topology for the arbitration pins and IDSEL pins in the SMP8654:

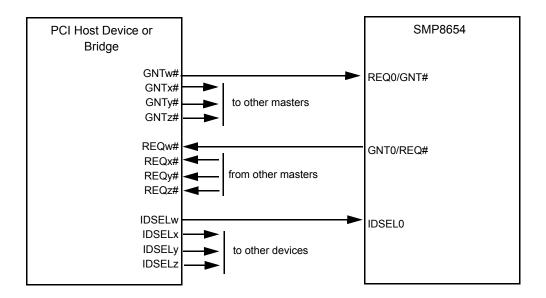


Figure 7-2 PCI arbitration pin connection diagram (PCI device)

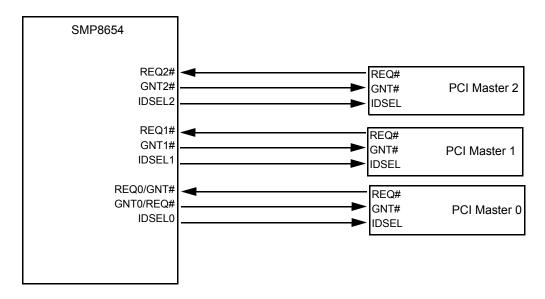


Figure 7-3 PCI arbitration pin connection diagram (PCI host)

7.5.1 PCI Slave Access

7.5.1.1 Direct Access

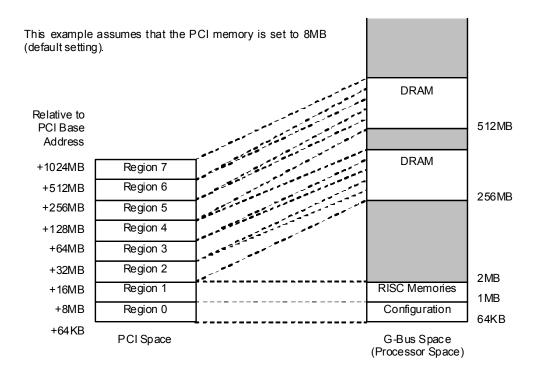


Figure 7-4 PCI slave direct access (8MB default setting)

When the SMP8654 is used on a PCI expansion board, the host can access all the configuration registers, internal memories and external DDR using the PCI slave access. At boot time, the SMP8654 requests between 1MB to 128MB of memory space (default is 8MB). This memory space is split into 8 regions. Each region can be mapped to a specific area of the processor memory space, using the region base address registers. Region 0 is hardwired to start at address 0. The first 64K of the Region 0 is used for the region base address registers, the interrupt register, the slave DMA access and the time-out control registers, and cannot be used to access the G-Bus.

The region base address registers can also be accessed from the G-Bus, so the CPU can change them. This can be useful when that SMP8654 is used as a host, and master-capable devices attached to the SMP8654 need access to particular regions of the SMP8654 memory.

7.5.1.2 DMA Access

DMA transfers to the external DDR can be performed using the PCI slave access. Prior to writing or reading any data from the special DMA locations described below, the switch-box and the M-Bus interface should be set up for a DMA transfer. The DMA transfers are best performed using the PCI master access.

7.5.1.3 Time-out Control

Time-out control is the same for direct access and for the DMA access. In direct access, time-out can occur if the G-Bus is too slow to respond. This is most likely to happen with very slow G-Bus slaves, such as the serial flash controller. In DMA access, time-out can occur if the switchbox is not routing the PCI slave, or if the M-Bus interface is not expecting any data from the switchbox.

7.5.1.4 PCI Device Configuration

The PCI configuration space registers are used by the host to auto-detect and configure the devices on the bus. Some parameters must be setup before the host reads the registers: Vendor ID, Device ID, Class code, Revision ID, Subsystem vendor ID and Subsystem device ID.

Configuration should be performed by the boot code stored in the internal serial flash memory, in less than 2^{24} PCI clock periods. Once the configuration is complete, the boot code will write 1 to the bit VLD of the register HOST_REG2.

The Vendor ID should always be set to 0x1105 (denoting 'Sigma Designs, Inc.'). The top 16 bits of the class code should always be set to 0x0480 (denoting 'Other Multimedia Device'). The Revision ID shall be incremented for each new tape-out of the SMP8654. The values from the memory size field of register PCI REG3 are defined as follows:

000	001	010	011	100	101	110	111
8MB	16MB	32MB	64MB	128MB	256MB	512MB	1024MB

The other PCI configuration registers are read-only. They can be accessed by writing the number of the register (DWORD address) in the select part of the register PCI_REG3, and the contents of the selected register can be read from the register PCI_CONFIG.

7.5.2 PCI Master Access

Transferring Data from the Host to the SMP8654 (Read Transaction)

To transfer a block of data from the host to the SMP8654, the switchbox and the M-Bus interface are programmed with the destination address and size in the SMP8654 DDR. Then, the PCI master is programmed with the address in the host memory. In the case of a PC, the address is the physical address of the source data in the memory. The transfer is completed when the register READ_DMA_COUNTER is 0. The software then writes a 0 to the register READ_DMA_ENABLE.

Transferring Data from the SMP8654 to the Host (Write Transaction)

To transfer a block of data from the SMP8654 to the host, the switchbox and the M-Bus interface are programmed with the source address and size in the SMP8654 DDR. Then, the PCI master is programmed with the address in the host memory. In the case of a PC, the address is the physical address of the destination in the memory. The transfer is completed when the register WRITE_DMA_COUNTER is 0. The software then writes a 0 to the register WRITE_DMA_ENABLE.

7.5.3 PCI Host

The PCI host regroups two functionalities:

- 1. PCI bus arbitration: 2-level priority round-robin arbitration of the bus ownership.
- 2. PCI host bridge: Low-latency PCI master (through G-Bus) available to the host system.

7.5.3.1 PCI Arbiter

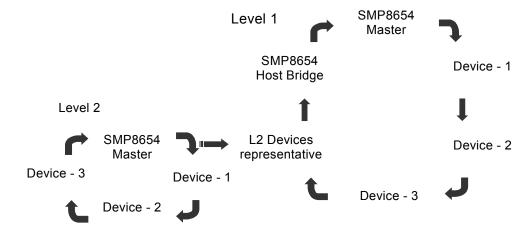


Figure 7-5 PCI arbiter

There are 2 loops, Level 1 and Level 2, and 6 agents. Two of them are always part of the Level 1 loop (host bridge and L2 representative) and the 4 others may be part of either loops (exclusive selection). The Level 2 representative is not an agent by itself but one of the agents of the Level 2 loop. It makes requests when any Level 2 agent makes a request.

The arbitration is request based. If requests are asserted, then the bus is granted to the first device requesting in the priority list. The arrows indicate the dynamics of the priority order. In each loop, given a current master agent, the arrow starting from this agent points at the highest priority potential next agent and so on. For example, when all the agents are level 1, and the current master is Device-1 then, the priority order for the next grant is Device-2, Device-3, Host Bridge, SMP8654 Master and Device-1.

When no new agent is requesting and the current master is done, the bus is parked on the current master. When the current level 1 master is the L2 representative, the level 2 loop toggles. Each level-versatile agent is attributed a programmable time-out that restricts its control of the bus after the address phase. A broken agent time-out gives 16 clocks to each master to start the address phase once the bus is idle.

A super request mode is available to the host bridge agent. It makes its request higher in the priority in any case. After a super request, the highest priority next agent is the agent next to the one that was 'interrupted' by the host.

7.5.3.2 PCI Host Bridge

The host bridge allows low latency G-Bus controlled master transactions on the PCI bus. Each transaction is a single address phase/single data phase (max one dword at one address). It can be of configuration read/write, IO read/write or a memory read/write access, as defined by the G-Bus address range being used. In the priority scheme, the host is usually like any other agent, unless the super request bit is turned on.

7.5.3.3 PCI Configuration Access

A direct mapping between the G-Bus address and the PCI address is implemented. It allows the host to perform type0 and type1 configuration accesses on the PCI bus. During a type 0 access, the device number can be programmed within the G-Bus address or through the L-Bus registers. If the L-Bus register agent selection is used, then the bit DEVICE # should be set to 0. Inversely if the G-Bus address agent selection is used, then the 'agent select' bits of the register HOST_REG2 should be set to 0.

During the type 1 access, the bit DEVICE # must be programmed through the G-Bus address. It is recommended to use the direct G-Bus address mapping. During an IO access, the G-Bus byte enable bits are mapped to PCI_AD[1:0].

7.5.3.4 Agent Detection

Upon power up to detect the PCI agents in the system the SMP8654 boot software resets the PCI bus. This is accomplished using a GPIO pin. After setting the registers MAMBO_IS_HOST and HOST_REG2, the Device ID and the Vendor ID of the selected device are read at the address of the host memory. If the agent is not present or the data is not ready within the configuration retry cycles, then an interrupt is generated. The register HOST_REG2 contains the interrupt status. At the end of the agent detection process, the software has the Device IDs and Vendor IDs of all the devices in the system. It then has to configure each one of the present devices, before using them.

Once the devices are configured for agent configuration registers, their I/O and memory spaces can be accessed by reading and writing to registers IOSPACE and MEMORYS-PACE.

Note: The software must also be careful to map all the devices in the lower 512MB of the PCI memory space, since the SMP8654 can only use 512MB on the PCI bus.

7.6 Register Map

7.6.1 PCI Slave Registers

7.6.1.1 PCI Slave Direct Access Registers

Table 7-2 PCI slave direct access registers

Address ¹	Register Name	R/W/A ²	Description
+9000	REGION_0_BASE	R	Region 0 Base Address Register
+9004	REGION_1_BASE	R/W	Region 1 Base Address Register
+9008	REGION_2_BASE	R/W	Region 2 Base Address Register
+900C	REGION_3_BASE	R/W	Region 3 Base Address Register
+9010	REGION_4_BASE	R/W	Region 4 Base Address Register
+9014	REGION_5_BASE	R/W	Region 5 Base Address Register
+9018	REGION_6_BASE	R/W	Region 6 Base Address Register
+901C	REGION_7_BASE	R/W	Region 7 Base Address Register
+9020	PCI_IRQ_STATUS	R/A	PCI Interrupt Status Register
+9024	PCI_IRQ_SET	R/W	PCI Interrupt Set Register
+9028	PCI_IRQ_CLEAR	R/W	PCI Interrupt Clear Register

Table 7-2 PCI slave direct access registers (Continued)

Address ¹	Register Name	R/W/A ²	Description
+FE88 ³	PREFETCH	R/A	Prefetch Register
+FE8C ³	DISC-LAT	R/W	Discard Latency Register
+FEFC ³	ABORT	R/W	Abort Register

- 1. Address refers to G-Bus byte address relative to the host interface (0x20000).
- 2. Read/Write/Auto update.
- 3. Address refers to G-Bus byte address relative to the host register base address.

7.6.1.2 PCI Slave Time-out Control Registers

Table 7-3 PCI slave time-out control registers

Address ¹	Register Name	R/W/A ²	Description
+8000	TIMEOUT_VALUE	R/W	Time-out Value Register
+8004	TIMEOUT_STATUS	R/A	Time-out Status Register
+8008	TIMER_COUNTER	R/W/A	Timer Counter Register
+800C	TIMER_TEST_REGISTER	W	Timer Test Register
+8010	WAKEUP_REGISTER	W	Wake Up Register

^{1.} Address refers to G-Bus byte address relative to the PCI base address.

7.6.1.3 PCI Slave Device Configuration Registers

Table 7-4 PCI slave device configuration registers

Address ¹	Register Name	R/W/A ²	Description
+FED4	HOST_REG2	R/W	Host Region 2 Register
+FEE8	PCI_REG0	R/W	PCI Region 0 Register
+FEEC	PCI_REG1	R/W	PCI Region 1 Register
+FEF0	PCI_REG2	R/W	PCI Region 2 Register
+FEF4	PCI_REG3	R/W	PCI Region 3 Register
+FEF8	PCI_CONFIG	R/A	PCI Configuration Register

^{1.} Address refers to G-Bus byte address relative to the PCI base address.

^{2.} Read/Write/Auto update.

^{2.} Read/Write/Auto update.

7.6.2 PCI Master Access Registers

Table 7-5 PCI master access registers

Address ¹	Register Name	R/W/A ²	Description
+FEC0	READ_DMA_ADDRESS	R/W/A	Read DMA Address Register
+FEC4	READ_DMA_COUNTER	R/W/A	Read DMA Counter Register
+FEC8	READ_DMA_ENABLE	R/W	Read DMA Enable Register
+FECC	DMA_REV_ORDER	R/W	DMA Revision Order Register
+FED8	WRITE_DMA_ADDRESS	R/W/A	Write DMA Address Register
+FEDC	WRITE_DMA_COUNTER	R/W/A	Write DMA Counter Register
+FEE0	WRITE_DMA_ENABLE	R/W	Write DMA Enable Register
+FEE4	DMA_BURST	R/W	DMA Burst Register

Address refers to G-Bus byte address relative to the host register base address.
 Read/Write/Auto update.

7.6.3 PCI Host Registers

Table 7-6 PCI host registers

Address ¹	Register Name	R/W/A ²	Description
+FE90	MAMBO_IS_HOST	R/W	Mambo Is Host Register
+FED0	HOST_REG1	R/W	Host Region1 Register
+FED4	HOST_REG2	R/W	Host Region2 Register
+FE80	HOST_REG3	R/W	Host Region3 Register
+FE84	HOST_REG4	R/W	Host Region4 Register
+FE94	HOST_REG5	R/W	Host Region5 Register
+1000_0000- +10FF_FFFC ³	CONFIGURATION	R/W	Configuration Register
+1800_0000- +2000_0000 ³	I/O SPACE	R/W	I/O Space Register
+2000_0000- +4000_0000 ³	MEMORY SPACE	R/W	Memory Space Register

Address refers to G-Bus byte address relative to the host register base address.
 Read/Write/Auto update.
 Address refers to G-Bus byte address relative to the host memory register base address.

7.7 Pin Descriptions

7.7.1 PCI Pins

Table 7-7 System bus pin descriptions

Pin name	Pin Id	Direction	Description
PCI_AD0	AG30	В	PCI address/data pin 0 (LSB)
PCI_AD1	AH30	В	PCI address/data pin 1
PCI_AD10	AJ26	В	PCI address/data pin 10
PCI_AD11	AF25	В	PCI address/data pin 11
PCI_AD12	AH25	В	PCI address/data pin 12
PCI_AD13	AG25	В	PCI address/data pin 13
PCI_AD14	AJ25	В	PCI address/data pin 14
PCI_AD15	AF24	В	PCI address/data pin 15
PCI_AD16	AH22	В	PCI address/data pin 16
PCI_AD17	AK22	В	PCI address/data pin 17
PCI_AD18	AF22	В	PCI address/data pin 18
PCI_AD19	AJ22	В	PCI address/data pin 19
PCI_AD2	AH29	В	PCI address/data pin 2
PCI_AD20	AE22	В	PCI address/data pin 20
PCI_AD21	AJ21	В	PCI address/data pin 21
PCI_AD22	AG21	В	PCI address/data pin 22
PCI_AD23	AH21	В	PCI address/data pin 23
PCI_AD24	AF20	В	PCI address/data pin 24
PCI_AD25	AJ20	В	PCI address/data pin 25
PCI_AD26	AH20	В	PCI address/data pin 26
PCI_AD27	AJ19	В	PCI address/data pin 27
PCI_AD28	AF19	В	PCI address/data pin 28
PCI_AD29	AH19	В	PCI address/data pin 29
PCI_AD3	AJ29	В	PCI address/data pin 3
PCI_AD30	AE19	В	PCI address/data pin 30
PCI_AD31	AG19	В	PCI address/data pin 31 (MSB). The address and the data are multiplexed on the AD pins during the memory and the I/O operations on the PCI bus.

Table 7-7 System bus pin descriptions (Continued)

Pin name	Pin Id	Direction	Description	
PCI_AD4	AJ28	В	PCI address/data pin 4	
PCI_AD5	AK28	В	PCI address/data pin 5	
PCI_AD6	AH27	В	PCI address/data pin 6	
PCI_AD7	AK27	В	PCI address/data pin 7	
PCI_AD8	AK26	В	PCI address/data pin 8	
PCI_AD9	AH26	В	PCI address/data pin 9	
PCI_CBE0#	AJ27	В	Command/byte enable pin 0. Applies to PCI_AD(7:0).	
PCI_CBE1#	AK24	В	Command/byte enable pin 1. Applies to PCI_AD(15:8).	
PCI_CBE2#	AG23	В	Command/byte enable pin 2. Applies to PCI_AD(23:16).	
PCI_CBE3#	AK20	В	Command/byte enable pin 3. During the address phase of a transaction the CBE(3:0)# defines the PCI command. During the data phase each signal indicates whether the associated data byte will be transferred. The CBE3# applies to PCI_AD(31:24).	
PCI_CLK	AK17	I	Clock input for PCI interface section. Either 33MHz or a 66MHz clock signal.	
PCI_DEVSEL#	AJ23	В	Device select pin. A target asserts DEVSEL# when it decodes its address.	
PCI_FRAME#	AE23	В	Cycle frame pin. Current initiator asserts the FRAME# pin to indicate the start and duration of a transaction.	
PCI_GNT0#	AF17	0	PCI host mode: Bus grant for master #0. Asserted low to grant the PCI ownership to an external master.	
			PCI device mode: Bus request output to an external PCI host.	
PCI_GNT1#	AF18	0	PCI host mode: Bus grant for master #1. Asserted low to grant the PCI ownership to an external master.	
			PCI device mode: Unused, make no connection.	
PCI_GNT2#	AE18	0	PCI host mode: Bus grant for master #2. Asserted low to grant the PCI ownership to an external master.	
			PCI device mode: Unused, make no connection.	
PCI_IDSEL0	AE20	В	PCI host mode: ID select for PCI device #0. Asserted low by the SMP8654 to indicate a configuration cycle to a PCI device.	
			PCI device mode: Asserted low by an external PCI host to indicate a configuration cycle for the SMP8654.	

Table 7-7 System bus pin descriptions (Continued)

Pin name	Pin Id	Direction	Description	
PCI_IDSEL1	AE21	0	PCI host mode: ID select for PCI device #1. Asserted low by the SMP8654 to indicate a configuration cycle to a PCI device.	
			PCI Device Mode: Unused, make no connection.	
PCI_IDSEL2	AF21	0	PCI host mode: ID Select for the PCI device #2. Asserted low by the SMP8654 to indicate a configuration cycle to a PCI device.	
			PCI device mode: Unused, make no connection.	
PCI_INTA#	AG17	В	Interrupt A pin. Asserted by a PCI agent to request an interrupt.	
PCI_IRDY#	AH23	В	Initiator ready pin. The current bus master asserts IRDY# to indicate that it is ready to complete a transaction.	
PCI_PAR	AH24	В	Parity. Driven by an initiator (write) or currently-addressed target (read) to create even parity across AD(31:0) and CBE(3:0)#.	
PCI_REQ0#	AK18	I	PCI host mode: Bus request for master #0. Asserted low by an external master requesting a PCI bus transaction.	
			PCI device mode: Bus grant input from an exter- nal PCI host.	
PCI_REQ1#	AJ18	I	PCI Host Mode: Bus Request for Master #1. Asserted low by external master requesting PCI bus transaction.	
			PCI Device Mode: Unused, make no connection.	
PCI_REQ2#	AH18	I	PCI host mode: Bus Request for master #2. Asserted low by external master requesting PCI bus transaction.	
			PCI Device Mode: Unused, make no connection.	
PCI_STOP#	AJ24	0	Stop pin. Asserted by an addressed target to request the bus master to terminate the current transaction in progress.	
PCI_TRDY#	AF23	В	Target ready pin. The currently addressed target asserts TRDY# to indicate that it is ready to complete a transaction.	

7.8 Electrical Characteristics

7.8.1 PCI DC Characteristics

Table 7-8 PCI interface DC characteristics

Symbol	Parameter	Units	Min	Max
V _{IH}	Input high voltage	V	0.5xVDD_3V3	5.5
V _{IL}	Input low voltage	V	-0.3	0.3xVDD_3V3
I _{IL}	Input leakage (condition: 0 < VIN < 3.3V)	uA		± 10
V _{OH}	Output high voltage	V	0.9xVDD_3V3	
V _{OL}	Output low voltage	V		0.1xVDD_3V3
C _{IN}	Input pin capacitance	pF		10
C _{CLK}	CLK pin capacitance	pF	5	10
C _{IDSEL}	IDSEL pin capacitance	pF		8
L _{PIN}	Pin inductance	nH		20

7.8.2 PCI AC Characteristics

The SMP8654 PCI I/O buffers fully conform to the electrical characteristics specified in the sections 'Electrical Specification' and '66MHz PCI Specification' of the PCI Local Bus Specification, Revision 2.2. The PCI bus specification provides a comprehensive set of AC characteristics which compliant devices must meet. These characteristics are specified in terms of V/I curves, output slew rates, and detailed measurement procedures, and are not reproduced in this document. The I/O cells used in the SMP8654 provide compliance with these specifications by design and characterization.

7.9 Timing Diagrams

Timing Parameters

Certain PCI bus timing parameters have different values depending on whether the signal is 'bused' or 'point-to-point'. The point-to-point signals are the REQ# and GNT# signals. The timing parameters which differ between these two groups are identified as 'BUS' or 'PTP' in the table below. For exact measurement conditions for all the timing parameters, refer to the PCI Local Bus Specification, Revision 2.2, Section 7.6.4.3.

Table 7-9 PCI timing parameters

Symbol	Parameter	Units	Min	Max
T _{CYC}	PCI_CLK cycle time (measured at 0.4xVDD_3V3 level)	ns	15	
T _{HIGH}	PCI_CLK high time (measured at 0.5xVDD_3V3 level)	ns	6	
T _{LOW}	PCI_CLK low time (measured at 0.3xVDD_3V3 level)	ns	6	
T _{VAL}	CLK to Signal Valid Delay (BUS)	ns	2	6
T _{VAL}	CLK to Signal Valid Delay (PTP)	ns	2	6
T _{ON}	Float to Active Delay	ns	2	
T _{OFF}	Active to Float Delay	ns		14
T _{SU}	Input Set Time to CLK (BUS)	ns	3	
T _{SU}	Input Set Time to CLK (PTP)	ns	5	
T _H	Input Hold Time from CLK	ns	0	

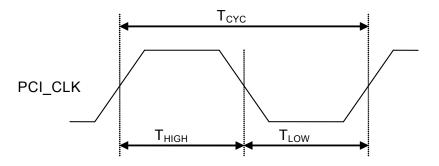


Figure 7-6 PCI CLK timing diagram

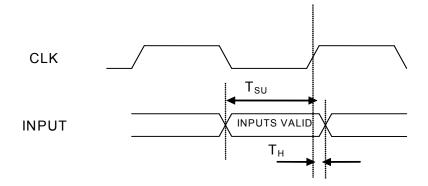


Figure 7-7 PCI input timing diagram

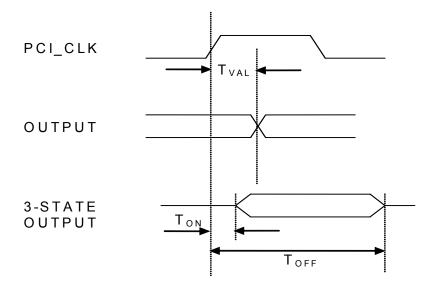


Figure 7-8 PCI output timing diagram

USB 2.0 Embedded Host Interface

The SMP8654 includes a dual-port USB 2.0 Embedded Host Controller and two on-chip PHYs.

Although a Host Controller is included on-chip, the SMP8654 is designed to be used in a closed system where the end-user cannot install additional software and drivers. Due to the wide variety of USB peripherals and applications, manufacturers must implement their own peripheral-specific drivers and application software to be able to use the USB interface. Each manufacturer is also required to have a Targeted Peripheral List (TPL) in their manuals that tells the end-users which peripherals are supported. Entries in a TPL may refer to specific products (manufacturer and model) or, may refer to a class of products (HDD, wheel mouse, flash card, etc.). To receive the USB compliance certification, manufacturers must submit their product with a fully function USB implementation.

7.10 Functional Description

7.10.1 USB 2.0 Embedded Host Controller

The USB 2.0 Embedded Host Controller is fully compliant with the USB 2.0 specification and the Enhanced Host Controller Interface (EHCI) specification revision 1.0. The controller supports high-speed (480Mbps) transfers. The controller comprehends the high-speed, full-speed and low-speed data ranges providing compatibility with a full range of USB devices. The full-speed and low-speed operations are supported via a USB 1.1 OHCI Host Companion Controller. The controller operates independently of the system bus of the SMP8654, shielding the complexities of the USB 2.0 Embedded Host Controller native protocol.

7.10.2 USB 2.0 Embedded Host Transceiver PHY

The USB 2.0 Embedded Host interface includes a fully integrated PHY core supporting High Speed (HS), Full-Speed (FS) and Low-Speed Transceivers and which is compliant with the USB 2.0 specification. It includes clock/data recovery, on-chip PLL, integrated and calibrated termination and pull-up/down resistors with full analog transceiver functionality for the complete USB 2.0 PHY.

The USB 2.0 Embedded Host Transceiver transmits the data onto the line, receives the data and recovers the clock correctly from the receive data. The analog front end includes a high-speed differential driver and an envelope detection/disconnection differential receiver. The high-speed receiver primarily consists of three functional elements; a differential data receiver, a transmission envelope detector and a disconnection envelope detector.

The differential data receiver receives the high-speed (480Mbps) differential data from the USB and converts it to a single-ended NRZI. A transmission envelope detector monitors the amplitude of the high-speed differential data signal from the USB. A disconnection envelope detector also monitors the amplitude of the differential data signal from the USB, but with a different operation and different signal levels of interest.

A high-speed current driver is used for high-speed data transmission. When the driver is not transmitting, a standby mode allows the current to be directed internally to ground and places the driver in a high-output-impedance state. The transition between standby and non-standby modes does not exhibit much delay, and use of the stand-by/non-standby modes ensures that the driver meets the required accuracy starting with the first symbol of a packet.

7.11 Pin Description

7.11.1 USB 2.0 Pins

Table 7-10 USB 2.0 pin descriptions

Pin Name	Pin Id	Direction	Description
USB20_ATEST	AJ15	В	USB 2.0 analog test I/O
USB20_DM_0	AK13	В	USB 2.0 line interface - port 0 -DM
USB20_DM_1	AK16	В	USB 2.0 line interface - port 1 -DM
USB20_DP_0	AJ13	В	USB 2.0 line interface - port 0 -DP
USB20_DP_1	AJ16	В	USB 2.0 line interface - port 1 -DP
USB20_REXT	AJ14	В	USB 2.0 bias resistor input
USB20_VDDAC_3V	AD14	I	USB 2.0 analog power supply (3.3V)
USB20_VDDAC_3V	AE14	I	USB 2.0 analog power supply (3.3V)
USB20_VDDAT_3V 3_0_0	AF13	I	USB 2.0 analog power supply (3.3V)
USB20_VDDAT_3V 3_0_1	AF14	I	USB 2.0 analog power supply (3.3V)

Table 7-10 USB 2.0 pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description
USB20_VDDAT_3V 3_1_0	AF15	I	USB 2.0 analog power supply (3.3V)
USB20_VDDAT_3V 3_1_1	AF16	I	USB 2.0 analog power supply (3.3V)
USB20_VDDC_1V0 _0	AD13	I	USB 2.0 digital power supply (1.0V)
USB20_VDDC_1V0 _1	AD16	I	USB 2.0 digital power supply (1.0V)
USB20_VSSAC	AD15	I	USB 2.0 analog ground
USB20_VSSAC	AE15	I	USB 2.0 analog ground
USB20_VSSAT_0	AG14	I	USB 2.0 analog ground
USB20_VSSAT_0	AG13	I	USB 2.0 analog ground
USB20_VSSAT_0	AH13	I	USB 2.0 analog ground
USB20_VSSAT_1	AG15	I	USB 2.0 analog ground
USB20_VSSAT_1	AH16	I	USB 2.0 analog ground
USB20_VSSAT_1	AG16	I	USB 2.0 analog ground
USB20_VSSAT_C	AH14	I	USB 2.0 analog ground
USB20_VSSAT_C	AH15	I	USB 2.0 analog ground
USB20_VSSC_0	AE13	I	USB 2.0 analog ground
USB20_VSSC_1	AE16	I	USB 2.0 analog ground
USB20_XI	AK15	I	USB 2.0 Xtal oscillator input (optional)
USB20_XO	AK14	В	USB 2.0 Xtal oscillator output (optional)

7.12 Electrical Characteristics

7.12.1 USB 2.0 DC Characteristics – FS Operation

Table 7-11 USB 2.0 DC characteristics – FS operation

Parameter	Description	Conditions	Minimum	Typical	Maximum	Units
V_{DIFS}	Differential rcvr input sensitivity		0.2			V
V _{CMFS}	Differential rcvr com- mon-mode voltage		0.8		2.5	V
V _{ILSE}	Single-ended rcvr low- level input voltage				0.8	V
V _{IHSE}	Single-ended rcvr high- level input voltage		2.0			V
V _{HYSSE}	Single-ended rcvr hyster- esis		50		150	mV
V _{FSOL}	Low-level output voltage				0.3	V
V _{FSOH}	High-level output voltage		2.8		3.6	V
Z _{FSDRV}	Driver output impedance		40.5	45	49.5	ohms
V _{TERM}	DP pullup resistor termi- nation voltage		3.0		3.6	V

7.12.2 USB 2.0 DC Characteristics – HS Operation

Table 7-12 USB 2.0 DC characteristics - HS operation

Parameter	Description	Conditions	Minimum	Typical	Maximum	Units
V _{DIHS}	Differential rcvr input sensitivity		100			mV
V _{CMHS}	Common-mode voltage range		-50		500	mV
V _{HSSQ}	Squelch detection threshold (diff)	Squelch threshold			100	mV
V _{HSSQ}	Single-ended rcvr high- level input voltage	Unsquelch threshold	150			mV
V _{HSOL}	Low-level output voltage	Ref. GND	-10		10	mV
V _{HSOH}	High-level output volt- age	Ref. GND	360		440	mV
V _{OLHS}	Idle-level output voltage	Ref. GND	-10		10	mV
V _{CHIRPJ}	Chirp-J output voltage (diff)		700		1100	mV

Table 7-12 USB 2.0 DC characteristics - HS operation (Continued)

Parameter	Description	Conditions	Minimum	Typical	Maximum	Units
V _{CHIRPK}	Chirp-K output voltage (diff)		-900		-500	mV
I _{LZ}	Off-state leakage current				+/-1	uA
C _{IN}	Transceiver input capacitance	Pin to GND		5	10	pF

7.12.3 Dynamic Characteristics – FS Operation

Table 7-13 Dynamic Characteristics - FS Operation

Parameter	Description	Conditions	Minimum	Typical	Maximum	Units
T _{FSR}	Rise time	CL= 50pF; 10 to 90% of VOH - VOL	4		20	nS
T _{FSF}	Fall time	CL= 50pF; 10 to 90% of VOH - VOL	4		20	nS
V _{CRS}	Output crossover voltage	Excluding first transi- tion from IDLE	1.3		2.0	V

7.12.4 Dynamic Characteristics – HS Operation

Table 7-14 Dynamic Characteristics – HS Operation

Parameter	Description	Conditions	Minimum	Typical	Maximum	Units
T _{HSR}	Rise time		500			pS
T _{HSF}	Fall time		500			pS

Additional dynamic specifications:

- 1. The USB2.0 PHY output drivers conform to the eye pattern requirements as specified in Template 1 of the USB2.0 Revision 2.0 specification.
- 2. The USB2.0 PHY receivers conform to the eye pattern (including source and receiver jitter tolerance requirements) as specified in Template 4 of the USB2.0 Revision 2.0 specification.

Ethernet Interface

The SMP8654 includes 2 identical 10/100Mbps Ethernet blocks. Each Ethernet block contains one MII interface for external PHYs (external PHY chips are required). Together, the 2 Ethernet blocks provide 2 ports. The Ethernet MAC module allows the SMP8654 to communicate data over the Ethernet protocol (IEEE. 802.3x).

7.12.1 Features

- IEEE 802.3x compliant
- Supports carrier extension and packet bursting
- Supports half and full duplex operations
- Supports full duplex flow control
- FCS generation for transmit, check for receiving packets
- Automatic retries after collision (programmable)
- One MII interface to PHY layer

7.12.2 Block Diagram

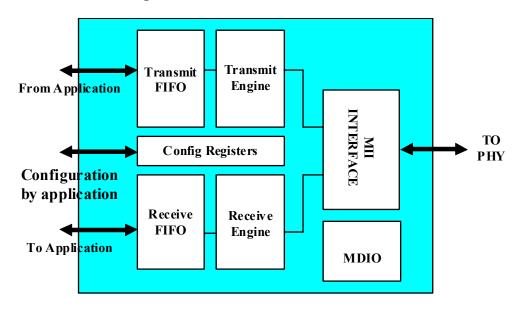


Figure 7-9 Ethernet block diagram

7.12.3 Functional Description

Transmit FIFO

The Transmit FIFO accepts transmit data from the application and stores it temporarily until it is requested by the Transmit Engine.

Receive FIFO

The Receive FIFO temporarily store receive data from the Receive Engine, until the application requests it.

Transmit Engine

The Transmit Engine sends the data from the Transmit FIFO through to the MII interface, it also initiates the transfers and keeps track of the size of the transfer. This block manages packet bursting, carrier extension, appending padding, packet retries, deferral, back off, and appending FCS. The Transmit Engine can take back to back transmit requests to perform packet bursting. If the packet sizes are less than 512-bytes, then carrier extension is performed.

Receive Engine

The Receive Engine manages the data transfers between MII interface and the Receive FIFO. Carrier extension and burst packet boundaries are identified, and packets are separated in this block. Status is generated for every packet received. The FCS is checked and reported as status.

MDIO

The MDIO block is used to communicate with the PHY on the serial MDIO interface that is standard on PHYs. The MDIO block takes information in the MDIO Command registers and sends it across the serial MDIO interface to configure the PHY. On MDIO reads, the MDIO block accepts serial data from the MDIO data pin and loads the MDIO Status register with this read data, so that the application software can read it by reading the MDIO Status register.

MII Interface

The industry standard MII interface is provided in the SMP8654. The MII block also handles the flow control for half and full duplex.

7.13 Pin Description

7.13.1 MII Interface Pins

Table 7-15 MII interface pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
ETH0_COL	AK2	В	Ethernet 0 collision detect. Alternate function: GPIO46	А
ETH0_CRS	AE3	В	Ethernet 0 carrier sense A Alternate function: GPIO45	
ETH0_MDC	AE1	В	Ethernet 0 management data clock Alternate function: GPIO47	А
ETH0_MDINT#	AD5	В	Ethernet 0 management interrupt Alternate function: GPIO49	А
ETH0_MDIO	AD6	В	Ethernet 0 management data I/O Alternate function: GPIO48	А
ETH0_RX_DV	AE4	В	Ethernet 0 receive data valid Alternate function: GPIO39	А
ETH0_RX_ER	AE2	В	Ethernet 0 receive error Alternate function: GPIO40	А
ETH0_RXCLK	AF4	В	Ethernet 0 receive clock Alternate function: GPIO38	А
ETH0_RXD0	AE5	В	Ethernet 0 receive data 0 Alternate function: GPIO41	А
ETH0_RXD1	AF1	В	Ethernet 0 receive data 1 Alternate function: GPIO42	А
ETH0_RXD2	AF2	В	Ethernet 0 receive data 2 Alternate function: GPIO43	А
ETH0_RXD3	AF3	В	Ethernet 0 receive data 3 Alternate function: GPIO44	А
ETH0_TX_EN	AJ3	В	Ethernet 0 transmit enable Alternate function: GPIO33	А
ETH0_TX_ER	AJ1	В	Ethernet 0 transmit error Alternate function: GPIO50	А
ETH0_TXCLK	AG1	В	Ethernet 0 transmit clock Alternate function: GPIO32	А
ETH0_TXD0	AG2	В	Ethernet 0 transmit data 0 Alternate function: GPIO34	А
ETH0_TXD1	AG3	В	Ethernet 0 transmit data 1 Alternate function: GPIO35	А

Table 7-15 MII interface pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description	Driver Type ¹
ETH0_TXD2	AH1	В	Ethernet 0 transmit data 2 Alternate function: GPIO36	А
ETH0_TXD3	AH2	В	Ethernet 0 transmit data 3 A Alternate function: GPIO37	
ETH1_COL	AE7	В	Ethernet 1 collision detect Alternate function: GPIO65	А
ETH1_CRS	AK5	В	Ethernet 1 carrier sense Alternate function: GPIO64	А
ETH1_MDC	AJ4	В	Ethernet 1 management data clock Alternate function: GPIO66	А
ETH1_MDINT#	AK3	В	Ethernet 1 management interrupt Alternate function: GPIO68	А
ETH1_MDIO	AK4	В	Ethernet 1 management data I/O Alternate function: GPIO67	А
ETH1_RX_DV	AJ5	В	Ethernet 1 receive data valid Alternate function: GPIO58	А
ETH1_RX_ER	AH4	В	Ethernet 1 receive error Alternate function: GPIO59	А
ETH1_RXCLK	AH6	В	Ethernet 1 receive clock Alternate function: GPIO57	А
ETH1_RXD0	AH5	В	Ethernet 1 receive data 0 Alternate function: GPIO60	А
ETH1_RXD1	AG5	В	Ethernet 1 receive data 1 Alternate function: GPIO61	А
ETH1_RXD2	AK6	В	Ethernet 1 receive data 2 Alternate function: GPIO62	А
ETH1_RXD3	AJ6	В	Ethernet 1 receive data 3 Alternate function: GPIO63	А
ETH1_TX_EN	AF7	В	Ethernet 1 transmit enable Alternate function: GPIO52	А
ETH1_TX_ER	AG7	В	Ethernet 1 transmit error Alternate function: GPIO69	А
ETH1_TXCLK	AG6	В	Ethernet 1 transmit clock Alternate function: GPIO51	А
ETH1_TXD0	AF6	В	Ethernet 1 transmit data 0 A Alternate function: GPIO53	
ETH1_TXD1	AK7	В	Ethernet 1 transmit data 1 Alternate function: GPIO54	А

Table 7-15 MII interface pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description	Driver Type ¹
ETH1_TXD2	AJ7	В	Ethernet 1 transmit data Alternate function: GPIO55	А
ETH1_TXD3	AH7	В	Ethernet 1 transmit data 3 Alternate function: GPIO56	А

The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

7.14 Electrical Characteristics

7.14.1 MII Interface AC Electrical Characteristics

Table 7-16 MII interface AC characteristics

Symbol	Units	Minimum	Typical	Maximum
T _{RXCLK}	ns		40	
T _{RXDSU}	ns	3		
T _{RXDH}	ns	3		
T _{TXCLK}	ns		40	
T _{TXDVLD}	ns	0		8

7.15 Timing Diagram

ETH_TXD ETH_TX_EN

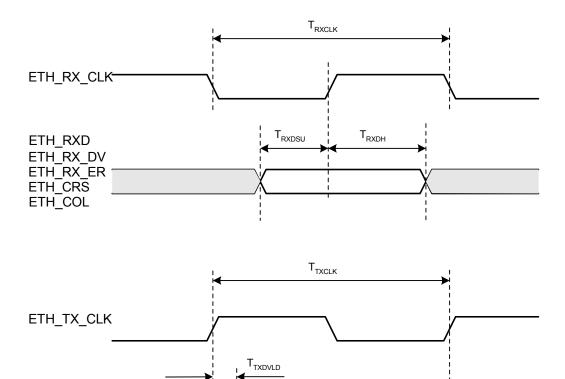


Figure 7-10 MII Interface timing diagram

NAND Flash Interface

7.16 Introduction

The SMP8654 includes a NAND Flash Controller unit which provides an interface to low-cost, high-density NAND flash memories for nonvolatile storage of code and data. This interface supports specific SLC-type NAND flash devices having an 8-bit data interface. Also, supported are certain NOR-type devices having NAND flash interface (SpansionTM ORNANDTM).

7.17 Features

- Glueless connection to common SLC NAND flash devices (8-bit command/data interface)
- Support for SpansionTM ORNANDTM flash devices (NOTR technology/NAND interface)
- Very large capacities can be supported (up to 4GB per chip select)
- NAND flash read operations supported in XOS allows boot from the NAND flash
- Hardware support for ECC generation (writes) and checking (reads)
- Sigma NAND flash driver supports the needed wear-leveling and bad-block management functions

7.18 Functional Description

The NAND flash controller is a simple module capable of producing the command, address and data transfer cycles necessary to support the NAND flash operation. The hardware unit is, in turn, controlled by a NAND flash driver to support application-level flash usage, or by the XOS for booting from the NAND flash. The hardware unit has programmable cycle timing to support devices with differing timing characteristics. The hardware also includes ECC generation and checking logic required for reliable data integrity.

The NAND Flash driver supports the specialized 'wear-leveling' and bad-block replacement operations needed to support the NAND memory technology.

7.18.1 Supported NAND Flash Devices

Due to the many variations which exist between the exact protocols used by various NAND flash devices, the Sigma NAND driver supports only specific devices. Both 'large-block' (2048+16 byte block size) and 'small-block' (512+16 byte block size) devices are supported.

The table below shows the various flash devices targeted for support. Contact Sigma for the most up-to-date information regarding the supported devices.

Note: Currently, software support for Numonyx devices is not available. It will be included after the upcoming SDK version 3.6 release.

Table 7-17 Supported NAND flash devices

Manufacturer	Part Number	Capacity	Туре
Samsung	K9F1G08U0B	1Gb	NAND, large page
Samsung	K9F2G08U0A	2Gb	NAND, large page
Samsung	K9F4G08U0A	4Gb	NAND, large page
Samsung	K9K8G08U0M	8Gb	NAND, large page
Numonyx	NAND01GW3B2B	1Gb	NAND, large page
Numonyx	NAND02GW3B2D	2Gb	NAND, large page
Numonyx	NAND04GW3B2B	4Gb	NAND, large page
Numonyx	NAND08GW3B2A NAND08GW3B2C	8Gb	NAND, large page
Micron	MT29F2G08AADWP	2Gb	NAND, large page
Micron	MT29F4G08AACWC	4Gb	NAND, large page
Micron	MT29F8G08AAAWP	8Gb	NAND, large page
Numonyx	NAND512W3A2C	512Mb	NAND, small page
Numonyx	NAND256W3A2B	256Mb	NAND, small page
Numonyx	NAND128W3A2B	128Mb	NAND, small page
Spansion	S30ML512P	512Mb	NOR, small page, NAND interface
Spansion	S30ML256P	256Mb	NOR, small page, NAND interface
Spansion	S30ML128P	128Mb	NOR, small page, NAND interface

7.19 Registers

7.19.1 Register Map - NAND Flash Configuration

Table 7-18 Register map - NAND flash configuration

+0800 PB0_TIMING0 R/W Peripheral Bus 0 Timing 0 Register +0804 PB0_TIMING1 R/W Peripheral Bus 0 Timing 1 Register +0808 PB0_TIMING2 R/W Peripheral Bus 0 Timing 2 Register +0806 PB0_TIMING3 R/W Peripheral Bus 0 Timing 3 Register +0807 PB0_TIMING4 R/W Peripheral Bus 0 Timing 3 Register +0810 PB0_TIMING5 R/W Peripheral Bus 0 Timing 4 Register +0814 PB0_TIMING5 R/W Peripheral Bus 0 Default Timing Register +0818 PB0_DEFAULT_TIMING R/W Peripheral Bus 0 Default Timing Register +0810 PB0_USE_TIMING0 R/W Peripheral Bus 0 Use Timing 0 Register +0820 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 2 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0829 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 4 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 LORDY State Register +0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Strapping Control Register +0849 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP1 R Peripheral Bus 0 SCC Code 0 Register +0886 PB0_STRAP1 R Peripheral Bus 0 ECC Code 1 Register +0860 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +0860 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +0860 PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	Address ¹	Register Name	R/W/A ²	Description
PBO_TIMING1 R/W Peripheral Bus 0 Timing 1 Register +0808 PBO_TIMING2 R/W Peripheral Bus 0 Timing 2 Register +080C PBO_TIMING3 R/W Peripheral Bus 0 Timing 3 Register +0810 PBO_TIMING4 R/W Peripheral Bus 0 Timing 4 Register +0814 PBO_TIMING5 R/W Peripheral Bus 0 Timing 5 Register +0818 PBO_DEFAULT_TIMING R/W Peripheral Bus 0 Default Timing Register +0818 PBO_USE_TIMING0 R/W Peripheral Bus 0 Use Timing 0 Register +0810 PBO_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0820 PBO_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PBO_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 2 Register +0828 PBO_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PBO_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 3 Register +0830 PBO_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 4 Register +0830 PBO_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0830 PBO_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0830 PBO_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0830 PBO_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PBO_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PBO_CS_CONFIG1 R/W Peripheral Bus 0 Automode Start Address Register +0840 PBO_AUTO_ADD R/W Peripheral Bus 0 Automode Control 0 Register +0840 PBO_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 1 Register +0848 PBO_AUTO_CTRL1 R/W Peripheral Bus 0 Strapping Control Register +0848 PBO_STRAP_CTRL R/W Peripheral Bus 0 Strapping O Register +0848 PBO_STRAP0 R Peripheral Bus 0 Strapping 1 Register +0850 PBO_ECC_CODE0 R Peripheral Bus 0 ECC Code 1 Register +0860 PBO_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +0860 PBO_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register				·
+0808 PB0_TIMING2 R/W Peripheral Bus 0 Timing 2 Register +080C PB0_TIMING3 R/W Peripheral Bus 0 Timing 3 Register +0810 PB0_TIMING4 R/W Peripheral Bus 0 Timing 4 Register +0814 PB0_TIMING5 R/W Peripheral Bus 0 Timing 5 Register +0818 PB0_DEFAULT_TIMING R/W Peripheral Bus 0 Default Timing Register +0818 PB0_USE_TIMING0 R/W Peripheral Bus 0 Use Timing 0 Register +0810 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0820 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 2 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 4 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0830 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 OS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 Automode Start Address Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Control 0 Register +0840 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 1 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Strapping Control Register +0848 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +0868 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +0864 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +0865 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register				
+080C PB0_TIMING3 R/W Peripheral Bus 0 Timing 3 Register +0810 PB0_TIMING4 R/W Peripheral Bus 0 Timing 4 Register +0814 PB0_TIMING5 R/W Peripheral Bus 0 Timing 5 Register +0818 PB0_DEFAULT_TIMING R/W Peripheral Bus 0 Default Timing Register +0810 PB0_USE_TIMING0 R/W Peripheral Bus 0 Use Timing 0 Register +0810 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0820 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 2 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 3 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Strapping Control Register +0880 PB0_STRAPO R Peripheral Bus 0 Strapping 1 Register +0884 PB0_STRAPO R Peripheral Bus 0 Strapping 1 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +0889 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 1 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C6 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08C6 PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 2 Register	+0804	PB0_TIMING1	R/W	Peripheral Bus 0 Timing 1 Register
+0810 PB0_TIMING4 R/W Peripheral Bus 0 Timing 4 Register +0814 PB0_TIMING5 R/W Peripheral Bus 0 Timing 5 Register +0818 PB0_DEFAULT_TIMING R/W Peripheral Bus 0 Default Timing Register +081C PB0_USE_TIMING0 R/W Peripheral Bus 0 Use Timing 0 Register +0820 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 1 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 3 Register +0821 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 4 Register +0822 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0840 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0844 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Strapping Control Register +0848 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping 1 Register +0880 PB0_STRAP0 R Peripheral Bus 0 Strapping 1 Register +0884 PB0_STRAP1 R Peripheral Bus 0 ECC Code 0 Register +0886 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 1 Register +0864 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 2 Register +0868 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 3 Register	+0808	PB0_TIMING2	R/W	Peripheral Bus 0 Timing 2 Register
+0814 PB0_TIMINGS R/W Peripheral Bus 0 Timing 5 Register +0818 PB0_DEFAULT_TIMING R/W Peripheral Bus 0 Default Timing Register +081C PB0_USE_TIMING0 R/W Peripheral Bus 0 Use Timing 0 Register +0820 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 1 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 4 Register +0820 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0831 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0840 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0844 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Strapping Control Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping 1 Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 1 Register +0886 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +0886 PB0_SCC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +0864 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +0868 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +0868 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 3 Register	+080C	PB0_TIMING3	R/W	Peripheral Bus 0 Timing 3 Register
+0818 PB0_DEFAULT_TIMING R/W Peripheral Bus 0 Default Timing Register +081C PB0_USE_TIMING0 R/W Peripheral Bus 0 Use Timing 0 Register +0820 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 2 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 4 Register +0821 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0822 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0833 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0834 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0836 PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0849 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0880 PB0_STRAP0 R Peripheral Bus 0 Strapping 1 Register +0886 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +0886 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +0886 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +0886 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +0886 PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0810	PB0_TIMING4	R/W	Peripheral Bus 0 Timing 4 Register
+081C PB0_USE_TIMING0 R/W Peripheral Bus 0 Use Timing 0 Register +0820 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 2 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 3 Register +0820 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 4 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CONFIG1 R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0840 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAPO R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C6 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0814	PB0_TIMING5	R/W	Peripheral Bus 0 Timing 5 Register
+0820 PB0_USE_TIMING1 R/W Peripheral Bus 0 Use Timing 1 Register +0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 2 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +082C PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 3 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 Use Timing 5 Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Start Address Register +0844 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Strapping Control Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 1 Register +0888 PB0_STRAP1 R Peripheral Bus 0 ECC Code 0 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 1 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 2 Register +08C6 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register	+0818	PB0_DEFAULT_TIMING	R/W	Peripheral Bus 0 Default Timing Register
+0824 PB0_USE_TIMING2 R/W Peripheral Bus 0 Use Timing 2 Register +0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +082C PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 4 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 Use Timing 5 Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0840 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0848 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 1 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 1 Register +08C4 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08C6 PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+081C	PB0_USE_TIMING0	R/W	Peripheral Bus 0 Use Timing 0 Register
+0828 PB0_USE_TIMING3 R/W Peripheral Bus 0 Use Timing 3 Register +082C PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 4 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0840 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0844 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0848 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 1 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 2 Register +08C6 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 3 Register	+0820	PB0_USE_TIMING1	R/W	Peripheral Bus 0 Use Timing 1 Register
+082C PB0_USE_TIMING4 R/W Peripheral Bus 0 Use Timing 4 Register +0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +0830 PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0824	PB0_USE_TIMING2	R/W	Peripheral Bus 0 Use Timing 2 Register
+0830 PB0_USE_TIMING5 R/W Peripheral Bus 0 Use Timing 5 Register +0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +083C PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0828	PB0_USE_TIMING3	R/W	Peripheral Bus 0 Use Timing 3 Register
+0834 PB0_CS_CONFIG0 R/W Peripheral Bus 0 CS Configuration Register +0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +083C PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAPO R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+082C	PB0_USE_TIMING4	R/W	Peripheral Bus 0 Use Timing 4 Register
+0838 PB0_CS_CONFIG1 R/W Peripheral Bus 0 CS Configuration Register +083C PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0830	PB0_USE_TIMING5	R/W	Peripheral Bus 0 Use Timing 5 Register
+083C PB0_CS_CTRL R/W Peripheral Bus 0 IORDY State Register +0840 PB0_AUTO_ADD R/W Peripheral Bus 0 Automode Start Address Register +0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAPO R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0834	PB0_CS_CONFIG0	R/W	Peripheral Bus 0 CS Configuration Register
+0840PB0_AUTO_ADDR/WPeripheral Bus 0 Automode Start Address Register+0844PB0_AUTO_CTRL0R/WPeripheral Bus 0 Automode Control 0 Register+0848PB0_AUTO_CTRL1R/WPeripheral Bus 0 Automode Control 1 Register+0880PB0_STRAP_CTRLR/WPeripheral Bus 0 Strapping Control Register+0884PB0_STRAP0RPeripheral Bus 0 Strapping 0 Register+0888PB0_STRAP1RPeripheral Bus 0 Strapping 1 Register+08C0PB0_ECC_CODE0RPeripheral Bus 0 ECC Code 0 Register+08C4PB0_ECC_CODE1RPeripheral Bus 0 ECC Code 1 Register+08C8PB0_ECC_CODE2RPeripheral Bus 0 ECC Code 2 Register+08CCPB0_ECC_CODE3RPeripheral Bus 0 ECC Code 3 Register	+0838	PB0_CS_CONFIG1	R/W	Peripheral Bus 0 CS Configuration Register
+0844 PB0_AUTO_CTRL0 R/W Peripheral Bus 0 Automode Control 0 Register +0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+083C	PB0_CS_CTRL	R/W	Peripheral Bus 0 IORDY State Register
+0848 PB0_AUTO_CTRL1 R/W Peripheral Bus 0 Automode Control 1 Register +0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0840	PB0_AUTO_ADD	R/W	Peripheral Bus 0 Automode Start Address Register
+0880 PB0_STRAP_CTRL R/W Peripheral Bus 0 Strapping Control Register +0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0844	PB0_AUTO_CTRL0	R/W	Peripheral Bus 0 Automode Control 0 Register
+0884 PB0_STRAP0 R Peripheral Bus 0 Strapping 0 Register +0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0848	PB0_AUTO_CTRL1	R/W	Peripheral Bus 0 Automode Control 1 Register
+0888 PB0_STRAP1 R Peripheral Bus 0 Strapping 1 Register +08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0880	PB0_STRAP_CTRL	R/W	Peripheral Bus 0 Strapping Control Register
+08C0 PB0_ECC_CODE0 R Peripheral Bus 0 ECC Code 0 Register +08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0884	PB0_STRAP0	R	Peripheral Bus 0 Strapping 0 Register
+08C4 PB0_ECC_CODE1 R Peripheral Bus 0 ECC Code 1 Register +08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+0888	PB0_STRAP1	R	Peripheral Bus 0 Strapping 1 Register
+08C8 PB0_ECC_CODE2 R Peripheral Bus 0 ECC Code 2 Register +08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+08C0	PB0_ECC_CODE0	R	Peripheral Bus 0 ECC Code 0 Register
+08CC PB0_ECC_CODE3 R Peripheral Bus 0 ECC Code 3 Register	+08C4	PB0_ECC_CODE1	R	Peripheral Bus 0 ECC Code 1 Register
	+08C8	PB0_ECC_CODE2	R	Peripheral Bus 0 ECC Code 2 Register
+08D0 PB0_ECC_CLEAR R Peripheral Bus 0 ECC Clear Register	+08CC	PB0_ECC_CODE3	R	Peripheral Bus 0 ECC Code 3 Register
	+08D0	PB0_ECC_CLEAR	R	Peripheral Bus 0 ECC Clear Register

SMP8654-DS-A-10 SMP8654 Datasheet

- Address refers to G-Bus byte address relative to the host interface register base.
 Read/Write/Auto update.

7.20 Pin Description

7.20.1 NAND Flash Pins

Table 7-19 NAND flash pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
FLASH_ALE	AB25	0	Address latch enable. Strobe for 8-bit address transfer cycle.	D
FLASH_CLE	AC25	0	Command latch enable. Strobe for 8-bit command transfer cycle.	D
FLASH_CS0#	AD26	0	Chip select 0 (active-low). Enables memory device #0.	D
FLASH_CS1#	AD27	0	Chip select 1 (active-low). Enables memory device #1.	D
FLASH_D0	AD28	В	Bit 0 of 8-bit address/command/data bus.	С
FLASH_D1	AE26	В	Bit 0 of 8-bit address/command/data bus.	С
FLASH_D2	AE27	В	Bit 0 of 8-bit address/command/data bus.	С
FLASH_D3	AE28	В	Bit 0 of 8-bit address/command/data bus.	С
FLASH_D4	AE29	В	Bit 0 of 8-bit address/command/data bus.	С
FLASH_D5	AF27	В	Bit 0 of 8-bit address/command/data bus.	С
FLASH_D6	AF29	В	Bit 0 of 8-bit address/command/data bus.	С
FLASH_D7	AF30	В	Bit 0 of 8-bit address/command/data bus.	С
FLASH_IORDY	AC26	I	Memory device READY/BUSY status.	I
FLASH_RD#	AD25	0	Read command (active-low).	D
FLASH_WR#	AC27	0	Write command (active-low).	D

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

7.21 Electrical Characteristics

7.21.1 NAND Flash Interface AC Characteristics

Table 7-20 NAND flash interface AC characteristics

Symbol	Description	Units	Minimum	Maximum
T ₁	Internal clock to earliest output transition		NA ¹	NA ¹
T ₂	Internal clock to latest output transition		NA ¹	NA ¹
T _{OPSKEW}	Skew range for synchronous output signals	ns	0	4
T _{RDSU}	Read data setup time to FLASH_RD# deas- serted	ns	T _{SYSCLK} + 8	
T _{RDH}	Read data hold time from FLASH_RD# deasserted	ns	0	
T _{CMD-DEACT}	RD#WR# inactive after IODRY sampled active (after $T_{\rm C}$ phase timed out)	ns	3*T _{SYSCLK}	4*T _{SYSCLK}

^{1.} No specifications supplied since parameter not externally measurable. Parameters used to explain T_{OPSKEW}.

7.22 Timing Diagram

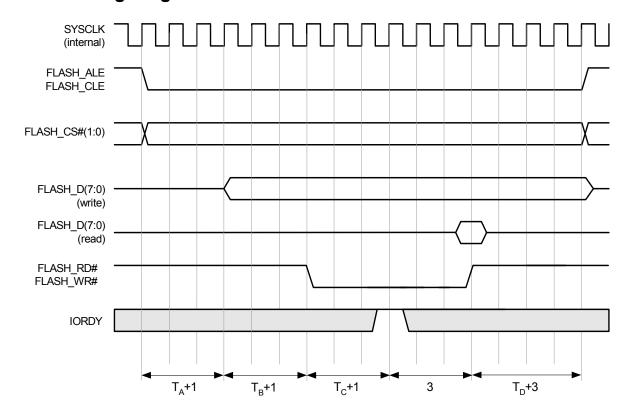


Figure 7-11 NAND flash timing diagram

SATA Interface

7.23 Introduction

The SMP8654 SATA Interface consists of a SATA dual-port Embedded Host Controller and two on-chip PHYs. The interface implements the Serial Advanced Technology Attachment (ATA) storage interface for physical storage devices. The SATA Embedded Host Controller complies with the Serial ATA II specification.

7.24 Features

SATA Host Controller

- Embedded Host Controller
- Supports SATA 1.5Gbps Generation 1 speed
- Compliant with SATA specification and applicable Serial ATA II Extension specification

7.25 Block Diagram

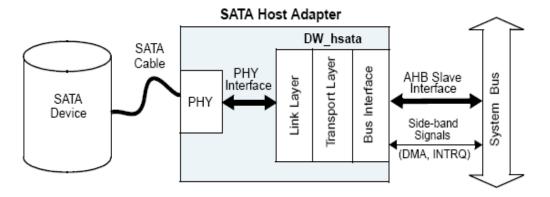


Figure 7-12 SATA interface block diagram

7.26 Functional Description

The Host Controller consists of 3 main functional blocks: Bus interface, Transport Layer, and Link Layer. Together with the physical layer (PHY) it forms a complete Serial ATA (SATA) host adapter.

7.26.1 SATA Host Controller

SATA is a half-duplex system. Either a receive or transmit operation is performed between the two agents (host and device) at any given time, but not both. This is true only for data frames transfer. Control traffic (primitives) is full duplex to maintain receiver synchronization. For example, SYNC primitives are sent continuously while both host and device sides are in their idle states.

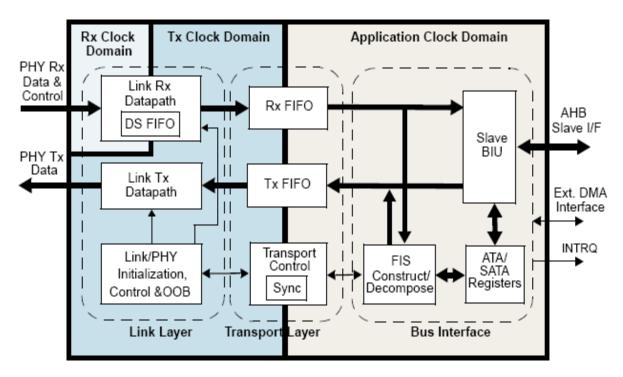


Figure 7-13 SATA Host Controller

The host controller operates primarily in 2 or 3 clock domains, depending on where the Rx Buffer is located: Rx Buffer Mode dependent receive (Rx), transmit (Tx), and application. Rx (when present) and Tx clocks are generated in the PHY and are 150, 75, or 37.5MHz for Gen1 (300, 150, or 75MHz for Gen2), depending on the PHY data width. Most of the Link Layer (both receive and transmit data paths) and part of the Transport Layer always operate in the Tx clock domain. When the Rx Buffer is located in the Link Layer, the Rx clock is a clock recovered from the high-speed data in the PHY and is used for clocking data into the controller. This clock is also used for performing optional 8b/10b decoding, dropping ALIGNs and aligning data. When the Rx Buffer is located in the PHY, data is clocked into the controller on the Tx clock.

Host application software (driver) accesses the Host Controller using a set of ATA, SATA and Host Controller specific registers. The DMA flow control is implemented with several handshaking signals compatible with the DMA controller.

The following subsections describe the basic Host Controller functionality in terms of Rx/Tx data, control paths and layers.

7.26.1.1 Internal Communication Paths

The following subsections describe the internal Host Controller communication paths.

Receive Path

The following list highlights the Receive Path functionality:

- Link Layer optionally detects Rx OOB signalling sequences from the device and initializes the system.
- Link Layer receives SATA frames and primitives from the PHY sent by the device.
- Link Layer transmits primitives using backchannel to control the data flow.
- Link Layer optionally performs 10B/8B decoding, data alignment, descrambling, deframing and CRC checking on the frame FIS (frame payload), stripping SOF, EOF and other control primitives. A data-stream FIFO (DS FIFO) is used to cross data from the Rx to the Tx clock domain.
- Link Layer passes FIS to the Transport Layer Rx FIFO. The Rx FIFO is a two-clock 33-bit wide FIFO. Data is written in the Tx clock domain and is read in the application clock domain, thus providing clock-crossing function for receive data. The Rx FIFO depth is a configurable parameter.
- Transport Layer decodes FIS type from the least-significant byte of the FIS first DWORD.
- Transport Layer updates ATA/SATA registers if it is a register type FIS. Some FIS types are used for control only (example: DMA activate FIS).
- Transport Layer passes data from the Rx FIFO to the system bus using DMA or PIO modes via Bus Interface (example: Data FIS). In PIO mode, application software performs series of reads from the Data register. In DMA mode, Bus Interface requests transaction from the DMA controller, which in turn generates read access to the RxFIFO.

Transmit Path

The following list highlights the Transmit Path functionality:

- Link Layer optionally generates Tx OOB signalling sequences to the device and initializes the system.
- Transport Layer receives data from the system bus either via the DMA channel or from the ATA/SATA registers after the application software writes to them. In the PIO mode, the application software performs series of writes to the Data register. In the

DMA mode, the Bus Interface requests transaction from the DMA controller, which in turn generates write access to the TxFIFO.

- Transport Layer constructs the appropriate FIS and passes it to the Link Layer via the Tx FIFO. The Tx FIFO is a two-clock 33-bit wide FIFO. The data is written in the application clock domain and read in the Tx clock domain, thus providing clock-crossing function for the transmit data.
- Link Layer receives FIS from the Tx FIFO, calculates the CRC, frames the data by inserting SOF, EOF and other flow control primitives, scrambles Repeat Primitives and data, optionally performs 8B10B encoding and multiplexes the data out to the PHY at the correct data width.
- Link Layer receives flow control and status primitives from the device on the backchannel and passes relevant information and status to the Transport Layer.

Control Path

The following list highlights the Control Path functionality:

- Link control implements the Link Layer and the initialization state machines, interfaces to the PHY and the Transport Layer, and controls the data movement in both directions. The link detects all the PHY and Link Layer errors and passes them to the Transport Layer. In addition, the Link Layer controls the PHY interface power management.
- Transport control implements the SATA Transport Layer state machine and interfaces
 to the Link Layer and to the bus interface. Various synchronizing modules provide
 clock-crossing functionality for all the control signals and data. The Transport Layer
 detects all the PHY/Link Layer/Transport Layer errors and passes them to the Bus
 Interface.
- Bus Interface control (not shown in the block diagram) provides Rx/Tx FIFO control functions, error handling, ATA/SATA register control, power management, DMA flow control, PHY control/status, interrupt control.

7.26.1.2 Transport Layer Overview

The Transport Layer constructs Frame Information Structures (FIS) for transmission and decomposes received FIS.

Transport Layer FIS Construction

The following list describes how an FIS is constructed:

- Gathers FIS content based on the type of FIS requested by the host application layer software.
- Places FIS content in the proper order.

 Notifies the Link Layer of the required frame transmission and passes the FIS to the Link.

- Manages TxFIFO flow, notifies Link of the required flow control via TxFIFO flags.
- Receives frame receipt acknowledge from Link.
- Reports good transmission or errors to requesting higher layer.

Transport Layer FIS Decomposition

The following list describes how an FIS is decomposed:

- Receives the FIS from the Link Layer.
- Determines FIS type.
- Distributes the FIS content to the locations indicated by the FIS type.
- Reports good reception or errors to the application layer.

7.26.1.3 Link Layer Overview

The Link Layer controls initialization between the Link Layer, PHY and a connected device. In addition, the Link Layer optionally generates and detects OOB signalling, transmits and receives frames, transmits primitives based on control signals from the Transport Layer and PHY, and receives primitives from the PHY layer that are used to control the Transport and Link Layers. The Link Layer also controls power management via control of the PHY and PHY interface. A summary of the main Link Layer features are described in the following sections:

Initialization

The following list describes the Link Layer initialization process:

- Negotiates with its peer Link Layer and PHY to bring the system to an initialized state ready to transmit and receive data.
- Optionally transmits OOB sequences to the PHY, or instructs the PHY to generate them. These sequences are then forwarded to the remote device PHY per SATA specifications, causing device PHY initialization.
- Optionally receives the OOB sequences or condition detection signals from the PHY, causing advancement in the initialization routine. When the OOB detection is performed by the PHY, the Link Layer detects these conditions via PHY_COMINIT and PHY_COMWAKE signals from the PHY.
- Once it has been determined that the remote device is ready, the Link Layer transitions to normal operation.

Frame Transmission

The following list describes the Link Layer frame transmission process:

- Negotiates with its peer Link Layer to transmit a frame, resolves arbitration conflicts if both host and device request transmission.
- Inserts frame envelope around Transport Layer data (i.e. SOF, CRC, EOF).
- Receives data in the form of DWORDs from the Transport Layer.
- Calculates CRC on Transport Layer data.
- Transforms (scrambles) data and Repeat Primitive DWORDs in such a way to distribute the potential EMI emissions over a broader range.
- Optionally performs 8b/10b encoding.
- Transmits frame.
- Provides frame flow control in response to status from the TxFIFO or the peer Link Layer.
- Receives frame receipt acknowledge from peer Link Layer.
- Reports good transmission or Link/PHY Layer errors to Transport Layer.

Frame Receipt

The following list describes the Link Layer frame receipt process:

- Acknowledges to the peer Link Layer readiness to receive a frame.
- Receives data in the form of optionally encoded characters from the PHY layer.
- Optional decodes the encoded 8b/10b character stream into aligned DWORDs of data.
- Performs data alignment/realignment.
- Drops Repeat Primitive Data.
- De-scrambles the control and data DWORDs received from a peer Link Layer.
- Removes the envelope around frames (i.e. SOF, CRC, EOF Primitives).
- Calculates CRC on the received DWORDs.
- Compares the calculated CRC to the received CRC.
- Provides frame flow control in response to the status from the Rx FIFO or the peer Link Layer.
- Reports good reception status or Link/PHY Layer errors to Transport Layer and the peer Link Layer.

7.26.2 SATA Host PHY

The SATA PHY provides the following services:

- Transmits a 1.5 Gb/sec differential NRZ serial stream at specified voltage levels.
- Provides a 100 Ohm matched termination (differential) at the transmitter.
- Serializes a 8/10, 16/20 or 32/40 bit wide parallel input from the Link for transmission.
- Receives a 1.5 Gb/sec +350/-350ppm differential NRZ serial stream.
- Provides a 100 Ohm matched termination (differential) at the receiver.
- Extracts data and clock from the serial stream.
- Deserializes the serial stream.
- Detects the K28.5 comma character and forward it to the Link Layer along with the 8/10, 16/20 or 32/40 bit wide parallel output.
- Accepts and forward proper power-on/initialization sequences to device.
- Interacts with power management modes by way of Link Layer control.
- Provides proper transmitter and receiver differential pair impedances.
- Handles the input data rate frequency variation due to a spread spectrum transmitter clock (Nominal +0/-0.5% slow frequency variation, over a 33.33 sup/down triangular wave period).

7.27 Pin Description

7.27.1 SATA Interface Pins

Table 7-21 SATA interface pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
SATA_REFCLKM	AF10	I	SATA PHY reference clock input (differential, +)	
SATA_REFCLKP	AG10	I	SATA PHY reference clock input (differential, -)	
SATA_REXT	AE11	В	Reference resistor connection 190ohm 1% resistor to VSS	
SATA_TXP0	AJ12	0	Differential transmit pair (+ polarity) for SATA port 0.	
SATA_TXN0	AK12	0	Differential transmit pair (- polarity) for SATA port 0.	

Table 7-21 SATA interface pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description	Driver Type ¹
SATA_RXP0	AK11	I	Differential receive pair (+polarity) for SATA port 0.	
SATA_RXN0	AJ11	I	Differential receive pair (- polarity) for SATA port 0.	
SATA_TXP1	AK9	0	Differential transmit pair (+ polarity) for SATA port 1.	
SATA_TXN1	AJ9	0	Differential transmit pair (- polarity) for SATA port 1.	
SATA_RXP1	AJ10	I	Differential receive pair (+ polarity) for SATA port 1.	
SATA_RXN1	AK10	I	Differential receive pair (- polarity) for SATA port 1.	
SATA_VP	AF9	I	SATA digital core power (1.0V)	
SATA_VP	AF11	I	SATA digital core power (1.0V)	
SATA_VP	AF12	I	SATA digital core power (1.0V)	
SATA_VPH	AG9	I	SATA I/O power (3.3V)	
SATA_VPH	AG11	I	SATA I/O power (3.3V)	
SATA_VPH	AG12	I	SATA I/O power (3.3V)	
SATA_TCK	AH8	I	SATA PHY EJTAG interface test clock input	I
SATA_TDI	AF8	I	SATA PHY EJTAG interface test data input	I
SATA_TDO	AG8	0	SATA PHY EJTAG interface test data output	D
SATA_TMS	AE8	I	SATA PHY EJTAG interface test mode select	I

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

7.28 Electrical Characteristics

7.28.1 SATA PHY Reference Clock Specifications

Table 7-22 SATA PHY reference clock specifications

Symbol	Description	Units	Minimum	Typical	Maximum
V_{DIFF}	Differential peak voltage	mV	350		850
V _{CM}	Common mode voltage	mV	175		2000
DC	Duty cycle	%	40		60
F _{REFCLK}	Reference clock frequency	MHz		120	

Video Decoder Subsystem

8.1 Block Diagram of Video Decoder Subsystem

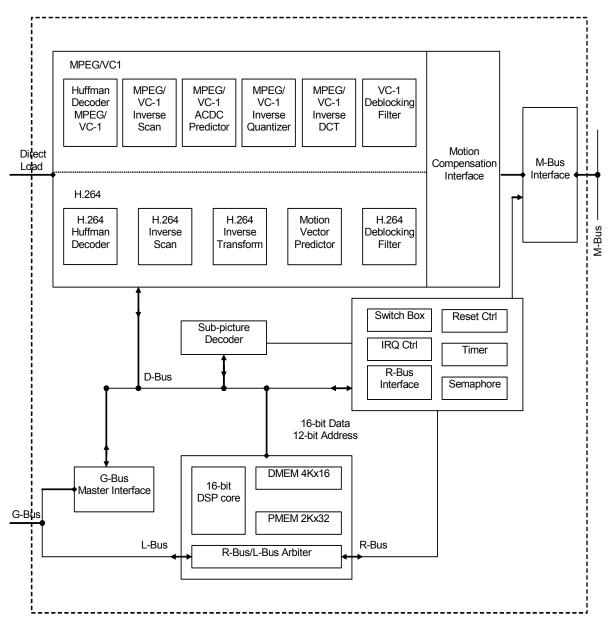


Figure 8-1 Video decoder subsystem block diagram

8.2 Introduction

The SMP8654 contains a video decoder subsystem capable of decoding HD MPEG-4.10 (H.264), HD SMPTE, SMPTE 421M (VC-1), HD WMV9, HD MPEG-2, MPEG-1, H.261 and AVS. The video decoder subsystem executes the video decoding algorithms supported by the SMP8654. Its architecture is a hybrid of both processor-based and hardwired logic approaches. The proprietary RISC CPU runs at 333MHz, and the hardware-based data path processing runs at 333MHz.

The maximum number of simultaneous programs that can be decoded and displayed depends on the source format and resolution. The video decoder subsystem can also support the video decoding requirements for MSTV IPTV, HDV, AVCHD, FVD, DVD, SVCD, VCD, ARIB, ATSC, DMB, DVB and OpenCable applications.

Table 8-1 Number of programs that can be decoded simultaneously by SMP8654

	MPEG-2	MPEG-4.2	WMV9		E 421M C-1)	MPEG-4.1	0 (H.264)
Max profile and level	MP@HL	ASP@L5	MP@HL	MP@HL	AP@L3	BP@L3	MP@L4.0 HP@L4.0
1080i30	1	1	N/A	N/A	1	N/A	1
1080p30	1	1	1	1	1	N/A	1
720p60	2	2	1	1	1	N/A	1
480p60 576p50	2	2	2	2	1	2	2
480i30 576i25	3	3	N/A	N/A	2	3	3

The following minimum and maximum resolutions are supported by the video decoder. The source resolution information is extracted from the AVI/ASF bitstream or from the video elementary bitstream.

Table 8-2 Resolutions supported by video decoder

	Minimum	Maximum
MPEG-2	16x32	4096x4096
MPEG-4.2	64x64	4096x4096
MPEG-4.10 (H.264)	64x64	4096x4096
SMPTE 421M (VC-1)	64x64	2048×2048

Although the video decoder is capable of these maximum resolutions, a maximum resolution of 1920x1080 is more realistic due to the many other functions required to be supported in a typical design.

Common source program resolutions and frame refresh rates include,

- 480, 544 and 640 x 480i @ 25, 29.97 and 30Hz
- 480, 544 and 640 x 480p @ 23.976, 24, 29.97, 30, 59.94 and 60Hz
- 704 and 720 x 480i @ 29.97 and 30Hz
- 704 and 720 x 480p @ 23.976, 24, 29.97, 30, 59.94 and 60Hz
- 704 and 720 x 576i @ 25Hz
- 704 and 720 x 576p @ 23.976, 24, 25 and 50Hz
- 1280 x 720p @ 23.976, 24, 25, 29.97, 30, 50, 59.94 and 60Hz
- 960, 1280, 1440 and 1920 x 1080i @ 25, 29.97 and 30Hz
- 960, 1280, 1440 and 1920 x 1080p @ 23.976, 24, 25, 29.97 and 30Hz

The video decoder engine consists of a proprietary 16-bit RISC CPU which is augmented by a number of hardware functional units. These functional units perform the most compute-intensive portions of the video decompression algorithms supported by the SMP8654. The video RISC CPU executes certain portions of the algorithms, and prepares the data for, and coordinates the execution of the hardware units.

This architecture represents a carefully engineered trade-off between the hardware complexity, operating clock frequency and adaptability.

Appropriate microcode (supplied by Sigma Designs Inc.) is loaded into the video CPU program memory from the DRAM to perform the required video decompression.

The high memory bandwidth requirements created by the motion compensation features of the various video codecs is addressed by the 'Direct Load Port' feature of the engine. This port provides a dedicated, prioritized, high-bandwidth port to the system memory.

8.3 Features

- MPEG-1
- MPEG-2 MP@HL
- MPEG-4.2 ASP@L5 (up to HD resolution, 1-point GMC)
- WMV9 MP@HL
- SMPTE 421M (VC-1) MP@HL and AP@L3
- MPEG-4.10 (H.264) MP@L4.0 and HP@L4.0.
- Microsoft MPEG-4 v3 for maximum DivX v3.11 compatibility
- H.261
- AVS
- Hardware accelerated Baseline am Progressive JPEG decoding
- In-loop deblocking filter for MPEG-4.10 (H.264) and SMPTE 421M (VC-1)
- Error concealment for MPEG-2 and MPEG-4.2
- Elementary video stream bit rate
 - MPEG-2 SDTV (HDTV): 20 (40) Mbps maximum
 - MPEG-4.2 SDTV (HDTV): 20 (40) Mbps maximum
 - MPEG-4.10 (H.264) SDTV (HDTV): 20 (40) Mbps maximum
 - WMV9/SMPTE 421M (VC-1) SDTV (HDTV): 20 (40) Mbps maximum

8.4 Functional Description

8.4.1 MPEG-2 Decoding

Features and capabilities of MPEG-2 decoding include,

- MP@HL up to 1920x1080p30, 1920x1080i30 or 1280x720p60 resolution
- Supports low delay mode (no B pictures, no frame reordering delay, handling of VBV underflow)

201

An error detected during the texture decoding triggers the resynchronization to the next start code. The area corresponding to the macroblocks skipped (not decoded) during this resynchronization process keeps the content of the previously decoded picture in that buffer. Once an error is detected at the texture level, the decoded picture is marked as corrupted. The application decides if the corrupted pictures are displayed or not by setting the DisplayErrorThreshold (the default value is zero which means that only good pictures are displayed).

8.4.2 MPEG-4.2 Decoding

Features and capabilities of MPEG-4.2 decoding include,

- ASP@L5
- Rectangular shape video decoding up to 1920x1080p30, 1920x1080i30 or 1280x720p60 resolution
- Support for B Pictures, data partitioning and error resiliency
- Supports 1-point global motion compensation (GMC) for DivX 5 compatibility

8.4.3 MPEG-4.10 (H.264) Decoding

Features and capabilities of MPEG-4.10 (H.264) decoding include,

- BP@L3 up to 720x480p30 or 720x576p25 resolution, including FMO and ASO
- MP@L4.0 and HP@L4.0 up to 1920x1080p30, 1920x1080i30 or 1280x720p60 resolution.
- The High 10, High 4:2:2, High 4:4:4 and Extended profiles are not supported
- Decoding can start at any recovery point
- Handling of SPS and PPS between slices of a same picture
- DPB output delay information is used to output pictures as soon as possible (reduces latency)
- Almost all display meta data from the elementary video stream is output, including.
 but not limited to. aspect ratio, pan-scan, chromaticity, picture structure and cropping information
- Key-frame (aka I-frame) playback supported
- Supports up to TBD Mbin/s for CABAC streams
- Supports up to 135 slices per frame

- An error detected during the texture decoding triggers:
 - The discarding of the current picture
 - The display of the remaining anchor(s) and
 - The resynchronization to the next intra-picture

8.4.3.1 SEI Messages and VUI

Table 8-3 Supported MPEG-4.10 (H.264) SEI (Supplemental enhancement information) messages and VUI (video usability information)

	Supported	Not Supported at this Time	Passed to Application
Buffering period SEI message	Х		
Picture timing SEI message	Х		
Pan-scan rectangle SEI message	Х		
Filler payload SEI message	Х		
User data registered by ITU-T Recommendation T.35 SEI message			Х
User data unregistered SEI message			Х
Recovery point SEI message syntax	Х		
Decoded reference picture marking repetition SEI message		Х	
Spare picture SEI message		Х	
Scene information SEI message		Х	
Sub-sequence information SEI message		Х	
Sub-sequence layer characteristics SEI message		Х	
Sub-sequence characteristics SEI message		Х	
Full-frame freeze SEI message			Х
Full-frame freeze release SEI message			Х
Full-frame snapshot SEI message			Х
Progressive refinement segment start SEI message			Х
Progressive refinement segment end SEI message			Х
Motion-constrained slice group set SEI message			Х
All VUI content	Х		

8.4.4 SMPTE 421M (VC-1) Decoding

Features and capabilities of SMPTE 421M (VC-1) decoding include,

- MP@HL up to 1280x720p60 or 1920x1080p30 resolution.
- AP@L3 up to 1920x1080i30, 1920x1080p30 or 1280x720p60 resolution.
- Almost all display metadata from the elementary video stream is output, including. but not limited to. aspect ratio, pan-scan, chromaticity, picture structure and cropping information
- Key-frame (aka I-frame) playback supported
- Pan-scan playback supported
- An error detected during the texture decoding triggers:
 - The discarding of the current picture
 - The display of the remaining anchor(s) and,
 - The resynchronization to the next intra-picture

8.4.5 WMV9 Decoding

Features and capabilities of WMV9 decoding include,

- MP@HL up to 1280x720p60 or 1920x1080p30 resolution.
- Does not support WMV7 or WMV8 formats
- Does not support Screen, Image and Image Version 2 profiles

8.4.6 H.263 Decoding

Decoding of MPEG-4.2 'short_video_header' bitstreams, which are technically identical to baseline H.263 bitstreams, is supported. Overlapped motion compensation and PB pictures are not supported.

8.4.7 H.261 Decoding

TBD

8.4.8 User Data Extraction

If user data (such as closed captioning, teletext, etc.) is present in the picture layer of the video stream, the video decoder extracts and stores it in a DRAM-based FIFO and provides an interrupt to the host CPU. The application software on the host CPU may then access the user data for further processing.

8.4.9 JPEG Decode Acceleration

Each video decoder supports the decoding of 4:2:0 YCbCr, 4:2:2 YCbCr, 4:4:4 YCbCr and 4:4:4 RGB baseline and progressive JPEG images (from 1x1 to 4096x4096 resolution) using hardware acceleration. The resulting YCbCr or RGB image may be rendered into an appropriate display plane or off-screen memory (for additional processing). The JPEG decoding performance is:

Table 8-4 JPEG decode performance measurements

JPEG Source	Decoding Performance (Mpixels/sec)
4:2:0 baseline	TBD
4:2:2 baseline	TBD
4:4:4 baseline	TBD
4:2:0 progressive	TBD
4:2:2 progressive	TBD
4:4:4 progressive	TBD

8.4.10 Subtitle Decode

Each video decoder supports decoding of the following subtitle formats,

DVD-Video bit-mapped subpicture

The resulting image may be rendered into an appropriate display plane or off-screen memory (for additional processing).

To improve subtitle rendering performance, the video decoder includes hardware acceleration for run-length decoding of,

• DVD-Video bit-mapped subpicture

9 Video Processing Subsystem

9.1 Block Diagram of Video Processing Subsystem

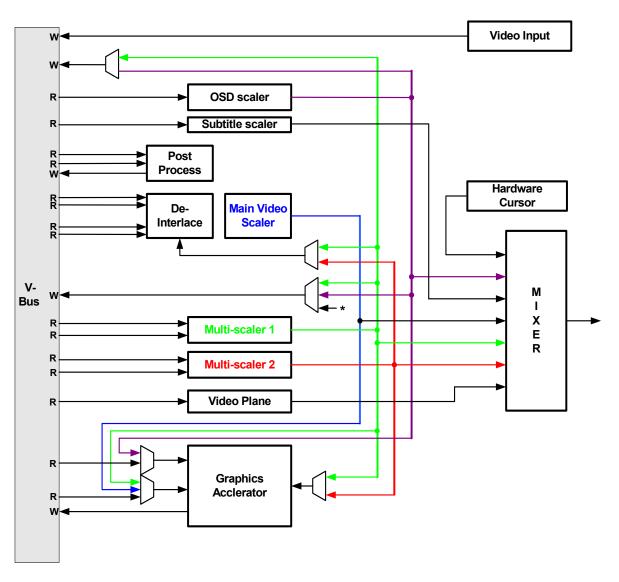


Figure 9-1 Video processing subsystem block diagram - 1

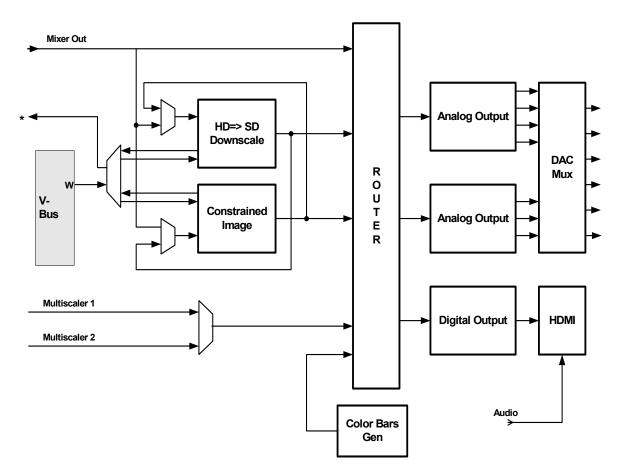


Figure 9-2 Video processing subsystem block diagram - 2

9.2 Introduction

The video processing subsystem has extensive capabilities for retrieving graphics and video images from the memory, formatting the images as needed, mixing the images and then presenting the video stream for display in a required format. Other capabilities include hardware-assisted 2D graphics acceleration, and support for video and graphics input ports. The primary functions performed include:

- Up- or down-scaling video or graphic images to a specified resolution
- Data format conversion (color lookup, color space conversion, etc.)
- Independent positioning of each scaled image
- Ordering and merging (alpha-blending) of up to 8 video/graphics sources
- Brightness, contrast and saturation controls
- TV encoding to NTSC or PAL standards (composite and S-video)
- Selection of analog out mode (various RGB and YPbPr formats)
- Video digital-to-analog conversion
- HDMI digital video formatting and transmission
- Video capture from 8-bit input interface
- 2D graphics acceleration

Each video and graphics picture retrieved from the memory can be converted to other pixel formats as necessary, and scaled independently. The results are then alpha-blended on a pixel-by-pixel basis using a programmable priority of the plane order.

The video processing block also includes support for 2D graphics acceleration. The accelerator is a bit-block transfer mechanism for moving, filling, merging and expanding rectangular regions of display memory without the processor intervention after the initial setup. A pixel rate of up to 1 pixel per system clock can be supported when executing the acceleration operations.

The 3 available video outputs consist of,

- 1. HDMI digital A/V output: Supports 24 or 36-bit RGB/YCbCr HDMI display formats.
- 2. Analog component output: Supports RGB or YPbPr.
- 3. Analog CVBS/S-video outputs: Supports NTSC/PAL composite and S-video.

9.3 Features

Video Processing

- Hardware cursor (4096 pixels, 4-bpp, up to 255 pixels horizontally and vertically)
- 2D graphics accelerator with OpenType/TrueType font rendering acceleration (up to 167M samples per second operation for most operations)
 - Accelerator supports alpha/color merging alpha modulation
 - Supports line, rectangle, ellipse and circle to generate a single-color line, rectangle, ellipse or circle with optional gradient fill
 - Supports blend to alpha blend of one rectangular region onto another
 - Supports move to move a rectangular region to another location
 - Supports replace (a modified version of move)
 - Supports raster operations (standard 256 boolean operations)
- Supports a 32-bit OSD with flicker filtering and scaling
- Supports optional deinterlacing of interlaced main video, including support for motion-adaptive deinterlacing with 3:2 and 2:2 pull-down detection
- Supports arbitrary scaling of video and graphics of up to 1920x1080 pixels, with all common HDTV set-top box and HDTV scaling modes supported.
- Supports pixel-based alpha mixing of video, OSD, subtitles, graphics and hardware cursor with programmable global plane priority

Video Input and Output Interfaces

- Supports an 8-bit Bt.601/Bt.656 video input interface
- Supports brightness, saturation and contrast controls for each output port
- Supports NTSC/PAL composite analog output with optional Macrovision v7.1.L1 protection (54MHz, 12-bit DAC)
- Supports NTSC/PAL S-video analog output with optional Macrovision v7.1.L1 protection (54MHz, 12-bit DACs)
- Supports analog YPbPr / RGB with optional Macrovision v7.1.L1 and v1.2 protection in 480i, 576i, 480p and 576p YPbPr output modes (12-bit DACs, interlaced or progressive, SDTV or HDTV resolution)
- Supports HDMI v1.3a output (internal PHY)

9.4 Functional Description

9.4.1 Multi-plane Memory Architecture

Conceptually, the SMP8654 uses a multi-plane memory architecture. For many applications typical planes include:

- Hardware cursor
- OSD
- Subtitles (includes subpictures, teletext and closed captions)
- Secondary video (picture-in-picture or PIP)
- Main video

9.4.1.1 OSD Plane

The OSD plane contains menus for setting user preferences and displaying playback status, program guides, user messages, etc.

Application software on the host CPU is typically responsible for rendering data into the OSD plane. The following sample software is available from Sigma:

- Navigation for,
 - DVD-Video, DVD-VR, DVD+VR
 - VideoCD, SVCD
 - CD-DA
 - File Player (from HDD for example)
 - For additional information on sample navigation software, please refer to the appendix.
- Picture CD (JPEG files using ISO 9660 format)
- ATSC/DVB program guide

To improve OSD rendering performance, the SMP8654 includes hardware acceleration for,

- OpenType/TrueType font rendering
- 2D graphics acceleration with optional simultaneous up/down scaling

Sigma Designs Confidential 209

9.4.1.2 Subtitle Plane

The subtitle plane contains decoded bitmapped subtitles, text subtitles, animated graphics, subpictures, teletext and closed captioning data that is to be rendered over the main video. Whether or not it is rendered over the secondary video (PIP) is determined by the programmable global plane priority order.

Application software on the host CPU is typically responsible for rendering into the subtitle plane any subtitle formats not supported by the video decoder block. The following sample software are available from Sigma:

- Closed captioning for,
 - CEA-608
 - EIA-708
- Navigation for,
 - DVD-Video
 - DVD-VR, DVD+VR
 - For additional information on sample navigation software, please refer to the appendix.

While the video decoder block uses hardware to improve bit-mapped subtitle performance, text based subtitle performance is enhanced by using hardware acceleration for,

- OpenType/TrueType font rendering
- 2D graphics acceleration with optional simultaneous up/down scaling

9.4.1.3 Secondary Video Plane

The secondary video plane contains decompressed video data from the secondary video decoder for PIP or dual TV output applications. It may alternately contain foreground graphics, background graphics and still images.

9.4.1.4 Main Video Plane

The main video plane contains decompressed video data from the main video decoder.

9.4.1.5 Typical Memory Plane and Scaler Usage

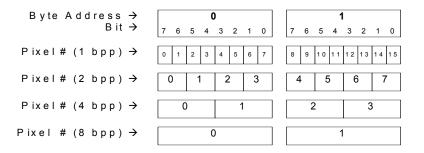
Each memory plane is typically capable of supporting a wide variety of picture buffer formats. In addition to support for double-buffered memory planes, off-screen graphics composition can be done, with the result rendered into any memory plane that supports the graphics picture buffer formats. Each memory plane is also typically associated with a scaler, capable of color format conversion and independent x-y scaling. After scaling, pixel-based alpha mixing is done. The priority display order of the memory planes is programmable, except for the on-chip hardware cursor which is always on top. How these memory planes and their associated scalers are typically used is shown below:

Table 9-1 Memory planes and scaler usage for a typical application

Memory Plane	Scaler Used ¹	function ²
OSD	OSD scaler	Device OSD
Subtitle	Subtitle scaler	Subtitles Subpictures Closed Captions Teletext
Secondary Video	Multi-format scaler 1 or, Video plane channel	Secondary Video (PIP) Photos
Main Video	Main video scaler Multi-format scaler 1 or 2	Main Video Motion Adaptive Deinterlacing
	Multi-format scaler 1 or 2	Scaling during 2D Graphics Acceleration

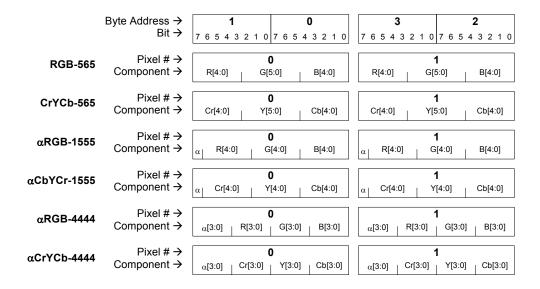
In engineering documents, Multi-format scaler 1 is also referred to as "VCR multi-scaler" or "VCR scaler".
 Multi-format scaler 2 is also referred to as "GFX multi-scaler" or "GFX scaler. Subtitle scaler is also referred to as "OSD subpicture scaler" or "subpicture scaler".

9.4.2 Picture Buffer Formats


9.4.2.1 Indexed Graphics - 1/2/4/8-bpp, using LUT

Indexed graphics LUT formats with 1/2/4-bpp are supported by the 2D graphics accelerator (Y input only), OSD scaler and multi-format scalers.

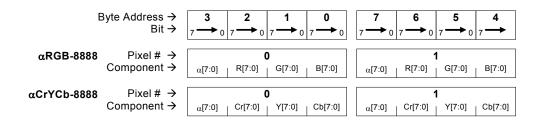
Indexed graphics LUT formats with 8-bpp is supported by the 2D graphics accelerator (X and Y inputs, output) as well as the OSD scaler, subtitle and multi-format scalers.


Sigma Designs Confidential 211

Each scaler may only be used for one of the indicated functions.

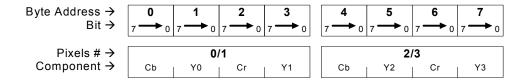
9.4.2.2 Graphics - 16-bpp

There are six formats using 16-bpp. All are supported by the 2D graphics accelerator (X and Y inputs, output) and by the OSD and multi-format scalers.

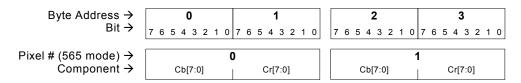


In the above diagram bytes are swapped (1, 0, 3, 2, 5, 4...). When the processor (or another G-Bus master) reads a 16-bit word from the DRAM, it will receive the low address byte in low position, and the high address byte in the high position. Thus, the 16-bit word will appear as shown in the diagram.

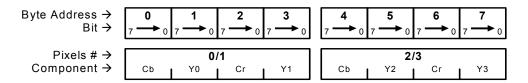
9.4.2.3 Graphics - 32-bpp


These modes are supported by the 2D graphics accelerator (source input, destination input and destination output) and by the OSD and multi-format scalers.

9.4.2.4 Video-Luminance


When an MPEG bit stream is decoded, the resulting frames are in the 4:2:0 or the 4:2:2 format. In either case, the luminance and the chrominance are stored in separate buffers (one buffer for luminance and one buffer for Cb and Cr).

In the luminance buffer, data is stored as 8-bpp, with increasing byte address corresponding to increasing pixel X coordinates, except on tile crossing boundaries.


9.4.2.5 Video-Chrominance

In the chrominance, data is stored as 16-bpp, as shown below. A chrominance buffer typically uses the same number of bytes per line, as the associated luminance buffer in the 4:2:2 or the 4:2:0 modes (half the number of pixels, but two components). However, in the 4:2:0 mode, there are half as many lines of chrominance compared to the luminance.

9.4.2.6 Video - Interleaved 4:2:2

This format is used for the video coming from the video input ports. Each line contains 2xN pixels of luminance, N pixels of Cb and N pixels of Cr interleaved as follows:

9.4.3 OSD Scaler

The OSD enables full-screen menus, images and text to be blended over the video, graphics and subtitles. The OSD scaler accepts most graphics data formats, and performs programmable edge adaptive scaling with directional filtering. Input resolutions of up to 2048x1080 are supported.

Supported input formats to the OSD scaler are:

- Indexed graphics 1, 2, 4 and 8-bpp (no subtitle/subpicture support)
- Graphics 16-bpp
 - RGB-565
 - CrYCb-565
 - αRGB-1555
 - αYCbCr-1555
 - αRGB-4444
 - αYCbCr-4444
- Graphics 24-bpp
 - RGB-888
 - YCbCr-888
- Graphics 32-bpp
 - αRGB-8888
 - αYCbCr-8888

Before scaling, four 256x8 LUTs are available to perform α RGB gamma correction, 0-255 to 16-235 RGB range conversion or Indexed Graphics to 16/24/32-bpp RGB/YCbCr conversion.

The individually programmable H and V-scaler operates in a 4-tap mode (4-tap horizontally and 4-tap vertically so processing is done on a 4x4 matrix of data). 4-tap scaling is implemented as four 63-coefficient, 16 times interpolating filters - for each of the 16 interpolating positions, 4 coefficients (taps) are used.

A horizontal downscaler before the H scaler is available to support larger downscaling factors. It decreases the number of pixels per line (using pixel skipping) by a fractional ratio. Vertical downscaling before the V scaler (by skipping scan lines) is also possible.

The OSD scaler also implements a 3-tap flicker reduction filter with edge detection. Three sets of coefficients provide light, moderate, and strong flicker reduction options, in addition to no filtering.

After scaling, BT.601 or BT.709 RGB to YCbCr conversion and colorimetry correction between BT.601 and BT.709 may be performed. No contrast (or 'picture' or 'white level'), saturation (or 'color'), brightness (or 'black level'), hue (or 'tint') or sharpness control is provided. This also converts the 8-bit per component data to 12-bit per component.

The data (typically 48-bpp YCbCr) is then sent to the main mixer, 2D graphics accelerator (X input) or DRAM.

9.4.3.1 Alpha Support

For the 1/2/4/8-bpp, RGB-656, RGB-888, CrYCb-565 and CrYCb-888 source formats, 8 bits of alpha data can be generated via the $\alpha 0$ value in the VO_OSD_ALPHA_ROUTING register. By changing the value of $\alpha 0$, the entire OSD may be faded in and out.

For the α RGB-1555 and α YCbCr-1555 formats (either source or from the LUTs), two bytes are used to generate 8 bits of alpha information, the α 0 and α 1 values in the VO_OSD_ALPHA_ROUTING register. Which alpha value is used is determined by the 1-bit source alpha value. By changing the value of these bytes, the entire OSD may be faded in and out.

For the α RGB-4444, α YCbCr-4444, α RGB-8888 and α YCbCr-8888 formats (either source or from the LUTs), the entire OSD may be faded in or out by generating new alpha information as follows:

 $AO = (AS * \alpha 1) + ([1-AS] * \alpha 0)$ where,

AO = Output alpha value

AS = Source alpha value

 $\alpha 0$, $\alpha 1$ = Values of the $\alpha 0$ and $\alpha 1$ in the VO_OSD_ALPHA_ROUTING register.

9.4.3.2 Color Keying

Color keying forces the output alpha data to a value of 0 (transparent) whenever the input color falls within the color key value and 4-bit range. The color key value is set according to the input source color space (which may different from the output color space).

It is not possible to use the color key feature with Indexed Graphics data.

9.4.4 Hardware Cursor

The hardware cursor block generates a small picture for the main mixer block. It supports up to 4096 4-bit pixels and feeds into the alpha mixer. An arbitrary bitmap is stored in 4-bpp format in a 512x32 on-chip SRAM. No external memory bandwidth is required to support the cursor. It may be organized as any size, up to 255 pixels horizontally or vertically. Each 4-bit pixel is fed to a 16x32 look-up table which outputs 32-bit (8-8-8 format) α YCbCr pixels. The data is then sent to the mixer.

The horizontal and vertical dimensions of the cursor picture are constrained as follows:

- X size less than or equal to 255
- Y size less than or equal to 255
- Total pixels (X x Y) less than or equal to 4096

9.4.5 Multi-format Scalers 1 and 2

The Multi-format scalers can be used for a variety of functions such as,

- Enabling a secondary video to be displayed over the main video to support picture-inpicture (PIP) applications
- Enabling the output of a second video stream for dual TV applications
- Supporting Type 2 deinterlacing (motion adaptive deinterlacing) of the main video
- Scaling during 2D graphics processing
- Scaling and displaying of high-resolution JPEG images (photos)

Input resolutions of up to 2048x1080 are supported. Supported input formats to the Multi-format scalers are,

- Video (4:2:0, 4:1:1 or 4:2:2 YCbCr)
- Indexed graphics 1, 2, 4 and 8-bpp (no subtitle/subpicture support)

- Graphics 16-bpp
 - RGB-565
 - YCbCr-565
 - αRGB-1555
 - αYCbCr-1555
 - αRGB-4444
 - αYCbCr-4444
- Graphics 24-bpp
 - RGB-888
 - YCbCr-888
- Graphics 32-bpp
 - αRGB-8888
 - αYCbCr-8888

Before scaling, four 256x8 LUTs are available to perform α RGB gamma correction, 0-255 to 16-235 RGB range conversion or Indexed Graphics to 16/24/32-bpp RGB/YCbCr conversion.

Data input to the scalers is converted to 12-bit per component, so the scaling is done on 12-bit per component data.

For Multi-format scaler 1, the individually programmable H and V-scalers operate in a 2-tap mode (2-tap horizontally and 4-tap vertically so processing is done on a 2x4 matrix of data). The 2-tap scaling is implemented as two 63-coefficient, 16 times interpolating filters - for each of the 16 interpolating positions, 2 coefficients (taps) are used.

For Multi-format scaler 2, the individually programmable H and V-scaler operates in a 4-tap mode (4-tap horizontally and 4-tap vertically so processing is done on a 4x4 matrix of data). 4-tap scaling is implemented as four 63-coefficient, 16 times interpolating filters - for each of the 16 interpolating positions, 4 coefficients (taps) are used.

A horizontal downscaler before the H scaler is available to support larger downscaling factors. It decreases the number of pixels per line (using pixel skipping) by a fractional ratio. Vertical downscaling before the V scaler (by skipping scan lines) is also possible.

Since Y and CbCr may be independently scaled, the scaler may be configured to accept video that uses a different YCbCr sampling scheme, such as rotated 4:2:2 YCbCr pictures.

The output of the Multi-format scalers is 12-bit per component.

For displaying 4:3 content on a 16:9 display, the commonly used 'pillar', 'wide', 'zoom' and 'panorama' modes can be implemented. For the 'pillar' mode, the 4:3 source is displayed without distortion; black/gray/colored bars are added to the left and right sides of the 4:3 image to fill the 16:9 screen. For the 'wide' mode, the 4:3 source is linearly scaled to fill the 16:9 display, resulting in a distorted image unless anamorphic content is used. For the 'zoom' mode, the center 16:9 portion of the 4:3 source is displayed without distortion. For 'panorama' mode, the center portion of the image is linearly scaled, while the left and right sides are nonlinearly scaled; the left and right locations where nonlinear scaling stops/starts is programmable.

For displaying 16:9 content on a 4:3 display, the commonly used 'crop', 'letterbox' and 'squeeze' modes can be implemented. For the 'crop' mode, the center 4:3 portion of the 16:9 source is displayed without distortion. For the 'letterbox' mode, the entire 16:9 source is displayed without distortion; black/gray/colored bars are added to the top and bottom of the 16:9 image to fill the 4:3 screen. For the 'squeeze' mode, the 16:9 source is linearly scaled to fill the 4:3 screen, resulting in a distorted image.

After scaling, a 3x3 matrix multiplier is used to implement,

- RGB to YCbCr conversion (BT.601 or BT.709)
- Contrast (or 'picture' or 'white level') control, range of 0 to 4x in 1/128 steps
- Saturation (or 'color') control, range of 0 to 4x in 1/128 steps
- BT.709 (HDTV) to BT.601 (SDTV) and BT.601 (SDTV) to BT.709 (HDTV) colorimetry conversion
- 61966-2-4 (xvYCC) uses BT.709 colorimetry

The matrix multiplier is followed by 3 programmable DC offsets to provide optional brightness (or 'black level') control. The DC offsets have a range of -512 to +511.7/8, in steps of 1/8. No sharpness or hue (or 'tint') control is provided.

Note that the content being displayed via a Multi-format scaler must be authored for flicker-free display on an interlaced TV; there is no anti-flicker filtering filter available.

The output of Multi-format scaler 1 (typically 48-bpp α YCbCr) is input to the main mixer (when used for PIP), deinterlacer block (when used for motion adaptive deinterlacing), display routing block (when used for dual TV output), or 2D graphics accelerator (Y input), or may be stored in DRAM.

The output of Multi-format scaler 2 (typically 48-bpp α YCbCr) is input to the main mixer (when used for PIP), the deinterlacer block (when used for motion adaptive deinterlacing), the 2D graphics accelerator, or may be stored in the DRAM. When the output of Multi-format scaler 2 is input to the main mixer, the video plane channel is not available.

The 12-bit per component output of a Multi-format scaler must be reduced to 8-bit per component (using dithering) when the output of a Multi-format scaler

- is being saved to DRAM
- is being input to the constrained image scaler
- is being input to the HD to SD scaler
- is being input to the 2D graphics accelerator

9.4.5.3 Alpha Support

For the video, 1/2/4/8-bpp, RGB-656, RGB-888, CrYCb-565 and CrYCb-888 source formats, 8 bits of alpha data can be generated via the $\alpha 0$ value in the VO_VCR_ALPHA_ROUTING and VO_GFX_ALPHA_ROUTING registers. By changing the value of $\alpha 0$, the entire picture may be faded in and out.

For the α RGB-1555 and α YCbCr-1555 formats (either source or from the LUTs), two bytes are used to generate 8 bits of alpha information, the α 0 and α 1 values in the VO_VCR_ALPHA_ROUTING and VO_GFX_ALPHA_ROUTING registers. Which alpha value is used is determined by the 1-bit source alpha value. By changing the value of these bytes, the entire picture may be faded in and out.

For the α RGB-4444, α YCbCr-4444, α RGB-8888 and α YCbCr-8888 formats (either source or from the LUTs), the entire picture may be faded in or out by generating new alpha information as follows:

$$AO = (AS * \alpha 1) + ([1-AS] * \alpha 0)$$
 where,

AO = Output alpha value

AS = Source alpha value

 $\alpha 0$, $\alpha 1$ = Values of the $\alpha 0$ and $\alpha 1$ in the VO_VCR_ALPHA_ROUTING register and VO_GFX_ALPHA_ROUTING registers.

9.4.5.4 Color Keying

Color keying forces the output alpha data to a value of 0 (transparent) whenever the input color falls within the color key value and 4-bit range. The color key value is set according to the input source color space (which may different from the output color space).

It is not possible to use the color key feature with Indexed Graphics data, 24-/32-bpp graphics data, or video data.

9.4.6 Main Video Scaler

The main video scaler is used to scale the main video. Input resolutions up to 2048x1080 are supported.

Supported input formats to the video scaler are:

• Video (4:2:0, 4:1:1, or 4:2:2 YCbCr)

Data input to the scalers is converted to 12-bit per component, so the scaling is done on 12-bit per component data. The individually programmable H and V-scaler operates in a 4-tap mode (4-tap horizontally and 4-tap vertically so processing is done on a 4x4 matrix of data). 4-tap scaling is implemented as four 63-coefficient, 16 times interpolating filters - for each of the 16 interpolating positions, 4 coefficients (taps) are used.

Since Y and CbCr may be independently scaled, the scaler may be configured to accept video that uses a different YCbCr sampling scheme, such as rotated 4:2:2 YCbCr pictures.

The output of the main video scaler is 12-bit per component.

For displaying 4:3 content on a 16:9 display, the commonly used 'pillar', 'wide', 'zoom' and 'panorama' modes can be implemented. For the 'pillar' mode, the 4:3 source is displayed without distortion; black/gray/colored bars are added to the left and right sides of the 4:3 image to fill the 16:9 screen. For the 'wide' mode, the 4:3 source is linearly scaled to fill the 16:9 display, resulting in a distorted image unless anamorphic content is used. For the 'zoom' mode, the center 16:9 portion of the 4:3 source is displayed without distortion. For 'panorama' mode, the center portion of the image is linearly scaled, while the left and right sides are nonlinearly scaled; the left and right locations where nonlinear scaling stops/starts is programmable.

For displaying 16:9 content on a 4:3 display, the commonly used 'crop', 'letterbox' and 'squeeze' modes can be implemented. For the 'crop' mode, the center 4:3 portion of the 16:9 source is displayed without distortion. For the 'letterbox' mode, the entire 16:9 source is displayed without distortion; black/gray/colored bars are added to the top and bottom of the 16:9 image to fill the 4:3 screen. For the 'squeeze' mode, the 16:9 source is linearly scaled to fill the 4:3 screen, resulting in a distorted image.

After scaling, a 3x3 matrix multiplier is used to implement,

- Contrast (or 'picture' or 'white level') control, range of 0 to 4x in 1/128 steps
- Saturation (or 'color') control, range of 0 to 4x in 1/128 steps
- BT.709 (HDTV) to BT.601 (SDTV) and BT.601 (SDTV) to BT.709 (HDTV) colorimetry conversion
- BT.709 (HDTV) to 61966-2-4 (xvYCC) and 61966-2-4 (xvYCC) to BT.709 (HDTV) colorimetry conversion
- 61966-2-4 (xvYCC) uses BT.709 colorimetry

The matrix multiplier is followed by three programmable DC offsets to provide optional brightness (or 'black level') control. The DC offsets have a range of -512 to +511.7/8, in steps of 1/8. No sharpness or hue (or 'tint') control is provided.

The output of the main video scaler (typically 36-bpp YCbCr) is input to the main mixer, the HD to SD scaler, or 2D graphics accelerator (Y input).

The 12-bit per component output of the main video scaler must be reduced to 8-bit per component (using dithering) when the output of the scaler

- is being input to the HD to SD scaler
- is being input to the 2D graphics accelerator

9.4.6.1 Deinterlacing

Two deinterlacing modes are available, Type 1 and Type 2. The deinterlacing is done before any scaling by the main video scaler.

De-interlacing Type 1

This algorithm is not motion adaptive. A frame N is built from the fields N-1 and N. Certain amount of data from the field N-1 is inserted in the output frame, giving a fixed proportion for the whole frame.

Field N-1	Field N	Frame N		
			16 . L _{new} = A . L _{N-1} + (16-A) . L _N	
			,	
			16 . L _{cur} = B . L _{N-1} + (16-B) . L _N	
	Existing lines in field	ds N or N-1		
	Interpolated lines (2 taps line averaging) in fields N or N-1			
	Lines of frame N with a corresponding line in field N (L _{current})			
	Lines of frame N with no corresponding line in field N (L_{old})			

The following figure illustrates the deinterlacing algorithm:

Figure 9-3 De-interlacing type 1

Here 'A' represents the fraction of data from the field N-1 used to create the new lines in the frame N (i.e. lines that do not exist in the field N). 'B' represents the fraction of data from the field N-1 inserted in the existing lines of field/frame N. The parity of the frame being deinterlaced must be programmed.

De-interlacing Type 2

This mode is motion and edge adaptive and uses 3 fields. A frame N is built from fields N-1, N and N+1. The lumas of the fields N-1 and N+1 (same polarity) are locally compared (4x2 blocks), resulting in a local motion detection. Information from field N-1 is locally inserted in the output frame depending on how much motion is locally detected. Like most motion adaptive algorithms, it continuously shifts between inter-field deinterlacing ('weave') when there is little motion, and intra-field deinterlacing ('bob') when there is more motion.

The main video scaler V-Bus channels have a 'dual field' operation mode. In this mode, 2 fields are simultaneously sent to the main scaler, by alternating their lines: line 0 of field 0, line 0 of field 1, line 1 of field 0, line 1 of field 1 and line 2 of field 0. In the type 1 mode, fields N-1 and N must be read that way from the DRAM. In the type 2 mode, fields N-1 and N+1 must be read that way from DRAM. At the same time, field N must be sent to the Multi-format scaler 1 or Multi-format scaler 2. The main video scaler will then output frame N-1 (upscaled from field N-1) with a modulated alpha indicating how much insertion is desired. In the same way, the Multi-format scaler 1 or Multi-format scaler 2 will output a frame N (upscaled from field N).

Frame N-1 is then blended on top of frame N resulting into the motion adaptive de-interlaced output frame N.

Contrary to type 1, the type 2 de-interlacing uses three blocks within the video output:

- The main video scaler which inputs fields N-1, N+1 and outputs an intra field directional filtering de-interlaced frame N-1 with a motion modulated alpha.
- Multi-format scaler 3 which inputs field N and outputs an intra field directional filtering de-interlaced frame.
- The mixer which blends the intra field directional filtering frame N-1 on top of the intra field directional filtering frame N (with directional filtering).

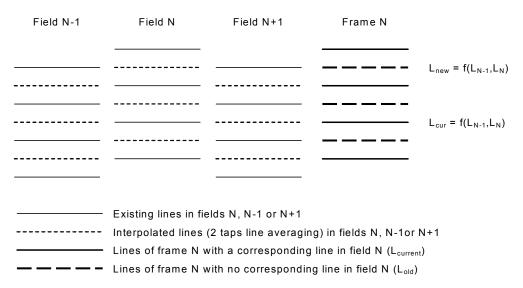


Figure 9-4 De-interlacing type 2

9.4.6.2 Deblocking Filter

For low-bitrate IPTV applications, the SMP8654 provides an 8x8 deblocking filter. Deblocking processing is done before any scaling.

9.4.6.3 Deringing Filter

For low-bitrate IPTV applications, the SMP8654 provides a deringing filter. Deringing processing is done before any scaling.

9.4.7 Subtitle Scaler

This scaler enables closed captioning, teletext and various types of subtitles/subpictures to be blended over the video. Input resolutions of up to 2048x1080 are supported.

Supported input formats to the subtitle scaler are:

- Indexed graphics 1, 2, 4 and 8-bpp
- Graphics 16-bpp
 - RGB-565
 - CrYCb-565
 - αRGB-1555
 - αYCbCr-1555
 - αRGB-4444
 - αYCbCr-4444
- Graphics 24-bpp
 - RGB-888
 - YCbCr-888
- Graphics 32-bpp
 - αRGB-8888
 - αYCbCr-8888

Before scaling, four 256x8 LUTs are available to perform α RGB gamma correction, 0-255 to 16-235 RGB range conversion or Indexed Graphics to 16/24/32-bpp RGB/YCbCr conversion.

The individually programmable H and V-scaler operates in a 4-tap mode (4-tap horizontally and 4-tap vertically so processing is done on a 4x4 matrix of data). 4-tap scaling is implemented as four 63-coefficient, 16 times interpolating filters - for each of the 16 interpolating positions, 4 coefficients (taps) are used.

A horizontal downscaler before the H scaler is available to support larger downscaling factors. It decreases the number of pixels per line (using pixel skipping) by a fractional ratio. Vertical downscaling before the V scaler (by skipping scan lines) is also possible.

The subtitle scaler also implements a 3-tap flicker reduction filter with edge detection. Three sets of coefficients provide light, moderate, and strong flicker reduction options, in addition to no filtering.

After scaling, BT.601 or BT.709 RGB to YCbCr conversion and colorimetry correction between BT.601 and BT.709 may be performed. No contrast (or 'picture' or 'white level'), saturation (or 'color'), brightness (or 'black level'), hue (or 'tint') or sharpness control is provided. This processing also converts the 8-bit per component data to 12-bit per component.

The data (typically 48-bpp YCbCr) is then sent to the main mixer.

9.4.7.1 Alpha Support

For the 1/2/4/8-bpp, RGB-656, RGB-888, CrYCb-565 and CrYCb-888 source formats, 8 bits of alpha data can be generated via the $\alpha 0$ value in the VO_OSD_ALPHA_ROUTING register. By changing the value of $\alpha 0$, the entire subtitle may be faded in and out.

For the α RGB-1555 and α YCbCr-1555 formats (either source or from the LUTs), two bytes are used to generate 8 bits of alpha information, the α 0 and α 1 values in the VO_OSD_ALPHA_ROUTING register. Which alpha value is used is determined by the 1-bit source alpha value. By changing the value of these bytes, the entire subtitle may be faded in and out.

For the α RGB-4444, α YCbCr-4444, α RGB-8888 and α YCbCr-8888 formats (either source or from the LUTs), the entire subtitle may be faded in or out by generating new alpha information as follows:

$$AO = (AS * \alpha 1) + ([1-AS] * \alpha 0)$$
 where,

AO = Output alpha value

AS = Source alpha value

 $\alpha 0$, $\alpha 1$ = Values of the $\alpha 0$ and $\alpha 1$ in the VO OSD ALPHA ROUTING register.

9.4.7.2 Color Keying

Color keying forces the output alpha data to a value of 0 (transparent) whenever the input color falls within the color key value and 4-bit range. The color key value is set according to the input source color space (which may different from the output color space).

It is not possible to use the color key feature with Indexed Graphics data.

9.4.8 HD to SD Scaler

This scaler is used to downscale HD content to SD resolution to enable simultaneous HD and SD video outputs. It accepts 24-bit YCbCr data from either the main mixer output (used for simultaneous SD and HD outputs), constrained image scaler output, or main video scaler output (no OSD available, so useful for recording). Processing is done on 8-bit data, and converted to 12-data before being output.

The HD image is first horizontally downscaled, with a range of 1/8x to 1x in increments of 1/2048, using a bilinear filter. The first 0-1023 pixels and the first 0-1023 lines of the HD image can be ignored, and 3 different 3-tap low-pass filters can be enabled prior to the horizontal downscaling. 4:4:4 to 4:2:2 YCbCr or RGB-888 to RGB-565 conversion is then performed to reduce the DRAM memory bandwidth and the on-chip memory buffer sizes. Vertical downscaling, with a range of 1/8x to 1x in increments of 1/2048, is then performed using a bilinear filter. Up to 511 pixels or lines of black stripes can then be added on the left/right sides or top/bottom sides of the SD image.

The down-scaled content is sent either directly to the display routing block (on-the-fly mode) or stored in DRAM and read back before being displayed (buffered mode).

9.4.8.1 On-the-fly Mode

In on-the-fly mode, the 4:2:2 YCbCr or RGB-565 SD image is converted to 4:4:4 YCbCr or RGB-888 and sent directly to the display routing block. This mode does not use any DRAM memory bandwidth, but there are two considerations.

VSYNC frequency: The SD and HD outputs must be running at exactly the same VSYNC frequency.

Vertical scaling mismatch: The scaling ratio between the HD source and the SD output is determined by the ratio of total lines (for example 525 from 1125 = 0.467, when scaling from 1080i to 480i), which differs from the ratio of active lines (480 from 1080 = 0.444 using the same example). The first ratio is typically higher and as a consequence the onthe-fly mode will usually result in an active picture that is slightly stretched vertically. In the example, 480 / 0.467 * 0.444 = 457 active lines that will be stretched (\sim 5%) and displayed using 480 lines.

9.4.8.2 Buffered Mode

Although this implementation requires DRAM memory bandwidth, it makes it possible to output HD at 60Hz and SD at 59.94Hz (for example) and/or avoid the vertical scaling mismatch issue.

The 4:2:2 YCbCr or RGB-565 SD image is written to DRAM at the HD display vsync frequency. The SD image is then read back from the DRAM at the SD display vsync frequency. Synchronization between the vsync frequencies is done in the software by using the multiple buffers in the DRAM. The SD image is converted back to 4:4:4 YCbCr or RGB-888 and the result delivered to the display routing block.

9.4.9 Constrained Image Scaler

This scaler is used to lower the effective resolution of an HD image down to 960x540. It accepts 24-bit YCbCr data from either the main mixer output or the HD to SD scaler output. Processing is done on 8-bit data, and converted to 12-data before being output.

Horizontal source resolutions greater than 1280 must be decimated 2:1 prior to vertical lowpass filtering. Horizontal source resolutions 1280 or less may be lowpass filtered directly.

The down-scaled content is sent either directly to the display routing block (on-the-fly mode) or stored in DRAM and read back before being displayed (buffered mode).

9.4.9.3 On-the-fly Mode

In on-the-fly mode, the 4:2:2 YCbCr or RGB-565 SD image is converted to 4:4:4 YCbCr or RGB-888 and sent directly to the display routing block. This mode does not use any DRAM memory bandwidth, but there are two considerations.

VSYNC frequency: The SD and HD outputs must be running at exactly the same VSYNC frequency.

Vertical scaling mismatch: The scaling ratio between the HD source and the SD output is determined by the ratio of total lines (for example 525 from 1125 = 0.467, when scaling from 1080i to 480i), which differs from the ratio of active lines (480 from 1080 = 0.444 using the same example). The first ratio is typically higher and as a consequence the onthe-fly mode will usually result in an active picture that is slightly stretched vertically. In the example, 480 / 0.467 * 0.444 = 457 active lines that will be stretched (\sim 5%) and displayed using 480 lines.

9.4.9.4 Buffered Mode

Although this implementation requires DRAM memory bandwidth, it makes it possible to output HD at 60Hz and SD at 59.94Hz (for example) and/or avoid the vertical scaling mismatch issue.

The 4:2:2 YCbCr or RGB-565 SD image is written to DRAM at the HD display vsync frequency. The SD image is then read back from the DRAM at the SD display vsync frequency. Synchronization between the vsync frequencies is done in the software by using the multiple buffers in the DRAM. The SD image is converted back to 4:4:4 YCbCr or RGB-888 and the result delivered to the display routing block.

9.4.10 Video Plane Channel

The video plane channel reads YCbCr data from the DRAM, converts it to 4:4:4 YCbCr data (if required) and provides it to the main mixer. No scaling, color space conversion or user adjustments (brightness, contrast, etc.) are available. Input resolutions of up to 2047x2047 are supported.

Supported input formats are:

- 16-bpp 4:2:2 YCbCr (CbCr aligned with Y or half-way between Y samples)
- 24-bpp 4:4:4 YCbCr
- 32-bpp 4:4:4:4 αYCbCr

9.4.10.1 Alpha Support

For the 16-bpp 4:2:2 YCbCr and 24-bpp 4:4:4 YCbCr formats, 8 bits of alpha data can be generated via the alpha value in the register VO_VP_CONF. By changing the value of alpha, the entire image may be faded in and out.

For the 32-bit 4:4:4 \alpha YCbCr format, the 8 bits of source alpha data are passed through.

9.4.10.2 Color Keying

Color keying forces the output alpha data to a value of 0 (transparent) whenever the input Y data has a value of 0 and/or 255 (selectable).

9.4.11 2D Graphics and OpenType/TrueType Font Accelerator

The 2D graphics accelerator is composed of the following:

- 1. A bitmap accelerator to execute the bitmap operations like blending two images, moving a graphic in memory, combining graphics etc. It handles 2D bitmap basic operations (moves, blends, replaces, merge, alpha modulation, raster operations etc.).
- 2. A vectorial accelerator to generate a two colors per pixel mask from a vectorial definition (e.g. true type fonts). It renders quadratic and cubic vectorial streams (fonts).
- 3. The gradient generator to generate linear or radial fills.

The accelerator can be combined with the OSD scaler, the Multi-format scaler 1, the Multi-format scaler 2 to support scaling and tiling. The Multi-format scaler 2 is connected to the Z input, the Multi-format scaler 1 can be connected to the Y input, the OSD scaler can be connected to the X input.

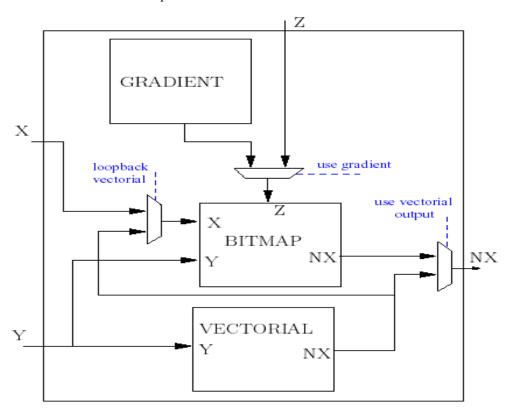


Figure 9-5 Graphics accelerator block diagram

The above figure shows the different utilization of the graphic accelerator and the corresponding data paths. The bitmap or the vectorial blocks can be used individually. The vectorial can be an input of the bitmap block and so cutting a texture. Moreover, instead of loading a texture from the memory, the bitmap can use a generated gradient. Therefore it is possible to generate a vectorial image with a gradient filling. The graphics accelerator also includes a vectorial mode unit which greatly accelerates the rendering of vector mode fonts such as OpenType/TrueType.

9.4.11.3 Graphics Accelerator (Bitmap Mode)

The graphic accelerator has 3 inputs and 1 output to DRAM. 2 inputs are DRAM channels while the 3rd one allows to couple the accelerator with a multi-format scaler, thus giving scaling and format conversion capacities to the accelerator.

The graphics accelerator provides 5 basic operations:

- 1. Fill: Generates a single-color filled rectangle in the memory.
- 2. Blend: Alpha blends one rectangular region on top of another.
- 3. Move: Moves a rectangular region to another location.
- 4. Replace: Combines graphics in the memory.
- 5. Raster Operations: Implements a standard 256 raster operation set on the source data.

In the move and the replace modes, the accelerator can merge the color object with an alpha field.

This engine renders vector fonts in the following steps:

- 1. Data defining the glyph outline is read from the system DRAM via a V-bus DMA channel and is loaded into a FIFO.
- 2. A 'control point extraction' unit parses the incoming data and re-orders the data on a per-control-point basis.
- 3. The outline points data is transformed as required in a transformation matrix to effect rotations, etc.
- 4. The transformed outline points are then scaled as required in a scaling unit.
- 5. An 'outline drawing' unit then draws the outline in 64x64 pixel areas (2-bpp) and stores the results in the on-chip memory. The resulting outline regions are then filled (1-bpp) and the 64x64 regions are written to DRAM via a V-bus DMA channel

The unit is capable of rendering linear or second-order outlines directly, and handles third-order outlines if necessary by substituting a sequence of second-order segments.

X, Y Input and Z Output Channels

The X channel can input:

- 1. 1/2/4/8-bpp alpha formats. In which case,
 - 1 and 2-bpp data address a 4x8-bit alpha LUT
 - 4-bpp true alpha data is extended to 8-bit as $\alpha_{out} = {\alpha_{iv}, \alpha_{iv}}$
 - 8-bpp is full true alpha information.
 - The X channel output is 8-bpp alpha data, that is used for alpha-color 'merging'
- 2. 16/24/32-bpp color (with or without alpha) formats. The X channel output is 32-bpp.

The Y channel can input,

- 1. 1/2/4/8-bpp color LUT formats.
- 2. 16/24/32-bpp true color formats.

The Y channel has a 256x32-bit LUT that can be used to decode the 1/2/4/8-bpp formats. Depending on how the registers VO_GRAPH_ACC_CONTROL or OUTPUT_FORMAT are set.

- 1. The incoming 1/2/4/8-bpp data can be output as, 8-bpp or 16-bpp (the raw content format of the LUT if the sub mode is set to 16-bpp) or 32-bpp (whatever the content format of the LUT is).
- 2. The incoming 16-bpp data can be output as 16-bpp (unchanged) or 32-bpp.
- 3. Incoming 24/32-bpp data is output as 32-bpp.

Output formats that are not 32-bpp allow move/replace commands to be performed without altering the original DRAM format. However, even though the data is output in a non 32-bpp expanded format, the associated alpha information is processed and output along the original data. This is useful to determine whether the pixel is transparent or not, in case of a replace command. For example,

```
Y_for_mode = 'b 010 (LUT 4-bpp)
```

Y sub mode = 'b 001 (16-bpp 1555)

Y alpha 0 = h 00

 $Y_alpha_1 = h FF$

Output format = 'b 00 (8-bpp)

- 1. Input: $\{P_{n+1}[3], P_{n+1}[2], P_{n+1}[1], P_{n+1}[0], P_{n}[3], P_{n}[2], P_{n}[1], P_{n}[0]\}$ (two 4-bit -pixels per byte).
- 2. Pixels are serialized (P_n and P_{n+1} are separated).
- 3. For each n, P_n addresses the 256x32 LUT. The true color output is $TC(P_n)$. In that case, $TC(P_n)$ is in 16-bpp 1555.
- 4. The alpha associated to P_n is determined as follows: $\alpha(P_n) = [TC(P_n)[15] = 1]$? Y_alpha_1: Y_alpha_0
- 5. Output of the Y channel: $\{\alpha(P_n)[7:0], 20 \text{ d } 0, P_n[3:0]\}$

In case the current command is replace, $\{4'd\ 0, P_n[3:0]\}$ will be written in the DRAM, using a flag determined by $\alpha(P_n)[7:0]$.

The Z channel is the 32-bpp output of the Multi-format scaler 2.

Commands

Fill: Fills a rectangle with a font. The V-Bus interface handles DRAM addressing to shape the rectangle. The active channels are X, Y/Z and X'.

Blend: Blends any of X,Y or Z with any of X,Y or Z. The X resolution is 8-bit (no LUT encoding). Blend order is selected by BLEND_ORDER. The active channels are X/Y/Z, X/Y/Z and X'. The 'blend' command requires 2 channels, data read through X, Y or Z.

If the full blending option is not enabled then the whether top layer is read through X,Y or Z is set by the scaling requirements. The top layer provides the alpha information. The output layer's alpha is calculated as follows: $\alpha_{out} = \alpha_{\tau op} + \alpha_{bottom}$ (saturated to FF). If the alpha saturation bit in VO GRAPH ACC CONTROL is enabled, $\alpha_{out} = FF$.

Otherwise the blending takes place as follows (with a normalized between 0 and 1):

$$\alpha_{out} = \alpha_{\tau op} + \alpha_{bottom} - \alpha_{\tau op} * \alpha_{bottom}$$

$$D_{out} = D_{\tau on} * \alpha_{\tau on}/\alpha_{out} + D_{bottom} * (1-\alpha_{\tau on}/\alpha_{out})$$

The layer generated by this logic can be used for further blend operations in the accelerator or the mixer.

Move: Moves a graphic in the DRAM. The V-Bus interface handles the DRAM addressing to move the graphic. The channel Y/Z is selected by SOURCE_CTRL. If MERGE_CTRL is enabled, then the X channel provides the accelerator with alpha information which is merged with the color information provided by Y/Z. The active channels are X, Y/Z or X'.

The main purpose of this command is to move data from an area of DRAM to another (the frame buffer for instance), using channels Y or Z. While being moved, the data may be scaled, its pixel resolution may be increased, and it can be merged with the alpha data. In the latter case, a color layer can be read from the DRAM through Y or Z as well as an alpha layer through X. The merging operation is controlled by MERGE_CTRL (DATA_CTRL[1]). The alpha layer can be coded in 1/2-bpp (2/4 bytes LUT modes) or in 4/8-bpp (true alpha modes).

Replace: Replaces data without using channel X. Similar to Move, but generates a 1-bpp flag (active high) to enable DRAM writing. For each pixel the flag is set to 1 if its alpha information is not nil. No source is needed, saves bandwidth (compared to Blend no need to read the destination). The channel Y/Z is selected by SOURCE_CTRL. If MERGE_CTRL is enabled, then the X channel provides the accelerator with alpha information which is merged with the color information provided by Y/Z. The active channels are X, Y/Z or X'

The main purpose of this command is to move data from an area of DRAM to another (the frame buffer for instance), using channels Y or Z. While being moved, the data may be scaled, its pixel resolution may be increased, and it can be merged with the alpha data. In the latter case, a color layer can be read from the DRAM through Y or Z as well as an alpha layer through X. The merging operation is controlled by MERGE_CTRL (DATA_CTRL[1]). The alpha layer can be coded in 1/2-bpp (2/4 bytes LUT modes) or in 4/8-bpp (true alpha modes).

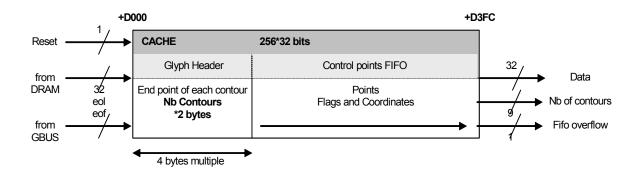
"Replace" generates a 1-bpp flag sent to the V-Bus write channel, that enables the writing of the pixel in the DRAM. The flag is generated as follows: flag = (alpha!= 0), where alpha is the transparency information of the output pixel.

Raster operations: (see Appendix for a description of the operations). The Destination is mapped on X, Source is mapped on Z and Pattern is mapped on Y. All 3 operands should therefore be stored in the DRAM and padded if necessary to fit the image dimensions. To avoid using the Z channel, a 2 operands operation code may be altered in order to use a Source instead of a Pattern.

Raster operations can be made in 16/24/32-bpp. They can also be performed in 8-bpp. The V-Bus channels must then be programmed in an 8-bpp mode and the graphic accelerator in a 32-bpp mode.

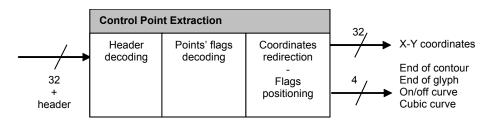
9.4.11.4 Graphic Accelerator (Vectorial Mode)

The font engine renders TrueType-like glyphs in 3 steps:


- 1. Reads a pre-parsed glyph from the DRAM (this data can also be provided directly by the G-Bus) and pre-processes the points stream.
- 2. Renders the glyph outline and fills the character.
- 3. A 1-bpp (black and white) bitmap is then generated in the DRAM.

The data defining the glyph outline is read from the DRAM through the V-Bus R10 channel and is cached. The engine is configured through the G-Bus. The 'control point extraction' re-orders the data on a per control point basis. Then, the outline points coordinates undergo an affine transformation. Some points needed for the calculations are inserted and the coordinates are scaled for the output device.

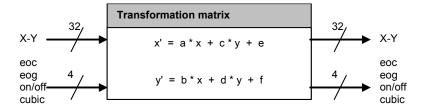
The 'outline drawing' module draws the outline in a 64x64 pixel area (2-bpp) and stores it in a 1KB memory. Then the bitmap is filled (64x64x1-bpp) and each area is written to the DRAM through the W2 channel (8- byte x X line rectangle transfers). A state machine supervises all the memory accesses and the pixel areas sub-division.


Cache

The data read through the V-Bus or programmed by the G-Bus is stored in the cache. The glyph header (end point of each contour) is stored in the cache during the entire outline rendering process. This header must be a multiple of 4 bytes in order to be easily addressable. The outline control points information (flags and coordinates) is stored in a FIFO way in the remaining free part of the cache.

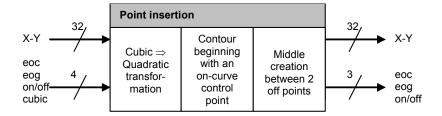
If the FIFO overflows with the points information, then the cache must signal it to the font rendering state machine so that the data can be read again from the DRAM for each working area.

Control Point Extraction


The 'control point extraction' module inputs the data stream read in the cache. The purpose is to separate the data into different buses relative to:

- The X coordinates (16-bit)
- The Y coordinates (16-bit)
- The 'End of contour' and 'end of glyph' flags (2-bit)
- The 'On/off curve' and 'cubic curve' flags (2-bit).

In the case of a composite glyph, the coordinates of the points undergo an affine transformation defined by a 6-coefficient matrix. These coefficients (a, b, c, d, e, f) are calculated by the CPU and programmed by the G-Bus.

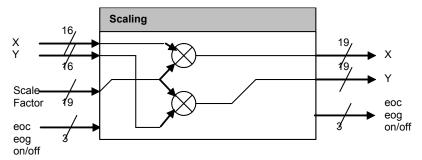

Transformation Matrix

In the case of a composite glyph, the points' coordinates undergo an affine transformation defined by a 6-coefficient matrix. These coefficients (a, b, c, d, e, f) are calculated by the CPU and programmed by the G-Bus.

The scales (a, b, c, d) are 2.14 fixed point numbers (2-bit integer part, 14-bit decimal part). (e, f) offsets are 16-bit integers in funits, and are applied only for the first point of the glyph as the coordinates are still relatives at this point. Default values for a non-composite glyph must be 1, 0, 0, 1, 0, 0 (x' = x and y' = y).

Point Insertion

The module 'point insertion' inserts:

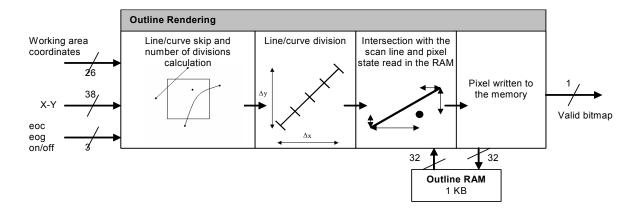

The off-curve control points created when transforming a cubic Bezier curve into 4
quadratic ones. These points are the centers of the centers of the cubic curves points
and they can be determined directly by an equation for each of them, depending on the
three cubic vectors.

- An on-curve point beginning the contour when it is not the case.
- The on-curve point implied between two consecutive off-curve points in the case of TrueType outlines. This point is the middle of the two off-curve points.

As the coordinates are still relative ones, the middle point is just obtained by dividing the coordinates vector by 2 and repeating it twice (with a carry for odd numbers).

Scaling

When scaling, the original coordinates in funits are converted into pixel units. This step is done by multiplying the coordinates by the scale factor.

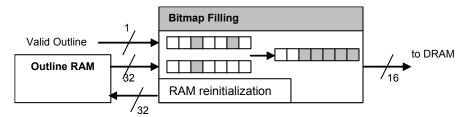


The scale factor is calculated by the CPU and programmed by the G-Bus. This multiplication increases the range of X-Y coordinates (16-bit to19-bit).

This module also scales other funits data, instead of control points X-Y coordinates, and the bounding box of the glyph (xmin, xmax, ymin and ymax). This data is programmed by the G-Bus.

Outline Rendering

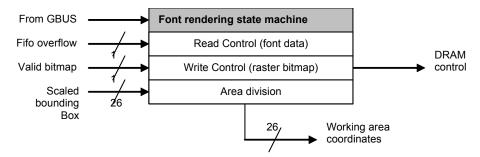
Once the coordinates of the control points of the outline have been scaled, the outline is drawn in a 64x64 pixel area (2-bpp). First, the relative coordinates are accumulated and added to the previous coordinates generating absolute coordinates. By this, both the types can be used to draw the outline lines and curves, and the lines or curves that do not get in the area are skipped.


After a step of the lines or curves division into elementary segments, each intersection of these segments forming the outline with the working area scan lines is calculated. In the outline memory a 2-bit information for each touched pixel is stored.

- Dropout mode: The pixel bit indicates if there is a contour boundary, and if the pixel is set, then the flag indicates the direction of the contour. If the pixel is not set and the flag is, then there will be a dropout.
- No dropout control: These 2 bits indicates the 'weight' of the contour direction (01: 1 contour direction A or 3 direction B, 10: 2 contours direction A or B, 11: 1 contour direction B or 3 direction A).

A dropout and an intersecting contour can not be managed at the same time, as both use the same flag. There can not be more than 3 intersecting contours (2-bit). When the outline drawing is completed in the area, the final bitmap is filled and written to the DRAM through W2 channel (1-bpp, black and white).

Bitmap Filling


When the outline drawing is completed in the area, the final bitmap is filled and written to the DRAM through the W2 channel (1-bpp, black and white).

The filling is processed line by line from left to right and top to bottom in each 64x64 working area. The status of the end of lines is memorized for the next working area.

Font Rendering State Machine

The font rendering the state machine supervises all the memory accesses required by the process.

The state machine deals with several tasks:

- Divides the glyph correctly into 64x64 pixel working areas and provides the current coordinates to the outline drawing module.
- Controls the font data read from the DRAM or programmed by the G-Bus. If the FIFO
 does not contain this data, then the information is retrieved again for each working
 area.
- Controls the writing operation of the glyph areas to the DRAM when they are valid.
- Initializes the outline RAM at the first launch of the graphic accelerator
- Controls the sub-modules reset signal

9.4.11.5 Graphic Accelerator (Gradient Fill)

The gradient block is placed as an input of the bitmap graphic accelerator and is seen as a texture generator. This block does the gradient filling of a rectangular area of 2048 maximum pixel width. The gradient can be of two kinds linear or radial.

Linear graduation is along a direction. The direction can be the horizontal axis, the vertical axis or a combination of the horizontal and the vertical. The linear gradient is the superposition of a horizontal and a vertical gradient. The first color of the gradient is in the upper left hand corner, whereas the second color of the gradient is in the bottom right hand corner of a rectangle. This rectangle is not necessary the drawing window area. Usually the drawing window is inside this rectangle, but it can be larger and in that case the same pattern will be repeated.

The size of the rectangle, and the position of the second color, is given by the horizontal and the vertical scale factor: The scale factors are the inverse of the dimensions along the gradient. These scale factors parameter the orientation of the gradient direction, for horizontal gradient the scale factor 2 = 0 and for vertical gradient the scale factor = 0.

In a linear gradient mode, the color is pondered by the distance between the two color points. The horizontal and vertical gradient filling are symmetrical.

The radial graduation is defined by a center and two radius. The two radius define a ring. The ring is filled by a radial gradient from one color to another. The color outside the ring can be transparent or the perimeter color. The interior and the exterior can be set independently.

9.4.11.6 Porter-Duff Compatibility

The paper 'Compositing Digital Images' (1984) by Thomas Porter & Tom Duff sets various rules for properly blending graphics objects, and is referenced by many specifications. While their rules use RGB data that is premultiplied by alpha $(r/\alpha, g/\alpha, b/\alpha)$, the SMP8654 uses non-premultiplied RGB data plus alpha (r,g,b,α) .

CLEAR Rule

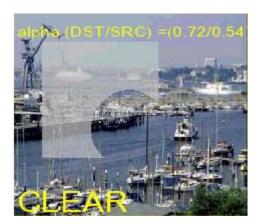


Figure 9-6 CLEAR example

CLEAR is described by the following equations:

- If source_alpha = 0,
 - destination color = destination color
 - destination_alpha = destination_alpha
- If source alpha! = 0,
 - destination_color = destination_color
 - destination_alpha = 0

The alpha of the destination is cleared. When source_alpha!= 0, the CLEAR rule can be viewed as simply overwriting existing data with the source data having its alpha set to zero. This can be achieved by setting the accelerator to the "replace" mode and forcing the output alpha to 0.

SRC Rule

Figure 9-7 SRC example

SRC is described by the following equations:

- If source_alpha = 0,
 - destination_color = destination_color
 - destination_alpha = destination_alpha
- If source_alpha! = 0,
 - destination_color = source_color
 - destination_alpha = source_alpha

The source is copied to the destination. When source_alpha!= 0, the SRC rule can be viewed as simply overwriting existing data with the source data. This can be achieved by setting the accelerator to the "replace" mode.

DST_ IN and SRC_IN Rules

Figure 9-8 DST_IN and SRC_IN examples

DST IN is described by the following equations:

- If source alpha = 0,
 - destination_alpha = destination_alpha
 - destination_color = destination_color
- If source alpha! = 0,
 - destination_alpha = destination_alpha * source_alpha
 - destination_color = destination_color

SRC IN is described by the following equations:

- If source_alpha = 0,
 - destination alpha = destination alpha
 - destination_color = destination_color
- If source_alpha! = 0,
 - destination_alpha = destination_alpha * source_alpha
 - destination_color = source_color

For SRC_IN, the part of the source lying inside of the destination replaces the destination. For DST_IN, the part of the destination lying inside of the source replaces the destination. When source_alpha!= 0, the DST_IN and SRC_IN rules can be viewed as a modulation of the alpha of object A by the alpha of object B, with the color of A remaining the same. This can be achieved by reading object A through the Y channel, object B through the X channel and by setting the accelerator to the "move+merge+modulate" mode. The output is then determined as follows:

- color = color from Y channel (object A)
- alpha = alpha from X channel (object B) multiplied by alpha of Y channel (object A)

Y channel can be replaced with Z channel and it is possible to input {alpha,color} or {alpha}-only information in the X channel.

DST_OUT and SRC_OUT Rules

Figure 9-9 DST_OUT and SRC_OUT examples

DST OUT is described by the following equations:

- If source_alpha = 0,
 - destination_alpha = destination_alpha
 - destination color = destination color
- If source_alpha! = 0,
 - destination alpha = destination alpha * (1-source alpha)
 - destination_color = destination_color

SRC_OUT is described by the following equations:

- If source_alpha = 0,
 - destination alpha = destination alpha
 - destination_color = destination_color
- If source alpha! = 0,
 - destination alpha = source alpha * (1-destination alpha)
 - destination_color = source_color

For SRC_OUT, the part of the source lying outside of the destination replaces the destination. For DST_OUT, the part of the destination lying outside of the source replaces the destination. When source_alpha!= 0, the DST_OUT and SRC_OUT rules are similar to the "IN" rules, except that the complement of the alpha of object B is used to modulate the alpha of object A. With the SMP8654, two passes are no longer required to implement SRC_OUT and DST_OUT since the X and Y channels now have the ability to complement the alpha value. The output is then determined as follows:

- color = color from Y channel (object A)
- alpha = 1-alpha from X channel (object B) multiplied by alpha of Y channel (object A)

Y channel can be replaced with Z channel and it is possible to input {alpha,color} or {alpha}-only information in the X channel.

DST_OVER and SRC_OVER Rules

Figure 9-10 DST_OVER and SRC_OVER examples

SRC_OVER is described by the following equations:

- If source alpha = 0,
 - destination color = destination color
 - destination alpha = destination alpha
- If source_alpha = 0,
 - destination_color = source_color + [destination_color * (1 source_alpha)]
 - destination_alpha = source_alpha + destination_alpha (source_alpha * destination_alpha)

DST_OVER is described by the following equations:

- If source alpha = 0,
 - destination color = destination color
 - destination alpha = destination alpha
- If source_alpha = 0,
 - destination_color = destination_color + [source_color * (1 destination_alpha)]
 - destination_alpha = source_alpha + destination_alpha (source_alpha * destination_alpha)

For SRC_OVER, the source is composited over the destination. For DST_OVER, the destination is composited over the source and the result replaces the destination. The DST_OVER and SRC_OVER rules are implemented using the "full" blend command of the accelerator. The hardware does not differentiate between the DST_OVER and SRC_OVER, the command is symmetric from that point of view.

9.4.12 Main Mixer

The main mixer receives the picture streams from each of the following 7 sources. The global plane order (layer priority) is programmable, except for the hardware cursor which is always the top layer (highest priority).

- 1. Hardware cursor
- 2. OSD scaler
- 3. Subtitle scaler
- 4. Multi-format scaler 1
- 5. Multi-format scaler 2
- 6. Main video scaler
- 7. Video plane channel

Each incoming stream passes through a positioning block, which places the input picture at a specified horizontal and vertical position within the active display window.

9.4.12.1 Positioning Blocks

There are eight positioning blocks (one per input stream). The purpose of the positioning block is, to position the input picture within a large frame as shown in the diagram:

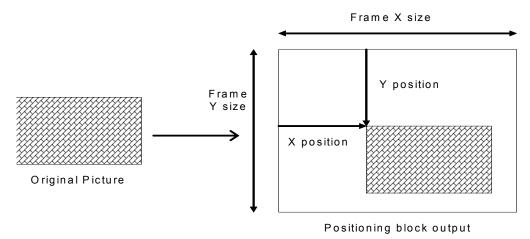


Figure 9-11 Positioning blocks

Each positioning block has four parameters:

- 1. A 13-bit signed X position (-4096 to 4095).
- 2. A 12-bit signed Y position (-2048 to 2047).
- 3. A 12-bit X active window size (0 to 4095).
- 4. A 11-bit Y active window size (0 to 2047).

The X and Y position parameters are signed to allow the top-left corner of the input picture to be positioned outside of the output frame (the left and/or top portion of the input picture is not displayed). If the discarded portion of the input picture is too large, then bandwidth problems will appear. In this case, the input picture should be cut in the V-Bus interface.

9.4.12.2 Mixing

Within the mixer, the positioned streams can be assigned to any of the layers 0-6. The highest priority (layer 7, the top layer) is always assigned to the hardware cursor.

For each output pixel, the 8 input pixels are layered and mixed according to the programmed layer (global priority) order. Each output pixel from the main mixer ultimately consists of the alpha-blended combination of the 4 highest-priority non-transparent input pixels.

At any pixel location where there's no data provided by the sources, or where all the sources are transparent, a programmable background color (typically black) is output. The output of the main mixer is then sent to the display routing block.

9.4.13 Display Routing Block

The display router is essentially a crossbar switch, which couples 5 input video streams to any of the 3 video output blocks.

The 5 input sources to the display router are the main mixer output, the Multi-format scaler 1 or 2, the HD to SD downscaler output, constrained image scaler output, and the color bars generator.

The color bars generator generates a standard color bars pattern (in YCbCr) for testing purposes. The image size and the intensity (75% or 100%) are programmable. The white color can be 75% or 100%. The generation is enabled as soon as the block is put in 'run' reset level. There are 8 bars of equal width per line.

The 3 output ports of the display router drive 2 analog video output blocks and 1 HDMI digital video output block. Both analog video output blocks are capable of generating composite, S-video, and YPbPr or RGB video. The HDMI block formats the pixel data into an HDMI v1.3a compliant output interface.

9.4.14 Video Output Interfaces

9.4.14.1 Display Controllers

Each of the 3 video output blocks (2 analog, 1 digital) may be independently operated as either a video timing master or a slave. In the master mode, the display controller generates HSYNC and VSYNC from an internal video clock. In the slave mode, the display controller receives HSYNC and VSYNC from another video input/output port or an external device.

Commonly used output resolutions and frame refresh rates include:

- 704/720 x 480i @ 29.97 and 30Hz
- 704/720 x 480p @ 59.94 and 60Hz
- 704/720 x 576i @ 25Hz
- 704/720 x 576p @ 50Hz
- 1280 x 720p @ 50, 59.94 and 60Hz
- 1366 x 768p @ 50, 59.94 and 60Hz

- 1024 x 1024p @ 50, 59.94 and 60Hz
- 1920 x 1080i @ 25, 29.97 and 30Hz
- 1920 x 1080p @ 23.976, 24, 50, 59.94 and 60Hz

The output video may be optionally rotated by 90, 180 or 270 degrees, with symmetry with respect to the X-axis, 1st bisector, Y-axis or 2nd bisector.

As the video may be scaled to any resolution, these represent only the standard consumer resolutions. Resolutions unique to fixed-resolution displays, such as LCD, DLP and PDP are easily accommodated.

9.4.14.2 Frame Rate Conversion

The programmable output video timing, in addition to the 2:2 and 3:2 pull-down processing and deinterlacing, enables the following source-to-output frame rate conversions to be supported:

Table 9-2 Supported source and output frame rate combinations

Source/Output	23.976p	24p	25 i	29.97i 30i	50p	59.94p 60p
23.976p	Yes	Yes	Yes	Yes	Yes	Yes
24p	Yes	Yes	Yes	Yes	Yes	Yes
25i ¹	-	-	Yes	Yes	Yes	Yes
25p	-	-	Yes	Yes	Yes	Yes
29.97i ¹	-	-	Yes	Yes	Yes	Yes
29.97p	-	-	Yes	Yes	Yes	Yes
30i ¹	-	-	Yes	Yes	Yes	Yes
30p	-	-	Yes	Yes	Yes	Yes
50p	-	-	Yes	Yes	Yes	Yes
59.94p	-	-	Yes	Yes	Yes	Yes
60p	-	-	Yes	Yes	Yes	Yes

 ²⁵i, 29.97i and 30i are also commonly called 50i, 59.94i and 60i, respectively. The difference is whether frame rate or field rate is specified.

Each field/frame from the video decoder has a PTS and is compared with the STC to decide what is the best field/frame to display.

When frame rate converting interlaced sources, the output is either the source field closer in time (resulting in occasional dropped or duplicated fields) or has a matching phase (resulting in occasional dropped or duplicated frames).

For 24p and 23.976p sources, the 3:2 pull-down information is used as a hint to determine if a frame should be displayed again or not; the PTS and STC have the final say. For example, if displaying a frame 3 times leads to a large gap between the PTS and the STC, then the frame will be displayed twice. If there is no repeat_first_field flag, the display is completely PTS/STC driven - the display sequence is the same as if there is the flag but the first repeated frame is random, instead of being the one set in the stream.

 $\it Table~9-3~$ Combinations of supported output frame rates - OSD, subtitles and graphics available on all outputs

	Supported Output Frame Rates								
HDMI	23.976p	24p	25i	29.97i	30i	50p	59.94p	60p	
Analog Component ¹			25i	29.97i	30i	50p	59.94p	60p	
Analog Component ²	29.97i	25i 29.97i	25i	29.97i	29.97i	25i	29.97i	29.97i	
S-Video	29.97i	25i 29.97i	25i	29.97i	29.97i	25i	29.97i	29.97i	
Composite	29.97i	25i 29.97i	25i	29.97i	29.97i	25i	29.97i	29.97i	

^{1.} Resolution of HDMI and analog component video is the same.

Table 9-4 Combinations of supported output frame rates - no OSD, subtitles or graphics on analog component outputs

Supported Output Frame Rates								
HDMI	23.976p	24p	25i	29.97i	30i	50p	59.94p	60p
Analog Compo- nent ¹ , ²	60p 59.94p 50p 30i 29.97i 25i							
S-Video	29.97i	25i 29.97i	25i	29.97i	29.97i	25i	29.97i	29.97i
Composite	29.97i	25i 29.97i	25i	29.97i	29.97i	25i	29.97i	29.97i

^{1.} Resolution of HDMI and analog component video may be different.

^{2.} Resolution and frame rate of analog component video and composite video is the same.

^{2.} Requires additional memory bandwidth to read the main video plane a second time.

9.4.14.3 VBI Support on Video Outputs

Sigma's hardware library provides for the extraction, parsing, and output of various user data types onto the video outputs during the vertical blanking interval (VBI).

The VBI data is present on the composite output, the Y channel of the S-video output and the Y channel of the YPbPr output. Two of the GPIO pins may be used for adding the appropriate DC offsets to pins 8 and 16 of a SCART connector to indicate the program aspect ratio information. The GPIO pins may also be used to control the Line 1, Line 2, and Line 3 signals, and monitor the Plug Detect signal, for the EIAJ CP-4120 DTerminal interface.

Closed Captioning

480i closed captioning (including extended data services, XDS such as parental control, v-chip, etc.) on lines 21 and 284, as defined by CEA-608-C is supported. There is no standard for transmitting closed captioning over the HDMI or 480p, 576i, 576p, 720p, 1080i or 1080p analog component interfaces.

```
The registers VO_MAIN_ANALOG_CC_AGC (CC_data[15:0]), VO_COMPONENT_OUT_TV_CONFIG (bits 17 and 18), VO_COMPOSITE_OUT_TV_CONFIG (bits 17 and 18) and VO_MAIN_ANALOG_TV_CONFIG (bits 17 and 18) control closed captioning. The bit 18 determines the extended closed captioning.
```

Closed captioning data (including XDS data) to be output during VBI may be provided by application software on the host CPU or by Sigma's hardware library.

The hardware library supports the following closed captioning formats,

- DVD
 - MPEG-2
 - * User data start code = 0x000001B2
 - * User data type = 0x4343
- ATSC
 - MPEG-2
 - * User data start code = 0x000001B2
 - * User_data_type_code = 0x03
 - * Cc type = 0x0 or 0x1

SCTE 20 and 21

- MPEG-2
 - * User data start code = 0x000001B2
 - * User_data_type_code = 0x03
 - * Cc type = 0x0 or 0x1
- Minerva

Nielsen AMOL I and II

480i Nielson AMOL I and II data on lines 20 and 22, as defined by CEA-805-C, is not supported.

Multi-level Pulse-Amplitude Modulation (PAM)

Multi-level pulse-amplitude modulation (PAM), used to reconstruct a VBI analog waveform, is not supported on the SMP8654.

Wide Screen Signaling and Copy Protection Control

480i wide screen signaling (WSS), copy generation management (CGMS-A) and APS data on lines 20 and 283, as defined by IEC 61880-1 and EIAJ CPR1204, is supported. CGMS-A, APS and RCD data are also present on line 284 per CEA-608-C.

480p wide screen signaling (WSS), copy generation management (CGMS-A) and APS data on line 41, as defined by EIAJ CPR1204-1, CEA-805-C Type A and IEC 61880-2, is supported. CGMS-A, APS and RCI data as defined by CEA-805-C Type B on line 40 is supported.

576i wide screen signaling (WSS), copy generation management (CGMS-A) and APS data on line 23, as defined by ETSI EN 300 294 and ITU-R BT.1119, is supported.

576p wide screen signaling (WSS), copy generation management (CGMS-A) and APS data on line 43, as defined by IEC 62375, is supported.

720p copy generation management (CGMS-A) and APS data on line 24, as defined by CEA-805-C Type A and EIAJ CPR1204-2, is supported. CGMS-A, APS and RCI data as defined by CEA-805-C Type B on line 23 is supported.

1080i copy generation management (CGMS-A) and APS data on lines 19 and 582, as defined by CEA-805-C Type A and EIAJ CPR1204-2, is supported. CGMS-A, APS and RCI data as defined by CEA-805-C Type B on lines 18 and 581 is supported.

The register VO_MAIN_ANALOG_CGMS (R/W) controls Wide Screen Signaling and CGMS.

Table 9-5 Wide Screen Signaling and CGMS - register VO_MAIN_ANALOG_CGMS

Bit #	1	0
23	CGMS/WSS odd field (NTSC) / WSS (PAL)	CGMS/WSS disabled on odd fields / WSS disabled
22	CGMS/WSS on even fields (NTSC)	CGMS/WSS disabled on even fields
21	Software CRC generation for CGMS/ WSS(NTSC)	Hardware CRC generation for CGMS/ WSS(NTSC)
20	Х	X
19:0	Copy Generation Management System data and WSS (NTSC)	
13:0	Wide Screen Signaling Data (PAL)	

WSS and CGMS data to be output during VBI must be provided by application software on the host CPU.

Teletext

The SMP8654 supports 3 systems:

- System B-625: for 625-line PAL systems in Europe
- System C-525: for 525-line NTSC systems in USA
- System D-525: for 525-line NTSC systems in Japan

The active teletext lines are located in the vertical blanking interval:

- For system B-625 (625 lines/frame):
 - Top field line 6 to line 22 (17 lines max)
 - Bottom field line 318 to line 335 (18 lines max)
- For systems C-525 and D-525 (525 lines/frame):
 - Top field line 7 to line 17 (11 lines max)
 - Bottom field line 269 to line 280 (12 lines max)

The teletext output is configured by the register VO_MAIN_ANALAOG_TV_TELETEXT_CONFIG. There are 2 parameters, CONFIG_LINE[17:0] and CONFIG_CODE[7:0]

CONFIG_LINE[17:0] enables the active teletext lines within the blanking: this is an enable (high) register. Bit 0 corresponds to the first line of teletext as defined by the system and the polarity of the field (see previous paragraph), and so on. For instance in system B, in a top field, programming bit 0 at 1 will enable teletext on line 6.

CONFIG CODE[7:0] (or framing code) identifies the system. It is,

- 8'b 0010 0111 for system B-625
- 8'b 1110 0111 for system C-525
- 8'b 1010 0111 for system D-525

Bit 0 is output first. Each system outputs a different number of bits per line. Each line starts with a hardware generated clock run-in of 16 bits (alternating 0s & 1s), followed by the framing code byte. After these 3 bytes are output, the content of the teletext memory is output.

The maximum data lengths for each system are:

- System B-625: 42 bytes (+2 run-in +1 framing code=45)
- System C-525: 33 bytes (+2 run-in +1 framing code=36)
- System D-525: 34 bytes (+2 run-in +1 framing code=37)

Teletext data to be output during VBI must be provided by application software on the host CPU. Sample software is available from Sigma that extracts DVB teletext data (EN 300 472) and outputs it onto the 576i analog video outputs during VBI.

9.4.14.4 Sync Timing Generators

The programmable sync timing generators enable support for a wide variety of video timing standards, including:

- EIA-770.2 and 770.3
 - 480i30, 480p60, 720p60 and 1080i30
- SMPTE 170M
 - NTSC-M
- SMPTE 267M
- SMPTE 274M
 - 1080i25, 1080i30, 1080p24, 1080p25, 1080p30, 1080p50 and 1080p60

- SMPTE 296M
 - 720p24, 720p25, 720p30, 720p50 and 720p60
- ITU-R BT.470
 - 480i30 and 576i25
- ITU-R BT.601
 - 480i30 and 576i25
- ITU-R BT.656
 - 480i30 and 576i25
- ITU-R BT.709
 - 1080i25, 1080i30, 1080p24, 1080p25, 1080p30, 1080p50 and 1080p60
- ITU-R BT.1358
 - 480p60 and 576p50

Custom timing to support various flat panel display resolutions, such as 1366x768, is also possible.

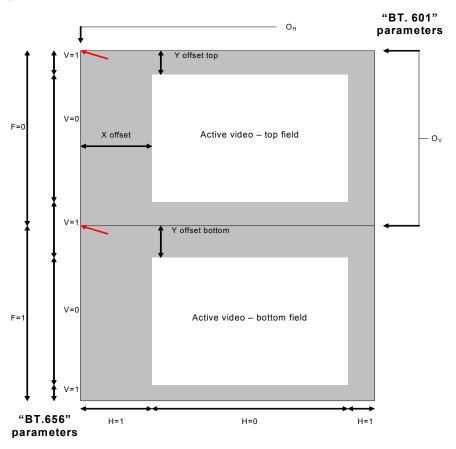


Figure 9-12 Video output timing parameters

The range of programmability for each video timing parameter for the digital video output port is as follows:

Table 9-6 Range of programmability for digital video output timing

Parameter	Range
Vt_total_size (vertical total per fame)	0 - 4095 lines
Hz_total_size (horizontal total per line)	0 - 4095 pixels
X_offset (Hsync to active video)	0 - 4095 pixels
Y_offset_top (Vsync to active video, top field)	0 - 4095 lines
Y_offset_bottom (Vsync to active video, bottom field)	0 - 4095 lines
Top_field_height (total size of top field)	0 - 8191 (half lines)
Hz_sync_width (Hsync width)	0 - 4095 pixels
Vt_sync_width (Vsync width)	0 - 8191 half lines
Vt_sync_fine_adjust, lower byte (Vsync to Hsync relative position adjust, top field)	0 to +/-127pixels
Vt_sync_fine_adjust, upper byte (Vsync to Hsync relative position adjust, bottom field)	0 to +/-127 pixels

The range of programmability for each video timing parameter for the component and composite/S-video output ports is as follows:

Table 9-7 Range of programmability for component, composite and S-video output timing

Parameter	Range
Height (total line per frame)	0 - 4095 lines
Width (total pixels per line)	0 - 8191 pixels
Hsync0 (horizontal coordinate where Hsync goes low)	0 - 4095 pixels
Hsync1 (horizontal coordinate where Hsync goes high)	0 - 4095 pixels
Hsync_width (total Hsync width)	0 - 4095 pixels
Vsync_O_0_line (vertical coordinate where Vsync goes low for odd field)	0 - 4095 lines
Vsync_O_1_line (vertical coordinate where Vsync goes high for odd field)	0 - 4095 lines
Vsync_E_0_line (vertical coordinate where Vsync goes low for even field)	0 - 4095 lines
Vsync_E_1_line (vertical coordinate where Vsync goes high for even field)	0 - 4095 lines
Vsync_O_0_pixel (horizontal coordinate where Vsync goes low for odd field)	0 - 4095 pixels

Table 9-7 Range of programmability for component, composite and S-video output timing

Parameter	Range
Vsync_O_1_pixel (horizontal coordinate where Vsync goes high for odd field)	0 - 4095 pixels
Vsync_E_0_pixel (horizontal coordinate where Vsync goes low for even field)	0 - 4095 pixels
Vsync_E_1_pixel (horizontal coordinate where Vsync goes high for even field)	0 - 4095 pixels
Vsync_start (horizontal coordinate where Vsync starts)	0 - 4095 lines
Vsync_width (total Vsync width)	0 - 4095 lines

The appendix includes a listing of parameter values for standard video timings.

9.4.14.5 Analog Video Output

Two analog video output blocks are available. Each receives 36-bit YCbCr or RGB data from the display router. Each analog video output block also contains a video timing generator that can operate in a master or slave timing mode.

Analog video output block 1 is capable of generating,

- 12-bit composite (CVBS) + 24-bit S-video,
- 36-bit YCbCr + 12-bit composite (CVBS) or,
- 36-bit RGB + 12-bit composite (CVBS)

Analog video output block 0 is capable of generating,

- 12-bit composite (CVBS) + 24-bit S-video,
- 36-bit YCbCr or,
- 36-bit RGB

Six 12-bit video DACs convert the digital video data from the 2 analog video output blocks to analog video.

Each video DAC can be configured to output one of the following:

- Composite video (CVBS)
- Y of S-video
- C of S-video

- Y or G video
- Pr or R video
- Pb or B video

Each video DAC can also be configured as to which source to use for video:

- Analog video output block 0
- Analog video output block 1

This flexible configuration options enable supporting many output configurations including,

- YPbPr + S-video + composite
- RGB + S-video + composite
- full SCART (RGB + composite) + composite
- full SCART (RGB + composite) + S-video

Each video DAC can also be configured as to which source to use for teletext:

- Analog video output block 0
- Analog video output block 1

Each video DAC can be independently disabled when not used for significant power savings.

For SD sources, the SMP8654 offers the ability to output composite, S-video, SD or upscaled HD analog component, and SD or upscaled HD HDMI outputs simultaneously. For HD sources, downscaled composite, downscaled S-video, HD or constrained-image HD analog component outputs, and HD HDMI outputs are simultaneously available. For two SD or HD sources, the SMP8654 also offers the ability to output both sources simultaneously (one audio channel only).

The DRM software running on the XPU may restrict the ability to output upscaled HD analog component outputs from SD sources or the ability to output HD analog component outputs from HD sources.

Component (YPbPr or RGB) Video Outputs

The component video outputs support optional Macrovision v7.1.L1 and v1.2 protection and DAC attenuation compensation. When generating 480i30 or 576i25 video, the DACs operate at 54MHz; for 480p60 or 576p50 video, the DACs operate at 108MHz; for 1080i30, 1080i25, 720p60 or 720p50 video, the DACs operate at 148.5MHz. For 1080p60 or 1080p50 video, the DACs operate at 148.5MHz. The analog video outputs are capable of driving a doubly-terminated 75-ohm load.

The Macrovision v7.1.L1 and v1.2 certifications that Sigma receive applies only to chip manufacturers. Other certifications (such as v7.1.S1, etc.) are implementation-dependent (i.e., they are dependent on the type of the end-product being produced) and therefore are up to the OEM/ODM to obtain.

Note: The Macrovision support is not available when outputting analog RGB video.

Component Video Output Timing

Both analog video output blocks contain a complete programmable sync timing generator for operating as a sync master, or the timing generator may be slaved to H/V sync timing from,

- Video input
- Composite/S-video analog output
- HDMI output
- External device connected to component video output port

H/V sync signals output onto this port may be obtained from,

Sync timing generator

Either bi-level or tri-level sync pulses may be generated when outputting high-definition RGB or YPbPr signals.

Component Video Output Processing

A 3x3 matrix multiplier with programmable coefficients is used to implement:

- YCbCr/RGB color space conversion
- Contrast (or 'picture' or 'white level') control
- Saturation (or 'color') control
- Hue (or 'tint') control
- BT.709 (HDTV) to BT.601 (SDTV) and BT.601 (SDTV) to BT.709 (HDTV) colorimetry conversion
- 61966-2-4 (xvYCC) uses BT.709 colorimetry

The inputs of the matrix multiplier are 36-bit YCbCr from the display routing block; the outputs are 36-bit YCbCr or RGB which can drive three 12-bit video DACs. The matrix coefficients have a range of -4 to +3.4095/4096, in steps of 1/4096. The matrix multiplier is followed by three programmable DC offsets to provide optional brightness (or 'black level') control. The DC offsets have a range of -512 to + 511.15/16, in steps of 1/16. No sharpness control is provided for the component video outputs.

Component Video Output Formats

Supported component output formats are:

- RGB SCART (IEC 60933)
 - RGB + CVBS (composite)
 - RGB: 0.700v range
 - 0 IRE blanking setup
 - No sync on R, G and B
 - No support for fast blanking signal
- RGB sync-on-green
 - 0.300v bi-level sync (SD) or +/-0.300v tri-level sync (HD)
 - RGB: 0.700v range
 - 0 IRE blanking setup
- RGB SMPTE
 - 0.300v bi-level sync (SD) or +/-0.300v tri-level sync (HD)
 - RGB: 0.700v range
 - 0 IRE blanking setup
 - sync on R, G and B

- YPbPr Betacam
- YPbPr MII
- YPbPr SMPTE
 - 0.300v bi-level sync (SD) or +/-0.300v tri-level sync (HD)
 - Y: 0.700v range
 - Pb, Pr: +/-0.350v range
 - 0 IRE blanking setup
 - sync on Y, Pb and Pr
- YPbPr EIA-770.2 and EIA-770.3
 - 0.300v bi-level sync (SD) or +/-0.300v tri-level sync (HD)
 - Y: 0.700v range
 - Pb, Pr: +/-0.350v range
 - 0 IRE blanking setup
 - no sync on Pb and Pr

Component Video Output Configuration Options

Configuration register bits can be used to select a number of features and characteristics:

- H- and V-sync source
- H- and V-sync polarity
- Bi-level or tri-level sync pulses for HD output
- SD or HD output
- Progressive or interlaced output
- Closed caption and extended closed caption enable/disable
 - CEA-608-C data is present on analog RGB outputs instead of only the G output
- Y and RGB filter options
 - 9.00 MHz
 - 13.0 MHz
- PbPr filter options
 - 6.50 MHz
 - 13.0 MHz
- YPbPr/RGB output mode

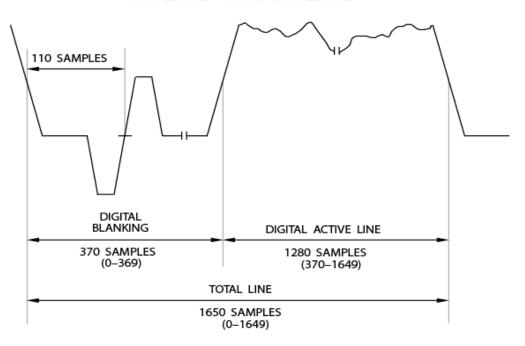


Figure 9-13 Video waveform - 720p

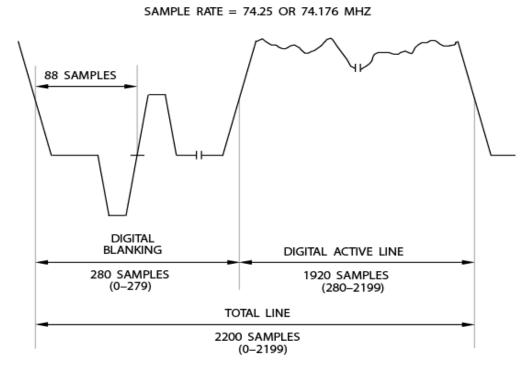


Figure 9-14 Video waveform - 1080i

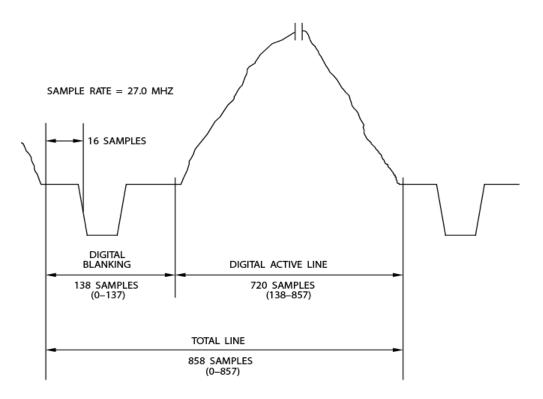


Figure 9-15 Video waveform - 480i

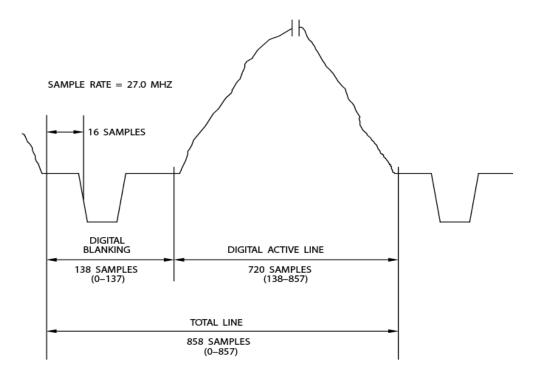


Figure 9-16 Video waveform - 480p

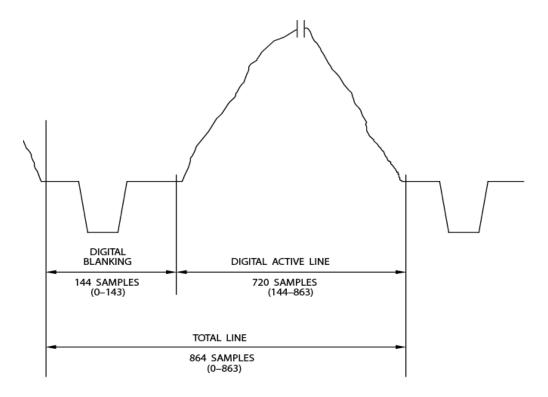


Figure 9-17 Video waveform - 576i

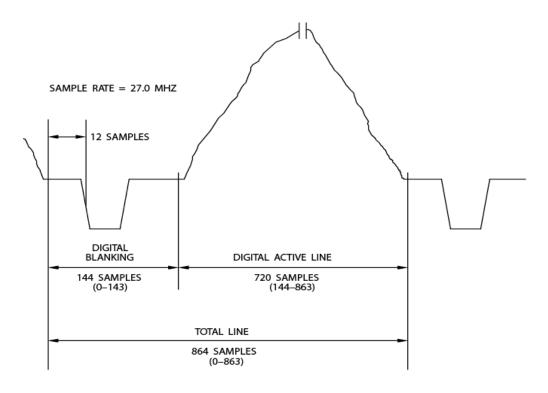


Figure 9-18 Video waveform - 576p

Composite (CVBS) and S-Video Outputs

The NTSC/PAL encoder (with optional Macrovision v7.1.L1 protection and DAC attenuation compensation) supports the NTSC-M, NTSC-J, PAL-B/D/G/H/I, PAL-60, PAL-M and PAL-Nc baseband video standards. It uses three 54MHz 12-bit video DACs to generate simultaneous composite and S-video outputs. The analog video outputs are capable of driving a doubly-terminated 75-ohm load.

The Macrovision v7.1.L1 certification that Sigma receives applies only to chip manufacturers. Other certifications (such as v7.1.S1, etc.) are implementation-dependent (i.e. they are dependent on the type of the end-product being produced) and therefore are up to the OEM/ODM to obtain.

Composite and S-Video Output Timing

The block contains a complete programmable sync timing generator for operating as a sync master, or the timing generator may be slaved to H/V sync timing from,

- Component video analog output
- Digital video output
- External device connected to composite and S-video output port

H/V sync signals output onto this port may be obtained from,

Sync timing generator

Composite and S-Video Output Processing

A 3x3 matrix multiplier with programmable coefficients is used to implement:

- Contrast (or 'picture' or 'white level') control
- Saturation (or 'color') control
- Hue (or 'tint') control
- BT.709 (HDTV) to BT.601 (SDTV) colorimetry conversion
- 61966-2-4 (xvYCC) uses BT.709 colorimetry

The inputs of the matrix multiplier are 36-bit YCbCr from the display routing block; the outputs are 30-bit YCbCr which drives the NTSC/PAL encoder. The matrix coefficients have a range of -4 to +3.4095/4096, in steps of 1/4096. The matrix multiplier is followed by three programmable DC offsets to provide optional brightness (or 'black level') control. The DC offsets have a range of -512 to +511.15/16, in steps of 1/16. The sharpness can be adjusted from +/-12.5% to 100% in 8 steps. A color sub carrier notch filter is also available.

The composite and S-video digital outputs from the NTSC/PAL encoder are 10-bit data. Oversampling filters output 12-bit data, which drives the three 12-bit video DACs.

When outputting 720 samples/line, either all 720 active samples may be output (does not meet the NTSC/PAL timing) or, 1-16 samples may be cropped from the left and right sides resulting in the center 688-720 active samples being output (in order to meet the NTSC/PAL timing). Typically, to meet the NTSC timing, 716 samples should be output and to meet the PAL timing, 702 samples should be output.

Composite and S-Video Output Formats

Supported composite and S-video output formats are:

- Baseband NTSC-M
- Baseband NTSC-J (NTSC-M for Japan)
- Baseband PAL-B/D/G/H/I
- Baseband PAL-M
- Baseband PAL-60
- Baseband PAL-N
- Baseband PAL-Nc (for Argentina)

Composite and S-Video Output Configuration

Configuration register bits can be used to select a number of features and characteristics:

- H- and V-sync source
- H- and V-sync polarity
- Closed caption and extended closed caption enable/disable
- CGMS, WSS and Teletext enable/disable
- Sharpness/notch filter enable/disable and gain/attenuation control

- Luma filter options (separate filters used for CVBS and S-video)
 - 4.5 MHz (driving RF modulator)
 - 6.5 MHz
- Chroma filter options (separate filters used for CVBS and S-video)
 - 0.65 MHz (480i out, driving RF modulator)
 - 1.00 MHz (576i out, driving RF modulator)
 - 1.30 MHz (480i out)
 - 2.00 MHz (576i out)
- Y-C relative delay
 - No delay
 - Delay C by 1, 2 or 3 sample clocks
 - Delay Y by 1, 2 or 3 sample clocks
- Composite and S-video output format
- Output three composite video signals instead of one composite and one S-video

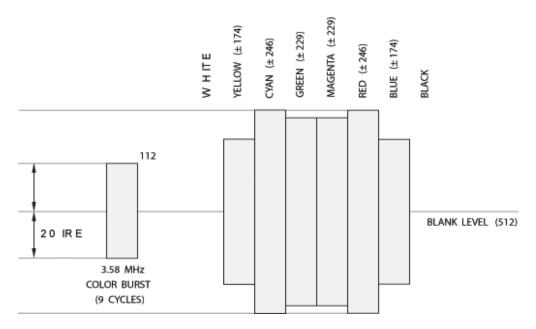


Figure 9-19 NTSC c for S-video

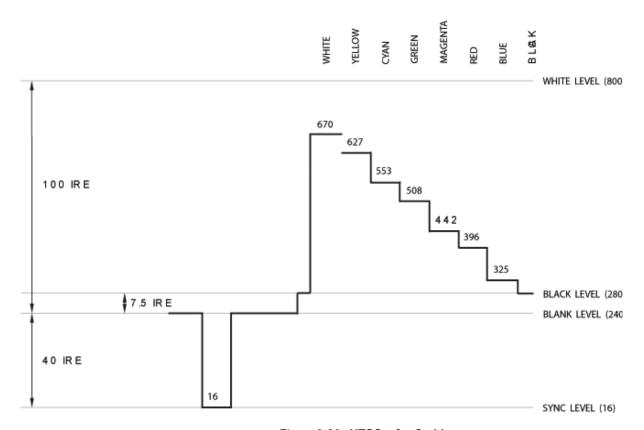


Figure 9-20 NTSC y for S-video

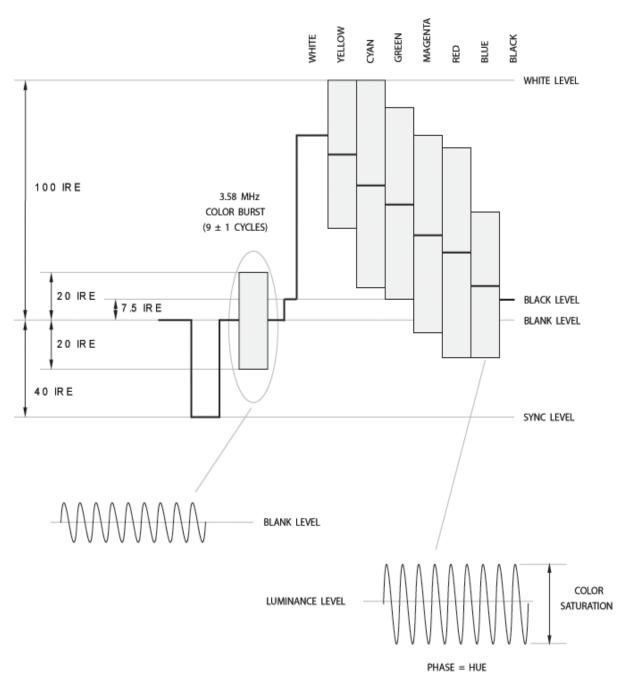


Figure 9-21 CVBS (NTSC)

9.4.14.6 HDMI v1.3a Output

The SMP8654 contains a fully integrated HDMI subsystem. It is fully HDMI compliant, and is used to transport consumer electronics standard digital video and digital audio over a TMDS interface. It supports the HDMI v1.3a (High Definition Multimedia Interface) and HDCP v1.3 (High-Bandwidth Digital Content Protection) specifications. The block provides a simple method for sending protected digital audio and video, providing end users with a truly all-digital experience. At the same time, built in backward compatibility with DVI 1.0 allows HDMI host systems to connect to any DVI 1.0 display (DTV, plasma display, LCD TV, PC monitor).

The integrated HDMI 1.3a link module includes the following features and capabilities:

- HDMI v1.3a, HDCP v1.3 and DVI v1.0 compliant transmitter
- Supports DTV from 480i to 1080i/p HD resolution
- Programmable 2-way color space converter
- Compliant with EIA/CEA-861D
- Deep color support (36 bit per pixel).
- xvYCC Enhanced Colorimetry
- Gamut Metadata transmission
- Supports RGB, YCbCr digital video input format includes ITU.656
- 36-bit RGB/YCbCr 4:4:4
- 24-bit YCbCr 4:2:2
- 12-bit YCbCr 4:2:2 (ITU.601 and 656)
- Supports standard SPDIF for stereo or compressed audio up to 192KHz
- Support PCM and Dolby digital
- IEC60958 or IEC61937 compatible
- High-bitrate compressed audio format
- Master I²C interface for DDC connection
- Programmable PLL characteristics, channel delay, and transmitter pre-emphasis rate

The HDMI transmitter block receives uncompressed digital video data from the preprocessing unit and compressed or uncompressed digital audio from the audio DSP, formats and encrypts the data received, and then drives the HDMI LVDS output pins.

The integrated HDMI 1.3a PHY (transmitter) module includes the following features and capabilities:

- HDMI version 1.3a compliant transmitter
- Supports DTV from 480i to 1080i/p HD resolution, and PC from VGA to UXGA
- Adjustable analog characteristics:
 - Output swing voltage
 - Pre-emphasis strength
 - PLL band width
 - VCO gain
 - BGR voltage
- Loop-back test support
- Low ISI jitter due to fully differential data path

Video Output Pre-processing

The HDMI digital video stream is preprocessed before being delivered to the HDMI link and PHY subsystem. The preprocessing unit uses a 3x3 matrix multiplier to optionally apply the following transformations to the video data:

- YCbCr/RGB color space conversion
- Contrast (or 'picture' or 'white level') control
- Saturation (or 'color') control
- Hue (or 'tint') control
- BT.709 (HDTV) to BT.601 (SDTV) and BT.601 (SDTV) to BT.709 (HDTV) colorimetry conversion
- 61966-2-4 (xvYCC) uses BT.709 colorimetry

The inputs of the matrix multiplier are 36-bit YCbCr from the display routing block; the outputs are 36-bit YCbCr or RGB. The matrix coefficients have a range of -4 to +3.2047/2048, in steps of 1/2048. The matrix multiplier is followed by three programmable DC offsets to provide optional brightness (or 'black level') control. The DC offsets have a range of -512 to + 511.7/8, in steps of 1/8. No sharpness control is provided for the digital video outputs.

HDMI Output Video Processing

The registers are configured to describe which format of video is being supplied to the HDMI transmitter. This information is passed over the HDMI link in the CEA-861C Active Video Information (AVI) packets.

The optional YCbCr/RGB color space converter (CSC) within the HDMI transmitter block interfaces to the video output block with YCbCr-only outputs, and provides full DVI 1.0 backwards compatibility. The CSC performs the standard-definition conversions according to BT.601, or high-definition conversions (BT.709). An up-converter allows 4:2:2 YCbCr data input to be converted to 4:4:4 YCbCr for transmitting over the HDMI link.

The HDCP encryption engine encrypts the incoming audio and video data. The encryption process is entirely controlled by the security CPU (XPU) through a set sequence of register reads and writes. The HDCP keys and Key Selector Value (KSV) are used in the encryption process.

HDMI Output Audio Processing

The HDMI block accepts digital audio from internal I²S and S/PDIF channels and forms the audio data into packets in accordance with the HDMI specification. The I²S channels used to drive the HDMI block are the same as those providing the audio DSP I²S outputs. Therefore, LPCM data over HDMI will have the same timing and format as the audio DSP I²S output pins. The HDMI v1.3a interface supports up to 7.1-channel 192KHz LPCM audio. The S/PDIF channel used to drive the HDMI block is the same as that providing the audio DSP S/PDIF output. Therefore, S/PDIF-based audio data over HDMI will have the same timing and format as the audio DSP S/PDIF output pin.

Table 9-8 Supported audio output combinations

I ² S Outputs	S/PDIF Output	HDMI Output	Supported
LPCM	Bitstream	Bitstream	Yes
LPCM	Bitstream	LPCM	Yes
LPCM	LPCM	Bitstream	No
LPCM	LPCM	LPCM	Yes

Within the HDMI block, the audio data may be down-sampled by one-half or one-fourth with register control. This allows for the sharing of the I²S outputs with a high sample-rate audio DAC, while down-sampling HDMI audio for an attached display which supports only lower rates. Conversions from 192 to 48KHz, 176.4 to 44.1KHz, 96 to 48KHz and 88.2 to 44.1KHz are supported. The appropriate registers are configured to describe the format of audio being input. This information is passed over the HDMI link in the CEA-861C Audio Info (AI) packets.

HDMI Output DDC Control

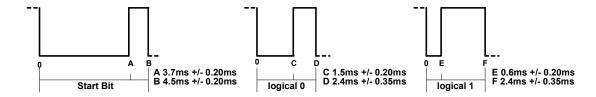
A dedicated I²C master interface is used to control the DDC signals. This I²C interface is also available for use with an external HDMI transmitter chip.

9.4.14.7 HDMI CEC Interface

CEC is an HDMI option that provides automatic power-on, automatic signal routing, and single-point remote control for CEC-enabled products. For example, CEC allows users to place a DVD into the player, press PLAY, and let CEC handle the rest.

The CEC bus is a one-wire, "party line" that connects up to ten (10) AV devices through standard HDMI cabling. The CEC protocol includes automatic mechanisms for physical address (topology) discovery, (product type based) logical addressing, arbitration, retransmission, broadcasting, and routing control. Message opcodes support both device specific (e.g. set-top-box, DTV, and player) and general features (e.g. for power, signal routing, remote control pass-through, and on-screen display).

The HDMI CEC block represents a hardware assisted HDMI CEC initiator and follower implementation. The packet/message transmission on the CEC bus can be initiated, or intercepted automatically and is available for command processing through the software running on the host CPU.


The main features of the HDMI CEC are (based on the HDMI v1.3 specification - June 22, 2006):

- Supports the 'HDMI CEC Initiator' functionality
- Supports the 'HDMI CEC Follower' functionality
- Supports the 'Point To Point' or 'Broadcast' communications
- Supports total packet/message length of up to 170 bits
- Supports freely configurable EOM bits
- Device supports/represents up to 3 target devices

- Configurable follower behavior for incoming ping
- Interrupt driven
- Contains error detection and signaling
- Uses GPIO[13] (if enabled)

The transmission of a packet/message on the CEC bus is signaled by initiators to followers by transmitting a start bit pattern. Then, a multiple of 10 bits is transmitted. Each of these 10 bits forms one block. One packet consisting of a start bit may contain from one block (= 1 header block = ping) to up to seventeen blocks (1 header block and 16 data blocks). All the header and data blocks are ten bits long and have the same basic structure.

	HEADER BLOCK							
							ACK	
	DATA BLOCK							
D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] EOM ACK							ACK	

I [3:0] INITIATOR ADDRESS

T [3:0] TARGET / DESTINATION ADDRESS

D [7:0] DATA BITS

EOM END OF MESSAGE BIT ACK ACKNOWLEGE BIT

HEADER BLOCK

The header block consists of the source/initiator logical address field I [3:0], the target/destination logical address field T [3:0], the end of message bit (EOM) and the acknowledge bit (ACK). A packet/message with the EOM bit set in the header block can be used to 'ping' other devices, to ascertain that they are active.

DATA BLOCK

These bits are data or op-codes, depending on the context.

CONTROL BITS - EOM and ACK

The control bits, EOM and ACK, are always present and always have the same usage.

EOM: The EOM bit is used to indicate the final block in the message. A 0 bit specifies that one or more data blocks follow. A 1 bit specifies that the message is complete.

ACK: The ACK bit is used by follower(s) to acknowledge the data or header block. It is always set to 1 by the initiator and a(ny) follower(s) might or might not pull the line to 0. It operates in one of following two modes:

- Point to Point messages (addressed to a single device) A follower that reads its own address in the destination address field shall acknowledge with a 0 bit. All other devices shall generate a 1 bit. A 0 bit read by the initiator therefore indicates a successful transmission of the data or header block.
- Broadcast messages The sense of the ACK bit is inverted to allow for a single device
 to reject a message. All followers shall acknowledge with a 1 ACK bit. A 1 read by
 the initiator therefore indicates that no device has rejected the data or header block –
 the message transmission can therefore continue if required. A 0 read by the initiator
 therefore indicates that one or more devices have rejected the message.

9.4.14.8 Simultaneous HD + CIT-HD + SD Outputs

The SMP8654 is capable of simultaneous HD via HDMI, constrained image HD (CIT-HD) via analog YPbPr (960x540 effective resolution with either 1080i30 or 720p60 timing) and SD via composite and S-video outputs.

9.4.14.9 Dual TV Outputs

The SMP8654 is capable of decoding two programs and driving two TVs simultaneously. Possible modes of operation include SD+SD and HD+SD.

The source of the second TV output is the Multi-format scaler 1 or 2. No OSD is available for the second TV output.

Audio for the main video is output onto the audio DSP I²S and S/PDIF outputs. Only one audio is supported at a given time.

275

9.4.15 Video Input Interface

One 8-bit digital video input interface is provided. It is typically used to support the connection of an external NTSC/PAL video decoder device for STB applications involving terrestrial broadcast support or, baseband analog video connectivity.

9.4.15.1 Video Input Interface

The digital video input interface is designed to capture 8-bit 4:2:2 408i/576i/480p/576p YCbCr digital video data in the BT.601 or BT.656 format. It supports clock rates up to 54MHz and resolutions of up to 720x576p. Video data is stored in the 16bpp 4:2:2 YCbCr format.

Sliced (binary) teletext data from select NTSC/PAL video decoders may also be captured and saved to memory for further processing. The closed captioning and wide screen signaling sliced (binary) VBI data may be read from the NTSC/PAL video decoder via the I²C interface).

Digital video Input Timing

The video input block contains a complete programmable sync timing generator for operating as a sync master, or the timing generator may be slaved to H/V sync timing from,

- External device connected to video input port
- Component analog output
- Composite/S-video analog output

H/V sync signals output onto this port may be obtained from,

Sync timing generator

When the BT.601 format is used, the port can operate in master or slave timing mode. When the BT.656 format is used, the port can only operate in slave timing mode. A 'valid video' input signal is available for both the BT.601 and BT.656 formats.

The range of programmability for each video timing parameter for the digital video input port is as follows:

Table 9-9 Range of programmability for digital video input timing

Parameter	Range
Vt_total_size (vertical total per fame)	0 - 4095 lines
Hz_total_size (horizontal total per line)	0 - 4095 pixels
X_size (horizontal active per line)	0 - 4095 pixels
Y_size (vertical active per frame)	0 - 4095 lines
X_offset (Hsync to active video)	0 - 4095 pixels
Y_offset_top (Vsync to active video, top field)	0 - 4095 lines
Y_offset_bottom (Vsync to active video, bottom field)	0 - 4095 lines
Top_field_height (total size of top field)	0 - 8191 (half lines)
Hz_sync_width (Hsync width)	0 - 4095 pixels
Vt_sync_width (Vsync width)	0 - 8191 half lines
Vt_sync_fine_adjust, lower byte (Vsync to Hsync relative position adjust, top field)	0 to +/-127 pixels
Vt_sync_fine_adjust, upper byte (Vsync to Hsync relative position adjust, bottom field)	0 to +/-127 pixels

Table 9-10 Range of programmability for VBI capture

Parameter	Range
Top_VBI_line_enable (VBI capture for top field or frame) ¹	-
Top_VBI_offset (reference line for starting top field or frame VBI capture) ²	0 - 31
Bot_VBI_line_enable (VBI capture for bottom field) ³	-
Bot_VBI_offset (reference line for starting bottom field VBI capture ²)	0 - 31
H_size (width of VBI data, used only for VBI data during horizontal blanking)	0 - 4095 bytes
V_size (height of VBI data, used only for VBI data during horizontal blanking)	0 - 4095 lines
V_offset_top (top field line number where VBI window starts, used only for VBI data during horizontal blanking)	0 - 4095
V_offset_bottom (bottom field line number where VBI window starts, used only for VBI data during horizontal blanking)	0 - 4095

 ²⁴⁻bit value. Each bit enables (1) or disables (0) VBI capture for 24 lines, starting with the line specified by top_VBI_offset.

BT.656 progressive: line 0 = first line of vertical blanking
 BT.601 progressive: line 0 = first line of Vsync active edge
 BT.656 interlaced: line 0 = first line after field ID change

BT.601 interlaced: line 0 = first line of Vsync active edge for top field and the line after for bottom field
3. 24-bit value. Each bit enables (1) or disables (0) VBI capture for 24 lines, starting with the line specified by bot_VBI_offset.

Digital Video Input Configuration

Configuration register bits can be used to select a number of features and characteristics:

- H- and V-sync source
- H- and V-sync polarity
- VBI capture enable/disable
- VBI capture timing
- Start of active video interrupt enable/disable
- BT.601 or BT.656 input timing

Table 9-11 Common video input formats

		Input	Pixel Clo	ck (MHz)					
Color Space	Video Format	480i	480p	XGA	720p	1080i	SXGA	1080p	UXGA
RGB	4:4:4	27	27	65	74.25	74.25	108	148.5	165
		27	27	65	74.25	74.25			
YCbCr	4:4:4	27	27		74.25	74.25		148.5	165
		27	27	65	74.25	74.25			
	4:2:2	27	27		74.25	74.25		148.5	165
		27	27		74.25	74.25		148.5	165
		27	27	65	74.25	74.25			
		27	54		74.25	74.25			
		27	54						
			54						

SMP8654-DS-A-10 SMP8654 Datasheet

9.5 Register Maps

9.5.1 Video Processing Registers

9.5.1.1 Multi-format Scaler Registers

Table 9-12 Register map - Multi-format scaler (MFS)

Address ¹					
MFS 1	MFS 2	Register Name ²	R/W/A ³	Description	
+0500	+0700	VO_XXX_FORMAT_HDS	R/W	Video Output xxx Format HDS Register	
+0504	+0704	VO_XXX_OUTPUT_SIZE	R/W	Video Output xxx Output Size Register	
+0508	+0708	VO_XXX_SCALE_FACTOR	R/W	Video Output xxx Scale Factor Register	
+050C	+070C	VO_XXX_SCALE_PHASE	R/W	Video Output xxx Phase Register	
+0510	+0710	VO_XXX_ALPHA_ROUTING	R/W	Video Output xxx Alpha Routing Register	
+0514	+0714	VO_XXX_KEY_COLOR	R/W	Video Output xxx Key Color Register	
+0518	+0718	VO_XXX_BCS	R/W	Video Output xxx BCS Register	
+051C	+071C	VO_XXX_STRIP_EDGE	R/W	Video Output xxx Strip Edge Register	
+0520	+0720	VO_XXX_NONLINEAR_0	R/W	Video Output xxx Nonlinear 0 Register	
+0524	+0724	VO_XXX_NONLINEAR_1	R/W	Video Output xxx Nonlinear 1 Register	
+0528	+0728	VO_XXX_TILING	R/W	Video Output xxx Tiling Register	
+052C	+072C	VO_XXX_BCS2	R/W	Video Output xxx BCS 2 Register	
+0530	+0730	VO_XXX_LUMA_KEY	R/W	Video Output xxx Nonlinear 0 Register	
+0534	+0734	VO_XXX_CHROMA_SCALE _FACTOR	R/W	Video Output xxx Chroma Scale Factor Register	
+0538	+0738	VO_XXX_CHROMA_NONLI NEAR_0	R/W	Video Output xxx Chroma Nonlinear 0 Register	
+053C	+073C	VO_XXX_CHROMA_NONLI NEAR_1	R/W	Video Output xxx Chroma Nonlinear 1 Register	
+A000	+C000	VO_XXX_LUT0	R/W	Video Output xxx LUT 0 Register	
+A004	+C004	VO_XXX_LUT1	R/W	Video Output xxx LUT 1 Register	
+A3FC	+C3FC	VO_XXX_LUT255	R/W	Video Output xxx LUT 255 Register	

Address refers to G-Bus byte address relative to the video output base.
 XXX is multi-format scaler 1 or 2 depending on the address.
 Read/Write/Auto update.

9.5.1.2 Main Video Scaling Registers

Table 9-13 Main video scaling registers

Address ¹	Register Name	R/W/A ²	Description
+6400	VO_MAIN_FORMAT_HDS	R/W	Video Output Main Format HDS Regis- ter
+6404	VO_MAIN_OUTPUT_SIZE	R/W	Video Output Main Output Size Register
+6408	VO_MAIN_SCALE_FACTOR	R/W	Video Output Main Scale Factor Register
+640C	VO_MAIN_SCALE_PHASE	R/W	Video Output Main Scale Phase Register
+6410	VO_MAIN_ALPHA_DEINT_ROU TING	R/W	Video Output Main Alpha Deint Rout- ing Register
+6414	VO_MAIN_DEINT2	R/W	Video Output Main Deint 2 Register
+6418	VO_MAIN_BCS	R/W	Video Output Main BCS Register
+641C	VO_MAIN_PULLDOWN	R/W	Video Output Main Pull-down Register
+6420	VO_MAIN_STRIP_FILTER	R/W	Video Output Main Strip Filter Register
+6424	VO_MAIN_NONLINEAR_0	R/W	Video Output Main Nonlinear 0 Register
+6428	VO_MAIN_NONLINEAR_1	R/W	Video Output Main Nonlinear 1 Regis- ter
+642C	VO_MAIN_BCS2	R/W	Video Output Main BCS 2 Register
+6430	VO_MAIN_CHROMA_SCALE_FA CTOR	R/W	Video Output Main Chroma Scale Factor Register
+6434	VO_MAIN_CHROMA_NONLINE AR_0	R/W	Video Output Main Chroma Nonlinear 0 Register
+6438	VO_MAIN_CHROMA_NONLINE AR_1	R/W	Video Output Main Chroma Nonlinear 1 Register
+643C	VO_MAIN_DEINT_WINDOW0_ MIN	R/W	Video Output Main Deint Window0 Minimum Register
+6440	VO_MAIN_DEINT_WINDOW0_ MAX	R/W	Video Output Main Deint Window0 Maximum Register
+6444	VO_MAIN_PULLDOWN_WINDO W0	R/W	Video Output Main Pulldown Window0 Register
+6448	VO_MAIN_PULLDOWN_WINDO W0_00	R/W	Video Output Main Pulldown Window0 00 Register
+644C	VO_MAIN_PULLDOWN_WINDO W0_01	R/W	Video Output Main Pulldown Window0 01 Register
+6450	VO_MAIN_PULLDOWN_WINDO W0_10	R/W	Video Output Main Pulldown Window0 10 Register
+6454	VO_MAIN_PULLDOWN_WINDO W0_11	R/W	Video Output Main Pulldown Window0 11 Register

SMP8654-DS-A-10 SMP8654 Datasheet

Table 9-13 Main video scaling registers

Address ¹	Register Name	R/W/A ²	Description
+6458	VO_MAIN_DEINT_WINDOW1_ MIN	R/W	Video Output Main Deint Window1 Minimum Register
+645C	VO_MAIN_DEINT_WINDOW1_ MAX	R/W	Video Output Main Deint Window1 Maximum Register
+6460	VO_MAIN_PULLDOWN_WINDO W1	R/W	Video Output Main Pulldown Window1 Register
+6464	VO_MAIN_PULLDOWN_WINDO W1_00	R/W	Video Output Main Pulldown Window1 00 Register
+6468	VO_MAIN_PULLDOWN_WINDO W1_01	R/W	Video Output Main Pulldown Window1 01 Register
+646C	VO_MAIN_PULLDOWN_WINDO W1_10	R/W	Video Output Main Pulldown Window1 10 Register
+6470	VO_MAIN_PULLDOWN_WINDO W1_11	R/W	Video Output Main Pulldown Window1 11 Register

Address refers to G-Bus byte address relative to the video output base.
 Read/Write/Auto update.

9.5.1.3 OSD Scaler Registers

Table 9-14 OSD scaler registers

Address ¹	Register Name	R/W/A ²	Description
+6000	VO_OSD_FORMAT_HDS	R/W	Video Output OSD Format HDS Register
+6004	VO_OSD_OUTPUT_SIZE	R/W	Video Output OSD Output Size Register
+6008	VO_OSD_SCALE_FACTOR	R/W	Video Output OSD Scale Factor Register
+600C	VO_OSD_SCALE_PHASE_FLIC KER	R/W	Video Output OSD Scale Phase Flicker Register
+6010	VO_OSD_ALPHA_ROUTING	R/W	Video Output OSD Alpha Routing Register
+6014	VO_OSD_KEY_COLOR	R/W	Video Output OSD Key Color Register
+9000	VO_OSD_LUT0	R/W	Video Output OSD LUT 0 Register
+9004	VO_OSD_LUT1	R/W	Video Output OSD LUT 1 Register
•			
+90FC	VO_OSD_LUT255	R/W	Video Output OSD LUT 255 Register

Address refers to G-Bus byte address relative to the video output block base.
 Read/Write/Auto update.

9.5.1.4 Hardware Cursor Registers

Table 9-15 Hardware cursor registers

Address ¹	Register Name	R/W/A ²	Description
+6100	VO_CURSOR_SIZE_CTRL	R/W	Video Output Cursor Size Control Register
+6140	VO_CURSOR_ LUT0	R/W	Video Output Cursor LUT 0 Register
+617C	VO_CURSOR_LUT15	R/W	Video Output Cursor LUT 15 Register
+8000	VO_CURSOR_PIX0	R/W	Video Output OSD Cursor Pixel0 Register
+87FC	VO_CURSOR_PIX511	R/W	Video Output OSD Cursor Pixel 511 Register

Address refers to G-Bus byte address relative to the video output block base.
 Read/Write/Auto update.

9.5.1.5 Main Mixer Registers

Table 9-16 Register map - Main mixer

Address ¹	Register Name	R/W/A ²	Description
+6800	VO_MIX_0_POS	R/W	Video Output Main Mixer GFX Position Register
+6804	VO_MIX_1_POS	R/W	Video Output Main Mixer CRT Position Register
+6808	VO_MIX_2_POS	R/W	Video Output Main Mixer VCR Position Register
+680C	VO_MIX_3_POS	R/W	Video Output Main Mixer Sub-picture Position Register
+6810	VO_MIX_4_POS	R/W	Video Output Main Mixer Main Video Position Register
+6814	VO_MIX_ 5_POS	R/W	Video Output Main Mixer OSD Position Register
+6818	VO_MIX_6_POS	R/W	Video Output Main Mixer Position GIN Register
+681C	VO_MIX_7_POS	R/W	Video Output Main Mixer Cursor Position Register
+6820	VO_MIX_INDEX	R/W	Video Output Index Register
+6824	VO_MIX_ FRAME _SIZE	R/W	Video Output Frame Size Register

SMP8654-DS-A-10 SMP8654 Datasheet

Table 9-16 Register map - Main mixer (Continued)

Address ¹	Register Name	R/W/A ²	Description
+6828	VO_MIX_ BACKGROUND_0	R/W	Video Output Background Color 0 Register
+6828	VO_MIX_ BACKGROUND_1	R/W	Video Output Background Color 1 Register
+6828	VO_MIX_ BACKGROUND_2	R/W	Video Output Background Color 2 Register
+6828	VO_DEPTH	R/W	Video Output Depth Register

Address refers to G-Bus byte address relative to the video output block base.
 Read/Write/Auto update.

9.5.1.6 Graphic Accelerator (Bitmap Mode) Registers

Table 9-17 Register map - Graphic accelerator (bitmap mode)

Address ¹	Register Name	R/W/A ²	Description
+0A00	VO_GRAPH_ACC_X_FORMAT	R/W	Video Output Graphic Accelerator X Format Register
+0A04	VO_GRAPH_ACC_X_ALPHA	R/W	Video Output Graphic Accelerator X Alpha Register
+0A08	VO_GRAPH_ACC_X_KEYCOLOR	R/W	Video Output Graphic Accelerator X Key Color Register
+0A0C	VO_GRAPH_ACC_Y_FORMAT	R/W	Video Output Graphic Accelerator Y Format Register
+0A10	VO_GRAPH_ACC_Y_KEYCOLOR	R/W	Video Output Graphic Accelerator Y Key Color Register
+0A14	VO_GRAPH_ACC_CONTROL	R/W	Video Output Graphic Accelerator Control Register
+0A18	VO_GRAPH_ACC_FILL	R/W	Video Output Graphic Accelerator Fill Register
+0A1C	VO_GRAPH_ACC_CONTROL2	R/W	Video Output Graphic Accelerator Control 2 Register
+0A20	VO_GRAPH_ACC_Z_FORMAT	R/W	Video Output Graphic Accelerator Z Format Register
+0A24	VO_GRAPH_ACC_CONTROL3	R/W	Video Output Graphic Accelerator Control 3 Register

^{1.} Address refers to G-Bus byte address relative to the video output block base.

^{2.} Read/Write/Auto update.

9.5.1.7 Gradient Fill Generator Registers

Table 9-18 Register map - Gradient fill generator

Address ¹	Register Name	R/W/A ²	Description
+6A40	VO_GRAPH_ACC_GRD_COLOR0	R/W	Video Output Graphic Accelerator Gradient Fill Generator Color 0 Register
+6A44	VO_GRAPH_ACC_GRD_COLOR1	R/W	Video Output Graphic Accelerator Gradient Fill Generator Color 1 Register
+6A48	VO_GRAPH_ACC_GRD_SCALE_F ACTOR	R/W	Video Output Graphic Accelerator Gra- dient Fill Generator Scale Factor Reg- ister
+6A4C	VO_GRAPH_ACC_GRD_VT_SCAL E_INIT	R/W	Video Output Graphic Accelerator Gra- dient Fill Generator Vertical Scale Reg- ister
+6A50	VO_GRAPH_ACC_GRD_INIT_SQ UARE_DIST	R/W	Video Output Graphic Accelerator Gra- dient Fill Generator Initial Square Dis- tance Register
+6A54	VO_GRAPH_ACC_GRD_EXT_RAD IUS	R/W	Video Output Graphic Accelerator Gra- dient Fill Generator Exterior Radius Register
+6A58	VO_GRAPH_ACC_GRD_INT_RAD IUS	R/W	Video Output Graphic Accelerator Gra- dient Fill Generator Interior Radius Register
+6A5C	VO_GRAPH_ACC_GRD_CENTER	R/W	Video Output Graphic Accelerator Gra- dient Fill Generator Center Register
+6A60	VO_GRAPH_ACC_GRD_CONTROL	R/W	Video Output Graphic Accelerator Gra- dient Fill Generator Control Register

Address refers to G-Bus byte address relative to the video output block base.
 Read/Write/Auto update.

9.5.1.8 Graphic Accelerator (Vectorial Mode) Registers

Table 9-19 Graphic accelerator (vectorial mode) registers

Address ¹	Register Name	R/W/A ²	Description
+0A80	VO_GRAPH_ACC_MODE_CONT ROL	R/W	Video Output Graphic Accelerator Mode Control Register
+0A84	VO_GRAPH_ACC_DRAM_READ _ACCESS	R/W	Video Output Graphic Accelerator DRAM Read Access Register
+0A88	VO_GRAPH_ACC_DRAM_WRIT E_ACCESS	R/W	Video Output Graphic Accelerator DRAM Write Access Register
+0A8C	VO_GRAPH_ACC_X_BOUNDIN G_BOX	R/W	Video Output Graphic Accelerator X Bounding Box Register
+0A80	VO_GRAPH_ACC_Y_BOUNDIN G_BOX	R/W	Video Output Graphic Accelerator Y Bounding Box Register
+0A84	VO_GRAPH_ACC_SCALING_AN D_CONTOURS	R/W	Video Output Graphic Accelerator Scaling and Contours Register

Table 9-19 Graphic accelerator (vectorial mode) registers (Continued)

Address ¹	Register Name	R/W/A ²	Description
+0A88	VO_GRAPH_ACC_MATRIX_COE FFS	R/W	Video Output Graphic Accelerator Matrix Coefficients Register
+0A9C	VO_GRAPH_ACC_MATRIX_COE FFS	R/W	Video Output Graphic Accelerator Matrix Coefficients Register
+0AA0	VO_GRAPH_ACC_MATRIX_COE FFS	R/W	Video Output Graphic Accelerator Matrix Coefficients Register

^{1.} Address refers to G-Bus byte address relative to the video output block base.

9.5.1.9 Display Routing Register

Table 9-20 Display routing register

Address ¹	Register Name	R/W/A ²	Description
+1200	VO_ROUTING_CTRL	R/W	Video Output Routing Control Register

^{1.} Address refers to G-Bus byte address relative to the video output block base.

9.5.1.10 Color Bars Generator Registers

Table 9-21 Color bars generator registers

Address ¹	Register Name	R/W/A ²	Description
+0D00	VO_COLOR_BARS_CTRL	R/W	Video Output Color Bars Control Register
+0D04	VO_COLOR_BARS_SIZE	R/W	Video Output Color Bars Size Register

^{1.} Address refers to G-Bus byte address relative to the video output block base.

9.5.1.11 HD to SD Scaler Registers

Table 9-22 Color bars generator registers

Address ¹	Register Name	R/W	Description
+7300	VO_HDSD_CONFIG	R/W	Video Output HD to SD Configuration Register
+7304	VO_HDSD_XSCALE	R/W	Video Output HD to SD X-scale Register
+7308	VO_HDSD_YSCALE	R/W	Video Output HD to SD Y-scale Register
+730C	VO_HDSD_DUMP	R/W	Video Output HD to SD Dump Register

^{1.} Address refers to G-Bus byte address relative to the video output block base.

^{2.} Read/Write/Auto update.

^{2.} Read/Write/Auto update.

^{2.} Read/Write/Auto update.

9.5.2 Video Input Registers

Table 9-23 Register map - Video input

Address ¹	Register Name	R/W/A ²	Description
+6B00	VO_VID_IN_FORMAT	R/W	VO Video Input Format Register
+6B04	VO_VID_IN_DATA_SIZE	R/W	VO Video Input Data Size Register
+6B08	VO_VID_IN_DATA_XOFFSET	R/W	VO Video Input Data X-offset Register
+6B0C	VO_VID_IN_DATA_YOFFSET	R/W	VO Video Input Data Y-offset Register
+6B10	VO_VID_IN_HZ_SYNC	R/W	VO Video Input Horizontal Sync Register
+6B14	VO_VID_IN_VT_SYNC	R/W	VO Video Input Vertical Sync Register
+6B18	VO_VID_IN_SYNC_COORD	R/W	VO Video Input Sync Coordinates Register
+6B1C	VO_VID_IN_TOP_VBI	R/W	VO Video Input Top VBI Register
+6B20	VO_VID_IN_BOT_VBI	R/W	VO Video Input Bottom VBI Register
+6B24	VO_VID_IN_COUNTERS	R	VO Video Input Counters Register
+6B28	VO_VID_IN_VBI_SIZE	R/W	VO Video Input VBI Size Register
+6B2C	VO_VID_IN_VBI_VSM	R	VO Video Input VBI VSM Register
+6B30	VO_VID_IN_VBI_VOFFSET	R/W	VO Video Input VBI V-offset Register
+6B34	VO_VID_IN_FORMAT2	R/W	VO Video Input Format 2 Register
+6B38	VO_VID_IN_COUNTERS2	R	VO Video Input Counters 2 Register
+6B50	VO_VID_IN_WINDOW	R	VO Video Input Window Register

Address refers to G-Bus byte address relative to the video output block base.
 Read/Write/Auto update.

9.5.3 Video Output Registers

9.5.3.1 Digital Output Registers

Table 9-24 Digital output registers

Address ¹	Register Name	R/W/A ²	Description
+0E00	VO_DIGIT_OUT_CONV0	R/W	VO Digital Output Conversion 0 Register
+0E04	VO_DIGIT_OUT_CONV1	R/W	VO Digital Output Conversion 1 Register
+0E08	VO_DIGIT_OUT_CONV2	R/W	VO Digital Output Conversion 2 Register
+0E0C	VO_DIGIT_OUT_CONV3	R/W	VO Digital Output Conversion 3 Register
+0E10	VO_DIGIT_OUT_CONV4	R/W	VO Digital Output Conversion 4 Register

SMP8654-DS-A-10 SMP8654 Datasheet

Table 9-24 Digital output registers (Continued)

Address ¹	Register Name	R/W/A ²	Description
+0E14	VO_DIGIT_OUT_CONV5	R/W	VO Digital Output Conversion 5 Register
+0E20	VO_DIGIT_OUT_FORMAT	R/W	VO Digital Output Format Register
+0E24	VO_DIGIT_OUT_XOFFSET	R/W	VO Digital Output X-offset Register
+0E28	VO_DIGIT_OUT_YOFFSET	R/W	VO Digital Output Y-offset Register
+0E2C	VO_DIGIT_OUT_HZ_SYNC	R/W	VO Digital Output Horizontal Sync Register
+0E30	VO_DIGIT_OUT_VT_SYNC	R/W	VO Digital Output Vertical Sync Register
+0E34	VO_DIGIT_OUT_VSYNC_COORD	R/W	VO Digital Output Vsync Coordinates Register
+0E3C	VO_DIGIT_OUT_COLOR_DEPTH	R/W	VO Digital Output Color Depth Register

Address refers to G-Bus byte address relative to the video output block base.
 Read/Write/Auto update.

9.5.3.2 Main Analog Output Registers

Table 9-25 Register map - Main analog output

Address ¹		Register Name	R/W/A ²	Description
+7000	+7100	VO_MAIN_ANALOG_CONV0	R/W	VO Main Analog Output Conversion 0 Register
+7004	+7104	VO_MAIN_ANALOG_CONV1	R/W	VO Main Analog Output Conversion 1 Register
+7008	+7108	VO_MAIN_ANALOG_CONV2	R/W	VO Main Analog Output Conversion 2 Register
+700C	+710C	VO_MAIN_ANALOG_CONV3	R/W	VO Main Analog Output Conversion 3 Register
+7000	+7100	VO_MAIN_ANALOG_CONV4	R/W	VO Main Analog Output Conversion 4 Register
+7004	+7104	VO_MAIN_ANALOG_CONV5	R/W	VO Main Analog Output Conversion 5 Register
+7008	+7108	VO_MAIN_ANALOG_XOFFSE T_FIELD	R/W	VO Main Analog Output X-offset Field Register
+701C	+711C	VO_MAIN_ANALOG_YOFFSE T	R/W	VO Main Analog Output Y-Offset Register
+7038	+7138	VO_ANALOG_OUT_SCPHASE _INIT	R/W	VO Main Analog Output Subcarrier Phase Initialization Register
+7040	+7140	VO_MAIN_ANALOG_TV_CON FIG	R/W	VO Main Analog Output TV Configuration Register
+7044	+7144	VO_MAIN_ANALOG_TV_SIZE	R/W	VO Main Analog Output TV Size Register

Table 9-25 Register map - Main analog output (Continued)

Address ¹		Register Name	R/W/A ²	Description
+7048	+7148	VO_MAIN_ANALOG_TV_HSY NC	R/W	VO Main Analog Output TV HSYNC Register
+704C	+714C	VO_MAIN_ANALOG_TV_VSY NC_O_0	R/W	VO Main Analog Output TV VSYNC Odd 0 Register
+7050	+7150	VO_MAIN_ANALOG_TV_VSY NC_O_1	R/W	VO Main Analog Output TV VSYNC Odd 1 Register
+7054	+7154	VO_MAIN_ANALOG_TV_VSY NC_E_0	R/W	VO Main Analog Output TV VSYNC Even 0 Register
+7058	+7158	VO_MAIN_ANALOG_TV_VSY NC_E_1	R/W	VO Main Analog Output TV VSYNC Even 1 Register
+705C	+715C	VO_MAIN_ANALOG_TV_HD_ HSYNC_INFO	R/W	VO Main Analog Output TV HD HSYNC Register
+7060	+7160	VO_MAIN_ANALOG_TV_HD_ VSYNC	R/W	VO Main Analog Output TV HD VSYNC Register
+7064	+7164	VO_MAIN_ANALOG_TV_CGM S	R/W	VO Main Analog Output TV CGMS Register
+7068	+7168	VO_MAIN_ANALOG_TV_AGC	R/W	VO Main Analog Output TV AGC Register
+706C	+716C	VO_MAIN_ANALOG_TV_TES T_CONFIG	R/W	VO Main Analog Output TV Test Configuration Register
+7070	+7170	VO_MAIN_ANALOG_TV_TELE TEXT_CONFIG	R/W	VO Main Analog Output TV Teletext Configuration Register
+7074	+7174	VO_MAIN_ANALOG_TV_CON FIG2	R/W	VO Main Analog Output TV Configuration 2 Register
+7078	+7178	VO_MAIN_ANALOG_TV_CAV _MINMAX	R/W	VO Main Analog Output TV CAV Minimum Maximum Register
+707C	+717C	VO_MAIN_ANALOG_TV_TIMI NG_SYNC	R/W	VO Main Analog Output TV Timing Sync Register
+7080	+7180	VO_MAIN_ANALOG_TV_MV_ N_0_22	R/W	VO Main Analog Output TV Test Configuration Register
+7084	+7184	VO_MAIN_ANALOG_TV_MV_ N_1_2_3_4	R/W	VO Main Analog Output TV Macro- vision N-1-2-3-4 Register
+7088	+7188	VO_MAIN_ANALOG_TV_MV_ N_5_6_7_8	R/W	VO Main Analog Output TV Macro- vision N-5-6-7-8 Register
+708C	+718C	VO_MAIN_ANALOG_TV_MV_ N_9_10_11	R/W	VO Main Analog Output TV Macro- vision N-9-10-11 Register
+7090	+7190	VO_MAIN_ANALOG_TV_MV_ N_12_13_14	R/W	VO Main Analog Output TV Macro- vision N-12-13-14 Register
+7094	+7194	VO_MAIN_ANALOG_TV_MV_ N_15_16_17_18	R/W	VO Main Analog Output TV Macro- vision N-11-16-17-18 Register
+7098	+7198	VO_MAIN_ANALOG_TV_MV_ N_19_20_21	R/W	VO Main Analog Output TV Macro- vision N-19-20-21 Register

SMP8654-DS-A-10 SMP8654 Datasheet

Table 9-25 Register map - Main analog output (Continued)

Address ¹		Register Name	R/W/A ²	Description
+70C0	+71C0	VO_MAIN_ANALOG_OUT_VB I_EIA805B_CTRL	R/W	VO Main Analog Output VBI EIA805B Control Register
+70C4	+71C4	VO_MAIN_ANALOG_OUT_VB I_EIA805B_DATA0	R/W	VO Main Analog Output VBI EIA805B Data 0 Register
+70C8	+71C8	VO_MAIN_ANALOG_OUT_VB I_EIA805B_DATA1	R/W	VO Main Analog Output VBI EIA805B Data 1 Register
+70CC	+71CC	VO_MAIN_ANALOG_OUT_VB I_EIA805B_DATA2	R/W	VO Main Analog Output VBI EIA805B Data 2 Register
+70D0	+71D0	VO_MAIN_ANALOG_OUT_VB I_EIA805B_DATA3	R/W	VO Main Analog Output VBI EIA805B Data 3 Register

Address refers to G-Bus byte address relative to the video output block base.
 Read/Write/Auto update.

9.6 Pin Description

9.6.1 Video Input Pins

9.6.1.1 Digital Video Input Pins

Table 9-26 Digital video input pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
VI1_CLK	L1	I	Video input port clock signal. Active edge programmable.	J
VI1_HS	J1	В	Video input port Hsync input or output	В
VI1_P0	L3	I	Video input port pixel bus bit 0	J
VI1_P1	L2	I	Video input port pixel bus bit 1	J
VI1_P2	K6	I	Video input port pixel bus bit 2	J
VI1_P3	K5	I	Video input port pixel bus bit 3	J
VI1_P4	K4	I	Video input port pixel bus bit 4	J
VI1_P5	К3	I	Video input port pixel bus bit 5	J
VI1_P6	K2	I	Video input port pixel bus bit 6	J
VI1_P7	K1	I	Video input port pixel bus bit 7	J
VI1_VLD	J2	I	Video input port data valid	J
VI1_VS	J3	В	Video input port Vsync input or output	В

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

9.6.2 Video Output Pins

9.6.2.1 Analog Video Output Pins - Composite and S-video

Table 9-27 Composite and S-video pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
VO1_AVDD	U5	I	Video output analog block 3.3V power supply connection	L
VO1_AVDD_U	V3	I	Pb-channel DAC power supply. Connect to a 3.3V nominal supply.	М
VO1_AVDD_V	U3	I	Pr-channel DAC power supply. Connect to a 3.3V nominal supply.	М
VO1_AVDD_Y	Т3	I	Y-channel DAC power supply. Connect to a 3.3V nominal supply.	М
VO1_AVSS	Т5	I	Video output analog block ground connection	М
VO1_AVSS_U	V2	I	Pb-channel DAC ground connection	М
VO1_AVSS_V	U2	I	Pr-channel DAC ground connection	М
VO1_AVSS_Y	T2	I	Y-channel DAC ground connection	М
VO1_RSET	T4	0	DAC current set pin. A resistor (140 ohm, 1% tolerance) connected between this pin and the ground sets the full-scale DAC current.	М
VO1_U	V1	0	Analog video output. Outputs Pb signal in the component YPbPr mode, the composite signal in S-video mode, or B signal in component RGB mode. Current output, intended to drive 75 ohm doubly-terminated load.	М
VO1_V	U1	0	Analog video output. Outputs Pr signal in component YPbPr mode, C (chrominance) signal in S-video mode, or R signal in component RGB mode. Current output, intended to drive 75 ohm doubly- terminated load.	М
VO1_VREF	U4	В	Video DAC current source reference voltage (1.25V nominal)	М
VO1_Y	T1	0	Analog video output. Output Y (luminance) signals in the component YPbPr or S-video mode, or G signal in the component RGB mode. Current output, intended to drive 75 ohm doubly-terminated load.	М

The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

9.6.2.2 Analog Video Output Pins - Component Analog Output

Table 9-28 Component analog output pin descriptions

Pin Name	Pin Id	Direction	Description
VO2_AVDD	Y5	I	Video output analog block 3.3V power supply connection.
VO2_AVDD_U	AA3	I	Pb-channel DAC power supply. Connect to a 3.3V nominal supply.
VO2_AVDD_V	Y3	I	Pr-channel DAC power supply. Connect to a 3.3V nominal supply.
VO2_AVDD_Y	W3	I	Y-channel DAC power supply. Connect to a 3.3V nominal supply.
VO2_AVSS	AA5	I	Video output analog block ground connection
VO2_AVSS_U	AA2	I	Pb-channel DAC ground connection
VO2_AVSS_V	Y2	I	Pr-channel DAC ground connection
VO2_AVSS_Y	W2	I	Y-channel DAC ground connection
VO2_RSET	AA4	0	DAC current set pin. A resistor (140 ohm, 1% tolerance) connected between this pin and the ground sets the full-scale DAC current.
VO2_U	AA1	0	Analog video output. Outputs Pb signal in component YPbPr mode, or B signal in component the RGB mode. Current output, intended to drive 75 ohm doubly-terminated load.
V02_V	Y1	0	Analog video output. Outputs Pr signal in component YPbPr mode, or R signal in the component RGB mode. Current output, intended to drive 75 ohm doubly-terminated load.
VO2_VREF	Y4	В	Video DAC current source reference voltage (1.25V nominal)
VO2_Y	W1	0	Analog video output. Outputs Y (luminance) signal in component YPbPr mode, or G signal in the component RGB mode. Current output, intended to drive 75 ohm doubly-terminated load.

9.6.2.3 HDMI Pins

Table 9-29 HDMI pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
HDMITX_SCL	L4	В	HDMI DDC clock	С
HDMITX_SDA	L5	В	HDMI DDC data (open-drain)	С
HDMITX_HPD	L6	В	HDMI hot plug detect input	I
HDMITX_TX0_P	N1	0	Channel 0 TMDS LV differential signal (positive polarity)	
HDMITX_TX0_N	N2	0	Channel 0 TMDS LV differential signal (negative polarity)	
HDMITX_TX1_P	P1	0	Channel 1 TMDS LV differential signal (positive polarity)	
HDMITX_TX1_N	P2	0	Channel 1 TMDS LV differential signal (negative polarity)	
HDMITX_TX2_P	R1	0	Channel 2 TMDS LV differential signal (positive polarity)	
HDMITX_TX2_N	R2	0	Channel 2 TMDS LV differential signal (negative polarity)	
HDMITX_TXC_P	M1	0	Pixel clock LV differential signal (positive polarity)	
HDMITX_TXC_N	M2	0	Pixel clock LV differential signal (negative polarity)	
HDMITX_AMON	N5	В	Tie to VSS through 1000pF capacitor	
HDMITX_REXT	P5	0	External resistor to 3.3V; 470 ohms / 1%	
HDMITX_AVDD_1V0_0	N7	I	HDMI PHY analog power supply (1.0V nominal)	
HDMITX_AVDD_1V0_1	P7	I	HDMI PHY analog power supply (1.0V nominal)	
HDMITX_AVSS_0	M6	I	HDMI PHY analog ground connection (zero volt reference)	
HDMITX_VDD_1V0_0	N6	I	HDMI PHY digital power supply (1.0V nominal)	
HDMITX_VDD_1V0_1	P6	I	HDMI PHY digital power supply (1.0V nominal)	
HDMITX_VDD_PLLA_3 V3	M4	I	HDMI PHY PLL0 power supply (3.3V nominal)	
HDMITX_VDD_PLLB_3 V3	R4	I	HDMI PHY PLL1 power supply (3.3V nominal)	
HDMITX_VDD_TX0_3V	N4	I	HDMI PHY I/O power supply (3.3V nominal)	

Table 9-29 HDMI pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description	Driver Type ¹
HDMITX_VDD_TX1_3V	P4	I	HDMI PHY I/O power supply (3.3V nominal)	
HDMITX_VSS_1	R6	I	HDMI PHY digital ground connection (zero volt reference)	
HDMITX_VSS_PLLA	M5	I	HDMI PHY PLL0 ground connection (zero volt reference)	
HDMITX_VSS_PLLB	R5	I	HDMI PHY PLL1 ground connection (zero volt reference)	
HDMITX_VSS_TX0	N3	I	HDMI PHY channel 0 ground connection (zero volt reference)	
HDMITX_VSS_TX1	Р3	I	HDMI PHY channel 1 ground con- nection (zero volt reference)	
HDMITX_VSS_TX2	R3	I	HDMI PHY channel 2 ground con- nection (zero volt reference)	
HDMITX_VSS_TXC	M3	I	HDMI PHY channel 3 ground connection (zero volt reference)	

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

9.7 Electrical Characteristics

9.7.1 HDMI DC Characteristics

Table 9-30 HDMI DC electrical characteristics

Parameter	Description	Units	Minimum	Typical	Maximum
HDMITX_VDD_PLLA_3V3 HDMITX_VDD_PLLB_3V3 HDMITX_VDD_TX0_3V3 HDMITX_VDD_TX1_3V3	3.3V Supply Voltage	V	3.15	3.3	3.45
HDMITX_AVDD_1V0_0 HDMITX_AVDD_1V0_1 HDMITX_VDD_1V0_0 HDMITX_VDD_1V0_1	1.0V Supply Voltage	V	0.95	1.0	1.05
R _{EXT}	External resistor	ohms	465	470	475
V _{CNCT}	MSENS detect volt- age for monitor con- nection	V	2		
V _{DISC}	MSENS detect volt- age for monitor dis- connection	V			0.4

Table 9-30 HDMI DC electrical characteristics

Parameter	Description	Units	Minimum	Typical	Maximum
V _{OH}	Single-ended high- level output voltage (Notes 1, 2) ¹	V	AV _{CC} - 0.01	AV _{CC}	AV _{CC} + 0.01
V _{OL}	Single-ended low- level output voltage (Notes 1, 2) ²	V	AV _{CC} - 0.6		AV _{CC} - 0.4
V _{SWING}	Single-ended output voltage swing	mV	400		600

^{1.} AV_{CC} is termination supply voltage, 3.3V +/- 5%. 2. R_{LOAD} = 50 ohms, +/- 1%.

9.7.2 Digital Video Input AC Characteristics

Table 9-31 Digital video input AC electrical characteristics

Parameter	Conditions	Units	Minimum	Typical	Maximum
T _{VICLK}	-	ns	6.7		
F _{VICLK}	-	MHz			148.5
T _{VICLKL}	-	T _{VICLK}	0.45		0.55
T _{VICLKH}	-	T _{VICLK}	0.45		0.55
T _{SU}	-	NS	1.0		
T _H	-	ns	0		

9.7.3 HDMI AC Characteristics

Table 9-32 HDMI AC electrical characteristics

Parameter	Description	Units	Minimum	Typical	Maximum
T _{TMDS_CK}	TMDS Clock Period	ns	4.0		
T _{BIT}	Bit period	ps	400		
T _R /T _F	Rise/fall time (20% - 80%)	ps			
T _{SKEW1}	Intra-pair skew	%T _{BIT}			TBD
T _{SKEW2}	Inter-pair skew	% T _{TMDS_CK}			TBD
T _{JITTER}	TMDS clock jitter	%T _{BIT}			25

9.7.4 Analog Video Output DC Characteristics

Table 9-33 Analog video output electrical characteristics

Symbol	Description	Minimum	Typical	Maximum	Units
	DAC resolution		12		bits
RSET	Current set resistor (1% tolerance)		140		ohms
IFS	Full scale output current	Full scale output current 35		37	mA
VFS	Full scale output voltage ($R_{LOAD} = 37.5$)		1.35		V
NL _{DIFF}	Differential nonlinearity			2	LSB
NL _{INT}	Integral nonlinearity			3	LSB
	Offset error			1	LSB
	Gain error			5	%FS
ZOUT	Output impedance		1800		ohms
FPIXEL	Update rate			148.5	MHz

9.8 Timing Diagrams

9.8.1 Digital Video Timing

9.8.1.1 Digital Video Input timing

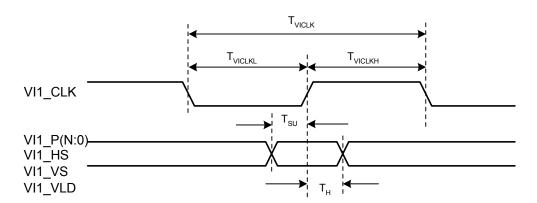


Figure 9-22 Digital video input timing diagram

Ts = 1 ns (minimum), Th = 0 ns (minimum).

10 Audio Processing Subsystem

10.1 Block Diagram of Audio Processing Subsystem

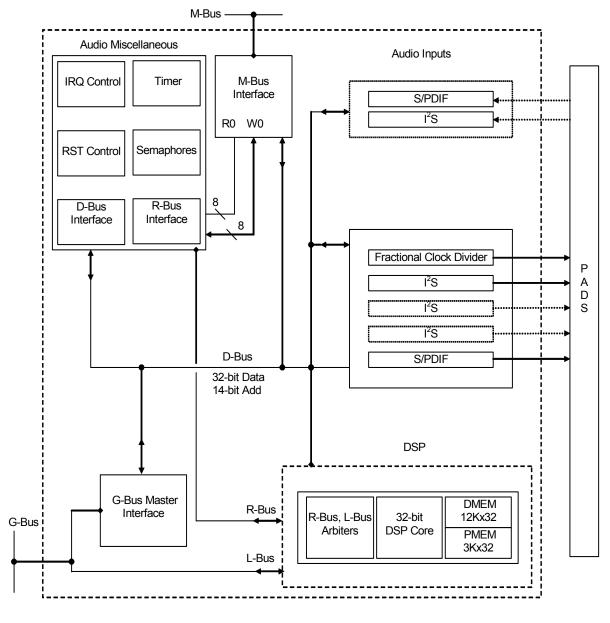


Figure 10-1 Audio processing subsystem block diagram

10.2 Introduction

The SMP8654 contains an integrated audio subsystem based on a custom-designed 32-bit digital signal processor (DSP), operating at up to 333MHz. All audio decoding and processing algorithms are implemented on this proprietary DSP. This firmware-based approach gives great flexibility for accommodating future audio standards or specialized audio requirements.

The DSP is capable of decoding the following audio formats. In most cases, in order to enable a specific audio codec, the user must be a codec licensee. A list of currently available audio codecs is available from Sigma Designs.

- Dolby Digital 5.1, Dolby Digital Plus 7.1, Dolby TrueHD 7.1, Dolby Pro Logic IIx
 5.1 (supports movie, music, matrix, Dolby Pro Logic emulation, Dolby Digital EX, virtual compatible, and panorama modes)
- MPEG-1 Layers I, II and III (MP3) 2.0
- MPEG-4 AAC-LC 5.1
- MPEG-4 HE-AAC 5.1
- MPEG-4 BSAC 2.0
- WMA9 2.0, WMA9 Pro 5.1
- ATRAC3 2.0
- G.711 (A-law and μ-law), G.729

The audio subsystem can also support the audio requirements for MSTV IPTV, AV, DVD, SVCD, VCD, ARIB, ATSC, DMB, DVB and OpenCable applications.

10.3 Features

- Proprietary DSP-based audio processor
- 5.1-ch I²S digital audio outputs
- S/PDIF digital audio outputs
 - IEC 60958
 - IEC 61937-1
 - IEC 61937-2
 - IEC 61937-3 (Dolby Digital)
 - IEC 61937-4 (MPEG)
 - IEC 61937-6 (MPEG-2 AAC format)

297

- Stereo I²S or S/PDIF digital audio input
- Audio over HDMI

10.4 Functional Description

The audio block of the SMP8654 contains a proprietary 32-bit DSP, with the following additional hardware functions:

- A DMA logic to transfer data between the DSP program/data memories and the DRAM.
- A programmable timer, reset/irq control registers and semaphores.
- G-Bus interface: Allows the DSP to become G-Bus masters and access the G-Bus resources.
- Audio input: Receives a two channel serial audio stream (I²S or S/PDIF format). The audio data is shifted into registers that can be read by the DSP.
- Audio output: Sends three 2-channel serial audio stream (I²S or S/PDIF format). The audio data is shifted from registers that are written by the DSP.
- Interfaces to internal buses

10.4.1 Audio Processing Capabilities

The audio unit provides 3 5.1-ch I²S outputs, one S/PDIF outputs and one stereo I²S or S/PDIF audio input.

10.4.1.1 Audio Codec Support

Table 10-1 MPEG audio decode support

Codec	MPEG-1 Layer I, II	MPEG-1 Layer III	MPEG-4 AAC-LC	MPEG-4 HE-AAC (aacPlus)	MPEG-4 BSAC
Maximum bit rate	I: 448kbps II:384kbps	320kbps	384kbps	384kbps	64kbps
Maximum channels	2.0 (48kHz)	2.0 (48kHz)	5.1 (48kHz) 2.0 (96kHz)	5.1 (48kHz)	2.0 (48kHz)

Table 10-1 MPEG audio decode support (Continued)

Codec	MPEG-1 Layer I, II	MPEG-1 Layer III	MPEG-4 AAC-LC	MPEG-4 HE-AAC (aacPlus)	MPEG-4 BSAC
Supported sampling	32	16	8	8	8
frequencies (kHz)	44.1	22.05	11.025	11.025	11.025
	48	24	12	12	12
		32	16	16	16
		44.1	22.05	22.05	22.05
		48	24	24	24
			32	32	32
			44.1	44.1	44.1
			48	48	48
			64 (2.0)		
			88.2 (2.0)		
			96 (2.0)		
Downmix support	-	-	2.0	2.0	-
Percentage of one	11%	14%	24% (5.1)	32%	TBD
audio DSP (333MHz) used			6% (2.0)		
MIPS used on host CPU	-	-	-	-	TBD

Table 10-2 Dolby audio decode support

Codec	Dolby Digital	Dolby Digital Plus	Dolby TrueHD	Dolby Pro Logic IIx
Maximum bit rate	640kbps	4.736Mbps	18Mbps	
Maximum chan- nels	5.1 (48kHz)	5.1 (48kHz)	5.1 (96kHz) 2.0 (192kHz)	5.1 2.0
Supported sam- pling frequencies (kHz)	32 44.1 48	32 44.1 48	48 96 192 (2.0)	32 44.1 48
Downmix support	2.0	5.1 2.0	5.1 2.0	2.0
Percentage of one audio DSP (333MHz) used	30%	48% (7.1) 30% (5.1) 21% (2.0)	59%	
MIPS used on host CPU	-	-	-	-

Table 10-3 LPCM, WMA9 and ATRAC3 audio decode support

Codec	LPCM	WMA9	WMA9 Pro	ATRAC3
Maximum bit rate	36.864Mbps	192kbps (CBR)	768kbps (CBR)	768kbps
		384kbps (VBR)	768kbps (VBR)	
Maximum channels	7.1 (192kHz)	2.0 (96kHz)	5.1 (48kHz)	2.0 (48kHz)
Supported sampling	32	8	32	44.1
frequencies (kHz)	44.1	11.025	44.1	48
	48	12	48	
	88.2	16		
	96	22.05		
	192	24		
		32		
		44.1		
		48		
		96		
Downmix support	5.1	-	2.0	-
	2.0			
Percentage of one audio DSP (333MHz) used		18%	48%	TBD
MIPS used on host CPU	-	-	-	TBD

10.4.1.2 Additional Processing Capabilities

Additional capabilities include:

- Downloading of new firmware
- Mixing I²S or S/PDIF input with audio output
- Mixing and panning of 8 streams of LPCM 1.0 or 6 streams of LPCM 1.0 + 1 stream of LPCM 2.0
- Upsampling (44.1 to 48 kHz, 2x and 4x)
- De-emphasis (48 and 44.1 kHz audio only)
- Soft fade-in and fade-out
- Audio delay adjust, channel delay adjust, channel level adjust, test tone generation.

10.4.2 Audio DSP

The SMP8654 audio subsystem contains a proprietary DSP. The DSP block is built around a 32-bit DSP core with the following features:

- 333MHz cycle time (system clock). All the instructions execute in one cycle, except for the branching instructions (bra, call, trap, ret etc.), which execute in 1 or 2 cycles and load store instructions with wait states.
- Separate program and data spaces (respectively accessed through the system bus and the D-Bus). The system bus is used for all the instruction fetches and the D-Bus is used through the load/store instructions. Data space: 24kword (48KB); Program space: 6kword (12KB).
- The initial program or data loads before the processor is started. Once the processor is running, it fetches additional program/data through a DMA mechanism from external memory to locations in program/data space.
- The stack is located in the data memory
- 16/32-bit instruction set. Frequently used 32-bit instructions have 16-bit equivalent instructions that can be used to minimize the code space. All the 16-bit instructions have 32-bit equivalent instructions. The instruction set consists of three groups:
 - Data processing: ALU and DSP instructions.
 - Memory: Data memory load/stores.
 - Control: Flow control (sbra, bra, call, trap, ret, rti), push/pop, sp and stat operations.

10.4.3 Audio Miscellaneous

The audio miscellaneous block consists of an interrupt controller, reset controller, D-Bus and R-Bus interfaces, a timer and semaphores.

During a DMA transfer from the DRAM to the RISC Program/Data space, bytes received from the DRAM are assembled into dwords. The resulting dwords are written to the R-Bus. For each R-Bus transaction, the register MISC_DR_ADD is incremented by 1 and the register MISC_DR_CNT is decremented by 1 until it reaches 0.

The register MISC_DR_ADD specifies the R-Bus address used during the DMA from external the DRAM to the RISC program/data space. When the bit 14=1, the data space is selected. When the bit 14=0, the program space is selected.

The register MISC_DR_CNT gives the number of the R-Bus transactions (the DMA transfer size). Writing a non-zero value to this register starts the DMA transfer, assuming that the M-Bus interface has already been programmed.

The registers MISC_DW_MODE, MISC_DW_ADD and MISC_DW_CNT control the DMAs from the RISC program/data spaces to DRAM. Their operation is identical to the read transfers.

The register MISC_TIMER_DIV needs to be programmed with the desired timer period. The resulting timer frequency is given by: $F = FSYSCLK / (4 \times MISC \times TIMER \times DIV)$.

For example, if FSYSCLK = 148.5MHz and MISC_TIMER_DIV = 7425, then the timer will generate an interrupt at 5KHz.

When the register MISC_TIMER_DIV is written to, the same value is also written into the register MISC_TIMER_CNT. The value 0, disables the timer operation.

The register MISC_TIMER_CNT is the timer count down register. When this register reaches 1, it is reloaded with the register MISC_TIMER_DIV and a timer interrupt is generated. Writing to the register MISC_TIMER_CNT does not affect the counter, but clears the timer interrupt. This is typically done when entering the timer interrupt service routine.

10.4.4 Audio Input Interface

The audio input interface allows the DSP to receive and process audio from an external source. The audio input may be received as either stereo I^2S (3-wire synchronous) or S/PDIF (1-wire self-clocked) audio data. Either the I^2S or the S/PDIF input may be used, but not both simultaneously. The I^2S input operates only as a slave; it is not capable of operating as a master.

Once the input mode is set (once at the beginning of each session), the input interface will issue an interrupt to the DSP as each new sample is made available. The interrupt service routine reads 2 samples and then writes in the L1 register. The L1 register then causes the interrupt line to become inactive until the next sample set is made available.

In the S/PDIF mode, the maximum input half-bit clock is 12MHz, which represents 6Mb/s (which is a 96KHz 2 channel 24-bits/sample signal, 32 bits are used by SPDIF to code a 24 bits sample).

In the I²S mode, the maximum frequency clock is 50MHz, so it supports 192KHz 2 channel 32-bits/sample signal.

The audio input block contains 11 registers: 2 data registers (one per channel, in which the new audio samples can be read), 1 configuration register which must be programmed at the beginning of a recording session and 1 status registers (one for global information, and one for the S/PDIF channel status bits of the current S/PDIF input, if available). The data registers are left aligned (on 32-bits) and MSB first.

The audio input module is on when the reset input is 1, and tries to decode the audio sample in the adapted input module (I²S or S/PDIF) according to the bit INSEL of the configuration register.

At the beginning of a recording session, the register SI_CONF must be programmed to match the expected input. If it is set to select S/PDIF then no more configuration is needed as the S/PDIF automatically detects the sampling rate. If I²S is selected, then the other I²S configuration must be set properly.

Whatever mode is chosen, when a new frame is available, the IRQ output is set, the RISC can then read the new data in the data registers and write to the SI_L0_DATA register to deactivate the IRQ. In both the modes, the register SI_STATUS contains the value of the IRQ bit as bit 0. In the S/PDIF mode, the bit SPDIF_ON, indicates if a good S/PDIF signal is detected. This bit is set to 0 in the I²S mode.

10.4.5 Audio Output Interface

The audio output interface provides the DSP with the ability to output the decoded samples in the I²S format for connection to external DAC(s), in the S/PDIF format for connection to an external S/PDIF transmitter or optical interface, and in the HDMI format for transmission over HDMI.

The audio output has 8 channels organized as 4 pairs: (L1, R1), (L2, R2), (L3, R3) and (LS, RS). The first 6 channels (3 pairs) drive the 3 I²S and the HDMI output blocks. The 4th pair drives the S/PDIF output block only. The I²S outputs operate only as a master; they cannot operate in a slave mode. The audio data on the audio DSP I²S and S/PDIF outputs may also be output via the HDMI output port.

Table 10-4 Supported audio output combinations

I ² S Outputs	S/PDIF Output	HDMI Output	Supported
LPCM	Bitstream	Bitstream	Yes
LPCM	Bitstream	LPCM	Yes
LPCM	LPCM	Bitstream	No
LPCM	LPCM	LPCM	Yes

The sample rate may be optionally divided by 2 or 4 for both the I²S and S/PDIF outputs. This enables, for example, 192kHz audio over HDMI, 96 kHz audio over I²S and 48kHz audio over S/PDIF.

The configuration register bits for the DSP provide substantial flexibility in defining the audio output characteristics which include:

- Enable/disabling each I²S and S/PDIF channel
- Defining I²S data output alignment
- Defining audio bit clock (ACLK) output polarity
- Defining frame clock (LRCLK) output polarity
- Selecting I²S 16/32-bit mode
- Defining I²S bit order (MSB/LSB first)
- Selecting audio bit clock source

Once the sampling rate, output modes and the miscellaneous configuration registers are set (once at the beginning of a session), the audio output interface will issue an interrupt to the DSP at the sampling rate (32KHz, 44.1KHz, 48KHz, 96KHz or 192KHz) or at a lower rate. The interrupt service routine must write 8 samples into 8 dedicated registers (one per channel) and write 1 in the interrupt register. This causes the interrupt line to become inactive until the next sample set is required.

The audio output block has 2 groups of registers: Data Registers and Configuration registers

Data Registers

There are 8 data registers, one per channel. Typically, the DSP will write the new decoded samples in these registers at a rate equal to the sampling rate (e.g. 44.1KHz, 48KHz etc.). The first 3 pairs (L1R1, L2R2 and L3R3) are used for multi I²S output. The fifth pair (LSRS) is used for S/PDIF.

These 3 outputs (multi I²S, stereo I²S and S/PDIF) can work at the same frequency or at different frequencies (which are multiple of a common frequency with multiplication factor of 1, 2 or 4). The highest frequency is input to the audio and the clock dividing ratio (1, 2 or 4) is programmed for each output in bit [5:0] of the SO_CH_CTRL2 register.

These 8 data registers address space is mapped to FIFOs. FIFO should be enabled if multiple frequencies are needed. Then the 8 data registers transfer the data into FIFOs. There are 8 FIFOs and each channel register is mapped to one FIFO with depth 16.

Table 10-5 Audio output frequencies

Source	Multi I ² S Output	S/PDIF Output	Stereo I ² S Output
48000	48000	48000	48000
96000	96000	48000	96000
	96000	48000	48000
	96000	96000(pcm)	96000
	96000	96000(pcm)	48000
	48000	48000	96000
	48000	48000	48000
	48000	96000(pcm)	96000
	48000	96000(pcm)	48000
192000	192000	48000	192000
	192000	48000	96000
	192000	48000	48000
	192000	96000(pcm)	192000
	192000	96000(pcm)	96000
	192000	96000(pcm)	48000
	96000	48000	192000
	96000	48000	96000
	96000	48000	48000
	96000	96000(pcm)	192000
	96000	96000(pcm)	96000
	96000	96000(pcm)	48000
	48000	48000	192000
	48000	48000	96000
	48000	48000	48000
	48000	96000(pcm)	192000
	48000	96000(pcm)	96000
	48000	96000(pcm)	48000
44100	44100	44100	44100
88200	88200	44100	88200

Table 10-5 Audio output frequencies (Continued)

Source	Multi I ² S Output	S/PDIF Output	Stereo I ² S Output
	88200	44100	44100
	88200	88200(pcm)	88200
	88200	88200(pcm)	44100
	44100	44100	88200
	44100	44100	44100
	44100	88200(pcm)	88200
	44100	88200(pcm)	44100

Interrupt is generated by the slowest working output lrclk; and the audio DSP writes the correct number of samples for each channel. The slowest working channel that generates the interrupt may get only one sample while other channels working at higher speeds may get more samples per interrupt. All FIFO depths can be read by the DSP from SO_FIFO_DEPTH registers (for debugging).

Configuration Registers

These registers are programmed once at the beginning of a decoding session.

The S/PDIF output can be programmed/controlled by the software using the register SO_CH_CTRL. The register SO_AUDIO_CLK_DIV specifies the fractional audio clock divider control bits. The output clock frequency is,

$$FDIV_CLK = FCLK \times M / [2 \times (M+N)]$$

For example,

If FCLK =
$$27MHz$$
, M = 1568 and N = 307 then, FDIV CLK = 44100×256

If FCLK =
$$27MHz$$
, M = 2048 and N = 1327 then, FDIV CLK = 32000×256

Note: To reduce the audio clock jitter, clean dividers located in the system block can be used instead of the fractional clock divider.

10.4.5.1 I²S Output Format

The I^2S interfaces operate in the 32-bit (SFRAMEOUT = SCLKOUT/64) or 16-bit modes (SFRAMEOUT = SCLKOUT/32). For the 16-bit mode, only bits D23 to D8 are output starting with bit 8 (LSB first) or bit 23 (MSB first).

To control external audio DACs that do not use I^2C for the control interface, GPIO pins may be used.

Table 10-6 I²S data alignment in the 32-bit mode

Slot	LSB First Align = 0	LSB First Align=1	LSB First Align=30	MSB First Align=0	MSB First Align=1	MSB First Align=30
0	0	0	D22	D23	0	0
1	0	0	D23	D22	D23	0
2	0	0	0	D21	D22	0
3	0	0	0	D20	D21	0
4	0	0	0	D19	D20	0
5	0	0	0	D18	D19	0
6	0	0	0	D17	D18	0
7	0	D0	0	D16	D17	0
8	D0	D1	0	D15	D16	0
9	D1	D2	0	D14	D15	0
10	D2	D3	0	D13	D14	0
11	D3	D4	0	D12	D13	0
12	D4	D5	0	D11	D12	0
13	D5	D6	0	D10	D11	0
14	D6	D7	0	D9	D10	0
15	D7	D8	0	D8	D9	0
16	D8	D9	0	D7	D8	0
17	D9	D10	0	D6	D7	0
18	D10	D11	0	D5	D6	0
19	D11	D12	0	D4	D5	0
20	D12	D13	0	D3	D4	0
21	D13	D14	0	D2	D3	0
22	D14	D15	0	D1	D2	0

Table 10-6 12S data alignment in the 32-bit mode (Continued)

Slot	LSB First Align = 0	LSB First Align=1	LSB First Align=30	MSB First Align=0	MSB First Align=1	MSB First Align=30
23	D15	D16	0	D0	D1	0
24	D16	D17	0	0	D0	0
25	D17	D18	0	0	0	0
26	D18	D19	0	0	0	0
27	D19	D20	0	0	0	0
28	D20	D21	0	0	0	0
29	D21	D22	0	0	0	0
30	D22	D23	0	0	0	D23
31	D23	0	0	0	0	D22

Note: The frequency of LRCLK is identical in both the 16-bit and the 32-bit modes, and is equal to sclkin/256 (or 384). However, the frequency of the ACLK (bit rate) is equal to sclkin/4 (or 6) in the 32-bit mode and equal to sclkin/8 (or 12) in the 16-bit mode. Also, if align = 4 and MSB firs t= 0, then the I²S data is aligned with the S/PDIF data. In the 16-bit mode align = 1 (should be) for the I²S compatible mode.

10.4.5.2 S/PDIF (IEC 60958) Output Format

The S/PDIF outputs consists of a series of data blocks. Each block consists of 192 frames and each frame consists of two sub-frames corresponding to the left and right channels.

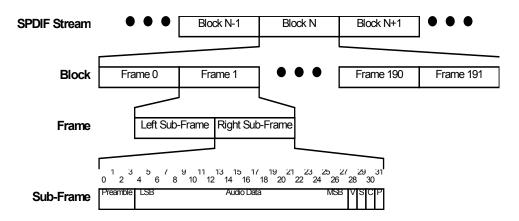


Figure 10-2 S/PDIF data format

Data bits and preamble coding

Each subframe consists of 32 bits, coded as a sequence of 64 half-bits. Except for the preamble, data bits are coded as follows:

- 0 is coded '11' (if preceding half-bit = 0) or '00' (if preceding half-bit = 1)
- 1 is coded '10' (if preceding half-bit = 0) or '01' (if preceding half-bit = 1)

There are three types of preambles:

- B (left sub-frame of the first frame of a block)
- M (left sub-frame of any frame except the first frame of a block)
- W (right sub-frame of any frame)

The three preamble types are coded as follows:

- Preamble B is coded '11101000' (if preceding half-bit = 0) or '00010111' (if preceding half-bit = 1)
- Preamble M is coded '11100010' (if preceding half-bit = 0) or '00011101' (if preceding half-bit = 1)
- Preamble W is coded '11100100' (if preceding half-bit = 0) or '00011011' (if preceding half-bit = 1)

Audio Data

The audio data field carries the 24-bit value written in the SO_LS_DATA/SO_RS_DATA registers. The LSB is transmitted first.

- Bit 0 of the register S0_LS_DATA (or the register S0_RS_DATA) appears at the bit position 4 within the S/PDIF sub-frame
- Bit 23 of the register S0_LS_DATA (or the register S0_RS_DATA) appears at the bit position 27 within the S/PDIF sub-frame

When 16-bit or 20-bit PCM samples are transmitted, they are left aligned on bit 23 of the registers SO_LS_DATA / SO_RS_DATA.

Validity Bit (Subframe Bit 28)

This bit (bit 28 of a sub-frame) is normally set to low to indicate valid data. The S/PDIF interface sets this bit when a data underflow occurs.

Subcode Data (Subframe Bit 29)

This bit (bit 29 of a sub-frame) is controlled by bit 19 of the register SO_CH_STRL, (default value= 0). Subcode data is used to convey user-specific data.

Channel Status Information (Subframe Bit 30)

This bit is used to carry side information on the S/PDIF stream, including SCMS information. The S/PDIF specification requires the channel status bit to be equal for both the subframes of a frame. Consequently, 192 bits of the channel status information are transmitted during a S/PDIF data block. A register contains the channel status information transmitted during the first 32 frames of a block, LSB first. During the remaining 160 (192-32) frames the channel status bit is set to 0.

Parity (Subframe Bit 31)

This bit is generated by the S/PDIF interface so that bits 4 to 31 (inclusive) of the subframe contain an even number of 1's (and 0's).

10.4.5.3 HDMI v1.3a Output Format

The HDMI v1.3a output supports LPCM and compressed audio. The audio data from the audio DSP I²S outputs or the S/PDIF output may also be transferred over HDMI. Note that the audio capabilities are dependent on the video format being transmitted over HDMI. For additional information, please see CEA-861D and the HDMI video output section.

10.5 Register Maps

10.5.1 Audio Miscellaneous Registers

Table 10-7 Audio miscellaneous registers

Address ¹	Register Name	R/W/A ²	Description
+3E80	MISC_DR_MODE	R/W	DRAM Read Byte Assemble Mode Register
+3E81	MISC_DR_CNT	R/W/A	DRAM Read Byte Count Register
+3E82	MISC_DR_ADD	R/W/A	DRAM Read Address Register
+3E83	MISC_SBOX_MODE	R/W	Switchbox Mode Register
+3E84	MISC_DW_MODE	R/W	DRAM Write Byte Assemble Mode Register
+3E85	MISC_DW_CNT	R/W/A	DRAM Write Byte Count Register
+3E86	MISC_DW_ADD	R/W/A	DRAM Write Address Register

SMP8654-DS-A-10 SMP8654 Datasheet

Table 10-7 Audio miscellaneous registers (Continued)

Address ¹	Register Name	R/W/A ²	Description
+3E87	Reserved		
+3E88	MISC_RESET0	R/W	Reset 0 Register
+3E89	MISC_RESET1	R/W	Reset 1 Register
+3E8A	MISC_INTERRUPT	R/W	Interrupt Register
+3E8B	MISC_TIMER_DIV	R/W	Timer Divisor Load Register
+3E8C	MISC_TIMER_CNT	R/A	Timer Value (current) Register
+3E8D	Reserved		
+3E8E	Reserved		
+3E8F	Reserved		
+3E90	MISC_SEMAPHORE0	R/W	Semaphore 0 Register
+3E91	MISC_SEMAPHORE1	R/W	Semaphore 1 Register
+3E92	MISC_SEMAPHORE2	R/W	Semaphore 2 Register
+3E93	MISC_SEMAPHORE3	R/W	Semaphore 3 Register
+3E94	MISC_SEMAPHORE4	R/W	Semaphore 4 Register
+3E95	MISC_SEMAPHORE5	R/W	Semaphore 5 Register
+3E96	MISC_SEMAPHORE6	R/W	Semaphore 6 Register
+3E97	MISC_SEMAPHORE7	R/W	Semaphore 7 Register

Address refers to G-Bus byte address relative to the audio block base.
 Read/Write/Auto update.

10.5.2 Audio Input Interface Registers

Table 10-8 Audio input interface registers

Address ¹	Register Name	R/W/A ²	Description
+3E40	SI_L1_DATA	R/W	Audio Input Left Channel 1 Data Register
+3E41	SI_R1_DATA	R	Audio Input Right Channel 1 Data Register
+3E42	SI_STATUS	R	Audio Input Status Register
+3E43	SI_CONF	R/W	Audio Input Configuration Register
+3E44	SI_SPDIF_STATUS	R	S/PDIF Status Register
+3E45	SI_L2_DATA	R	Audio Input Left Channel 2 Data Register

Table 10-8 Audio input interface registers (Continued)

Address ¹	Register Name	R/W/A ²	Description
+3E46	SI_R2_DATA	R	Audio Input Right Channel 2 Data Register
+3E47	SI_L3_DATA	R	Audio Input Left Channel 3 Data Register
+3E48	SI_R3_DATA	R	Audio Input Right Channel 3 Data Register
+3E49	SI_L4_DATA	R	Audio Input Left Channel 4 Data Register
+3E4A	SI_R4_DATA	R	Audio Input Right Channel 4 Data Register

Address refers to G-Bus byte address relative to the audio block base.
 Read/Write/Auto update.

10.5.3 Audio Output Interface Registers

Table 10-9 Audio output interface registers

Address	Register Name	R/W	Description
+3E00	SO_L1_DATA	R/W	I ² S Pair Left Channel 1 Data Register
+3E01	SO_R1_DATA	R/W	I ² S Pair Right Channel 1 Data Register
+3E02	SO_L2_DATA	R/W	I ² S Pair Left Channel 2 Data Register
+3E03	SO_R2_DATA	R/W	I ² S Pair Right Channel 2 Data Register
+3E04	SO_L3_DATA	R/W	I ² S Pair Left Channel Data 3 Register
+3E05	SO_R3_DATA	R/W	I ² S Pair Right Channel 3 Data Register
+3E06	SO_LS_DATA	R/W	S/PDIF Left Channel Data Register
+3E07	SO_RS_DATA	R/W	S/PDIF Right Channel Data Register
+3E08	SO_CH_INTR	R/W	Channel Interrupt Register
+3E09	SO_CH_CTRL	R/W	Channel Control Register
+3E0A	SO_SPDIF_CH_STAT	R/W	S/PDIF Channel Status Register
+3E0B	SO_L4_DATA	R/W	I ² S Pair Left Channel 4 Data Register
+3E0C	SO_R4_DATA	R/W	I ² S Pair Right Channel 4 Data Register
+3E0C	SO_L5_DATA	R/W	I ² S Pair Left Channel 5 Data Register
+3E0E	SO_AUDIO_CLK_DIV	R/W	Audio Fractional Clock Divider Register (M, N)
+3E0F	SO_R5_DATA	R/W	I ² S Pair Right Channel 5 Data Register

Table 10-9 Audio output interface registers (Continued)

Address	Register Name	R/W	Description
+3E10	SO_CH_CTRL2	R/W	Channel Control 2 Register
+3E11	SO_FIFO_DEPTH1	R	Audio Output FIFO Depth 1 Register
+3E12	SO_FIFO_DEPTH2	R	Audio Output FIFO Depth 2 Register

10.6 Pin Description

10.6.1 Audio Input Interface Pins

Table 10-10 Audio input interface pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
SI0_BCLK	AD3	I	Audio input 0 serial bit clock = LRCLKx32 / 64. Maximum frequency is 12.288MHz.	J
SI0_DATA1	AD2	I	Audio input 0 serial data	J
SI0_LRCLK	AD4	I	Audio input 0 serial left/right clock	J

The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

10.6.2 Audio Output Interface Pins

Table 10-11 Audio output interface pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
SO0_BCLK	AC2	0	Audio output 0 I ² S audio bit clock output. Maximum frequency is 12.288MHz.	D
SO0_DATA1	AC4	0	Audio output 0 I ² S channel 1 audio data output	D
SO0_DATA2	AC5	0	Audio output 0 I ² S channel 2 audio data output	D
SO0_DATA3	AC6	0	Audio output 0 I ² S channel 3 audio data output	D
SO0_LRCLK	AC3	0	Audio output 0 I ² S audio frame clock output	D
SO0_MACLK	AC1	0	Audio output 0 audio clock gener- ator master clock output. Maxi- mum frequency is 50MHz.	D

Table 10-11 Audio output interface pin descriptions (Continued)

Pin Name	Pin Id	Direction	Description	Driver Type ¹
SO0_SPDIF	AD1	0	Audio output 0 S/PDIF audio data output	Е

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

10.7 Electrical Characteristics

10.7.1 I²S Input AC Electrical Characteristics

Table 10-12 I²S Input AC characteristics

Symbol	Units	Minimum	Typical	Maximum
F _{BCLK}	MHz		12.288	20
T _{BCLK}	ns	50		
T _{BCLKL}	T _{BCLK}	0.35		0.65
T _{BCLKH}	T _{BCLK}	0.35		0.65
T _{SR}	ns	10		
T _{HTR}	ns	0		

10.7.2 I²S Output AC Electrical Characteristics

Table 10-13 I²S Output AC characteristics

Symbol	Units	Minimum	Typical	Maximum
F _{BCLK}	MHz		12.288	20
T _{BCLK}	ns	50		
T _{BCLKL}	T _{BCLK}	0.48		0.52
T _{BCLKH}	T _{BCLK}	0.48		0.52
T _{VLD}	ns	T _{BCLKH - 10}		T _{BCLKH + 10}

10.8 Timing Diagram

10.8.1 I²S Audio Input Timing Diagram

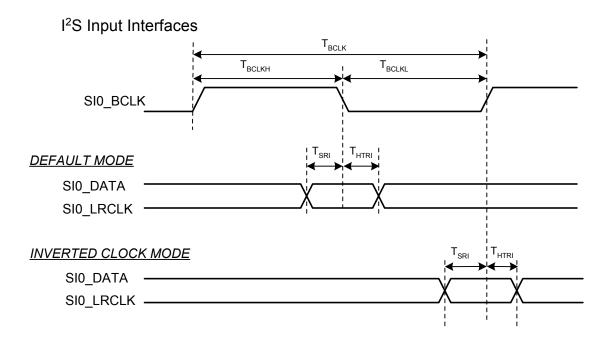


Figure 10-3 I²S audio input timing diagram

10.8.2 I²S Audio Output Timing Diagram

Figure 10-4 I²S audio output timing diagram

11

Transport Demultiplexer

11.1 Block Diagram of Transport Demultiplexer

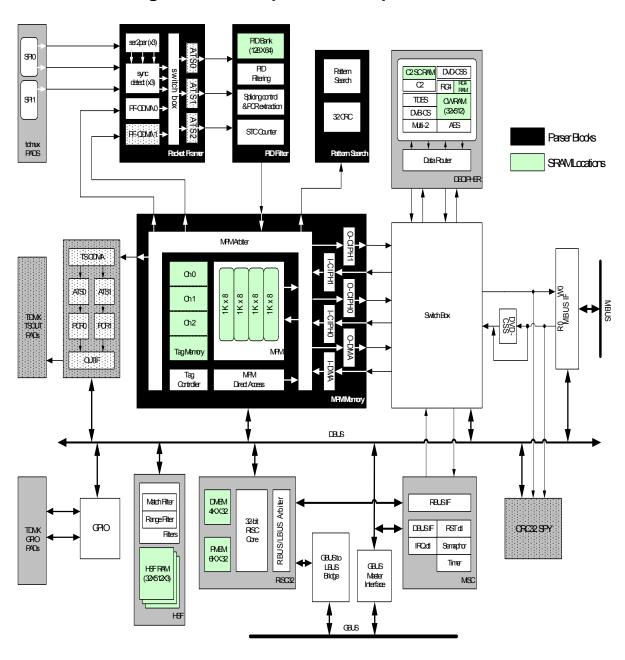


Figure 11-1 Transport demultiplexer block diagram

11.2 Introduction

The SMP8654 includes an on-chip, RISC processor-based transport demultiplexer (TDMX) unit. The TDMX unit is implemented as 2 identical blocks, each capable of handling up to 3 multi-program bitstreams of up to 81Mbps each, with an aggregate total of up to 243Mbps. On-chip demultiplexing supports the following formats:

- DVD-Video, SVCD and VCD bitstreams
- MPEG-1 system bitstreams, MPEG-2 transport and program bitstreams
- MPEG-4 file, MPEG-4.2 over MPEG-2 transport bitstreams
- MPEG-4.10 (H.264) over MPEG-2 transport
- WMV9 ASF or AVI files, SMPTE 421M (VC-1) over MPEG-2 transport

Each TDMX block consists of a dedicated 32-bit RISC processor and parser blocks along with specialized support hardware. The parser block contains a multiport memory (MPM), organized as 1K by 32-bit (4 KB) with 6 independent access ports. The TDMX interfaces with the rest of the chip via the G-Bus and M-Bus datapaths. Additional internal buses connect the various components.

The bit stream data may be input via the transport stream inputs, PCI bus, SATA interface, Ethernet interface, etc. The bitstreams are loaded into the DRAM, processed by the transport demultiplexer RISC (including any decryption) and the result is written to the DRAM. The audio and video decoder DSPs then read the data from the DRAM and process it. The bitstreams and the data not used by the SMP8654 (such as EPG, etc.) are written to the DRAM and passed on to the middleware for processing.

11.3 Features

- 2 dedicated demultiplexer RISCs (one per 3-channel demux block)
 - 32-bit 333MHz RISC CPU core (proprietary)
 - 16KB Data and 24KB Program memory
 - Timers and Interrupt controller support
- Compliant DTV standards
 - ISO/IEC 13818-1: 2000
 - ATSC: A-65B
 - DVB: ETS 300 428 v.1.4.1
 - ARIB: STD-B32 Part 3

317

Transport stream input interface

- Any combination of up to three transport or program streams, up to 243Mbps total aggregate
- Hardware/software configurable one parallel and one serial, or three serial input interfaces

Conditional access

- Two NRSS-A (ISO-7816 form factor) or smartcard interfaces

On-chip ciphers

- DES/TDES ECB, CBC and OFB mode support
- DVB CS block and stream ciphering core
- DVD CSS deciphering core
- ARIB Multi-2 deciphering core
- C2 for CPPM and CPRM applications
- AES ECB, CBC, CTR, CFB and OFB mode support
- RC4
- NDS NSA v1 and v2

PID filtering

- Up to 256 programmable PID Filters, aggregate
- Each input channel has an additional set of six dedicated PID's for filtering of PAT, CAT, PCR, DIT, MGT and Null packets
- Flexible packet handling with errors (e.g., duplicated or missing packet detection as indicated in the continuity counter field of TS header)
- Splicing control

Section filtering

- Up to 32 application controlled 12-byte match mask or range filters per channel.
- Each filter block can be configured as either match-mask or range filter
- Multiple filter blocks can be linked together in order to increase filtering depth or, to build a more complex filter

• ECM filtering (per request)

- Up to 8 ECM filters implemented by RISC firmware
- Automatic even/odd ECM filter switch
- Enables both even/odd ECM's after power-up/reset or channel change

PSI/SI/PSIP processing

- 32-bit hardware based section CRC check

- PES header filtering
 - PTS extraction
 - Private data stream type filtering
 - DSM-CC support for VOD, interactive video service or data broadcasting
- Clock recovery
 - 6 independent hardware based PCR and STC extraction circuits
 - Software controlled PCR-jitter filters and output rendering rates
 - Hardware based DIT support for "partial" TS stream
- Stream record and PVR support
 - Full partial programs from multiple TS can be recorded simultaneously
 - Optional arrival time stamp (ATS) marking for packets being recorded
 - Optional ATS based input data rate control for recorded streams
 - Simultaneous pause and playback/record support

11.4 Functional Description

The demultiplexer contains 6 independent transport stream processing channels. This provides the capability to simultaneously handle up to 6 independent transport streams. In addition, program or PES bitstreams from external DRAM can be processed for DVD or PVR applications.

At any given time, all the 6 data processing pipelines can be used for the system clock recovery (by tracking the encoder clock rate). There is an added a flexibility of configuring any number of three clock recovery circuits to be associated with any channel. This allows the clocks to be adjusted for more than one program of a given processing pipeline.

The decoder clock frequency is adjusted according to the error terms computed, based on the differences in the value of the extracted PCR and the value of the STC running on the decoder system. The encoder samples its system clock counter periodically, and inserts the value in the bit stream as PCR.

As the decoder receives the sampled value, the current value of the decode system clock counter is compared against the extracted PCR. The difference produces the error term of the clock rates between the two systems. All the AV display clocks in the chip will be generated and synchronized to this adjusted clock. Without this clock recovery scheme, 'push' type applications suffer from buffer underflow or over flow as there is limited control over the input data.

The packet framer block provides a seamless interface to various channel decoders (e.g. QAM, QPSK, 8-PSK, FEC) and accepts direct inputs from multiple detachable external conditional access modules, such as the common interface (CI) and the point of deployment (POD) data ports. Pre-recorded data (program stream from a DVD ROM, or HDD etc.) can also be accepted from the external DRAM.

In general, the inputs from the external channel decoders are sourced from the 'push' type models in which the application data is transported in unidirectional manner. The receiving device accepts all the data transmitted from the source stream.

The applications whose inputs are coming from the external DRAM are grouped as 'pull' type models, where the data is available in a storage media and is supplied as needed. Hence, a full flow-control is employed.

The input to other pipelines can come from both 'push' and 'pull' types. As a result, the displayed video can suffer from occasional frame dropping or repeating due to the processing data rate mismatch if the data is sourced from 'push' type applications.

As the transport stream is 'locked' (i.e. the sync byte is found at every 188 valid byte interval), the packet framer starts to output the packets to the PID filtering block in 32-bit packet aligned fashion. Therefore the TS sync byte (0x47) is always located at the MS byte of the 32-bit output word if the word contains the sync byte. For systems using 192-byte transport streams, the 4-byte header is ignored.

During this process if the sync signal is provided by the interface protocol, then the transport sync input can be used to construct the packet-aligned transport stream data. Otherwise, the hardware will search for the transport stream sync byte for packet alignment. In the case of the demultiplexer configured to accept the serial transport stream inputs, the packet framer undergoes a bit-serial to 32-bit word data format conversion.

According to the PID settings, the input data packets are filtered, so that only the selected packets are kept in the MPM. For these selected packets, the PID filter also creates a corresponding packet attribute as TAG. This information is stored in the MPM at the end of each packet filtering process.

By saving the tag information at the end of each packet filtering process, the number of entries in the tag memory is always the same as the number of complete packets in the MPM. The tag information contains information like the packet types (e.g. audio, video or system), the payload destinations, the data parsing information and the sync byte location in the MPM. This tag data supplies sufficient information about the packet, so that the processing time for the RISC is reduced.

The MPM is comprised of four 1K by 8-bit single port memories for storing the TS packets and another memory (64- by 32-bit) for storing the tag information. The four 1KB MPM memories are stacked side-by-side in order to form one 32-bit by 1K memory. This 32-bit by 1K memory is then segmented into four equal 32x256 memories, each serving as 1KB stream buffers. The first three segments are used to store the transport packets from each TS channel, and the last segment processes of the data streams from the external memory.

This structure allows not only for 32-bit access in a single clock cycle, but also allows the data to be accessed from any byte location of the MPM.

The tag memory holds the packet attributes of the packets stored in the MPM memory. This tag information can be accessed through D-Bus with the assigned address space. The valid address for the last written tag address can be viewed through the status registers in the PID filtering block. Therefore, tracking the register value gives the number of packets newly written to the MPM since the last tag memory access.

The next destination of the packets in MPM is determined based on either the scrambling control status from the packet header or the packet type as indicated by the packet attribute. If the packet is a non-PSI packet, then the RISC firmware routes the payload data to the internal deciphering block.

If the section filter enable attribute is set, then the RISC firmware enables the section filtering for the PSI packets. The section filtering can be initiated by writing the section header data to the hardware section filter register, along with the filter enable attribute value that is obtained from the Tag memory.

Once the deciphering process is completed (either via an external CAM module or the internal descrambler), all the payload data in the MPM will be in a clear-text format. The RISC can determine whether any other packet processing needs to be done, before posting the data to the external DRAM.

The final destination of each packet and additional packet parsing are resolved according to the packet attribute information, such as the routing information and the packet types. The packet type attribute elects the firmware filtering actions (e.g. PES filtering for AV data, section/ECM filtering for system data etc.), while the routing information attributes decide the depth of the stream parsing depending on the playback type.

The private data packet type can be used when parsing of the packet is 'out of norm'. For example, ATSC standard assigns PID value 0x1FFB to carry multiple tables, such as MGT, VCT, RRT, STT, DCCT and DCCSCT. In addition, SCTE assigns the same PID for emergency alert messages. If the application desires to use one independent buffer for each table, and the buffer has been assigned based on the section filter result, the firmware must observe not only the section data passes the two tests applied to PSI packets, but also which of the 32 filters the section passed.

To support trick-mode on recorded data, the payload data may be more closely examined and reformatted to define access units more clearly before it is stored in the external storage media. Unlike DVD streams, where the bit stream is created with clear random access points for supporting user interactivity, the access units in terrestrial bit streams are extremely loosely defined.

Although it is nearly impossible to make the access units in terrestrial bit streams as accessible as in DVD stream on-the-fly, providing some navigation information in order to make the access points more visible will help greatly the CPU on reducing the computation.

The audio, video PES data and other data associated graphic display will be examined by the RISC for realigning, inserting or removing headers and marking the locations of rendering units. Consequently, the application CPU can construct tables, which reflect the structures of the reformatted bit streams in conjunction with the clearly defined access points and their display time stamps. These tables can be stored together with the reformatted bit streams.

11.4.1 Packet Framer

The primary purpose of the packet framer block is to accept asynchronous transport streams in order to produce 32-bit packet-aligned data output, along with other packet control signals that are synchronous to the internal system clock.

The main features of this module are:

- This module can receive MPEG TS stream in any of the following 3 configurations:
 - Three external serial input ports with data, valid, clock, and/or packet sync signals. The input data clocks can operate at any frequency up to 87.9MHz (81MHz x 204/188). Each parallel port can be configured to accept two serial transport streams; and the host can select any three serial inputs to process.
 - One external 8-bit parallel input port and two serials with its own data, valid and/or packet sync signals. When the input port is configured in the parallel mode, the maximum clock rate should be 10.99MHz (10.125MHz x 204/188) which is equivalent to 81Mbps in input data rate.

- One internal 32-bit OF-DMA input at a maximum average input data rate of 2.53125Mword/sec and two additional streams from external SPI PAD inputs.

- Input TS rate control with ATS TS packet header
- 32-bit Time Stamp for every incoming TS packet during recording
- 32-bit word aligned output data with unified data flow control signals
- Programmable sync byte detection either by the hardware or assisted by the input sync signal
- Automatic sync-lock and sync-loss detection based on software controlled hysterisis mechanism
- Data synchronization to internal system clock

Up to 2 independent channel demodulators can be connected and simultaneously processed. The interface protocol used by each input channel is independent. The SMP8654 provides up to 3 digital tuner input ports. Tuners from different vendors can be connected at the same time. Each of these tuners can have its own protocol.

Four major logical partitions make up the packet framer: input switchbox, packet alignment, sync detect and the packet framer output DMA (PF-ODMA) blocks. In order to support concurrent processing of three independent channel interfaces, packet alignment and the sync detect blocks are instantiated three times, while the switchbox and the PF-ODMA are instantiated only once.

The PF-ODMA provides the filtering capability of the TS packets from external the DRAM, such as packets transported over the IP network or recorded in the hard disk. The unfiltered transport stream is temporarily transferred to the MPM from the external DRAM through the IDMA channels. This transport stream is then transferred to the input switchbox via PF-ODMA.

The input switchbox accepts the data traffic from either the input pads or the PF-ODMA and directs it to the assigned processing channels. The signal activities on the input ports are monitored by the input switchbox to see if channel demodulators are connected. When connected, the logic block reports the status to the RISC to communicate with the host CPU in order to obtain the channel routing instructions.

The packet synchronization is performed by the sync detect block. This is done by observing the input data patterns and searching for the sync byte at the fixed packet interval. To prevent any false detection, this block keeps track of the sync state hysterisis by counting the number of consecutive valid packets. Once the packet synchronization is established, complete transport packets are transferred to the PID filtering block after the byte-to-word conversion by the packet alignment block.

11.4.2 PID Filter Block

The PID filter block extracts the PID and compares it against the entries in the PID bank to see if there is any match. This is done by examining the 4-byte transport header of each packet.

The PID bank is a 128x64 memory. It is constructed with four single port 32x64 bit SRAM memories, whose entry represents PID with associated packet attributes. This SRAM can hold up to 128 PID entries that are accessed by all three the PID filtering channels.

The main features of the PID filter block are,

- Firmware based automatic PID switch for splicing control
- Hardware PCR extraction with dedicated PID filter register for each channel
- Handling of an arbitrary fixed packet size of MPEG-2 TS streams.
- Total of 128 general PID entries that can be accessed by all three channels
- Four additional hardwired PID filters for NULL, PAT, CAT and MGT for each channel
- Software controlled TS-level error handling
- Packet continuity check by monitoring the CC field in the TS header
- TAG entry creation for reducing the packet parsing processing load of RISC
- PID Filtering logic can be bypassed, allowing software PID filtering
- User data from the adaptation field extraction by Firmware

No content modification is made to the packet during the PID filtering, meaning. If a match is found, then the whole packet is stored in the MPM along with the packet attributes in the TAG memory. When no match is found, the packet is discarded by resetting the write pointer to the previous packet start address.

The packet PID is compared against the PCR PID value before it undergoes the general PID comparisons with the PID bank entries. Each filtering channel contains a dedicated register-based PCR PID whose value can be set by either the host CPU or the RISC. If the PID of a packet matches with that of PCR, then the PCR value in the packet adaptation field is copied to a register for the RISC to initiate the clock recovery process.

The result from PCR PID comparison will not affect the result of the general PID comparison. Regardless of the result in PCR PID comparison, the packet PID will be compared against the PID entries in the PID bank as this packet may contain either audio or video payload.

During the PID filtering process, packet errors are checked in two ways: by examining the state of the transport error indicator (TEI) bit, and by observing the continuity counter (CC) 4-bit field. Depending on the attribute settings for a PID, the packets with are either discarded or stored in the MPM.

The splicing control is also handled by this block by monitoring the splicing counter in the adaptation field. The splicing requires two PID values (these two PID values may be identical). When the splicing is enabled, the splicing logic monitors the splicing counter in the adaptation field of the packets associated with previous PID value, looking for the splicing point. Meanwhile, this logic block continues storing packets with the previous PID value. As the splicing counter reaches zero, the old PID is replaced with the new PID.

The time-base of the new packets need not be the same as that of the old packets. This causes PCR discontinuity. In this case, the host CPU is notified of the nature of PCR discontinuity, so that the AV display units are handled properly.

Once the PID matching is done successfully, the attributes for the packet is prepared and stored in the TAG memory as the last word of the packet enters the MPM. Therefore, the number of entries in the TAG memory equals to the number of TS packets stored in MPM. The contents of TAG memory include the pre-parsed information such as the type of each packet (i.e. audio, video or system), routing information (i.e. playback or recording) and the packet start address in the MPM. These packet attributes come from both the host and the hardware logic states, in order to facilitate the packet parsing effort by the RISC.

11.4.3 Multi Port Memory (MPM)

The MPM memory has a total capacity of 4K bytes. It is physically implemented using four 1024x8-bit, single port SRAM to allow single cycle access of a 32-bit word at any byte position. These four SRAMs are horizontally stacked side-by-side to construct one 1K-by-32 bit RAM. This 1K-by-32 bit RAM is then vertically partitioned to form four 256-by-32 bit circular buffers, with each buffer identified by channel ID.

Up to 12 clients can be served, one at each clock cycle in the order of the priority each client is assigned to. In order to prevent starving situation at the low priority clients, hierarchical priority structure has been designed. The clients are separated into three groups depending on the required bandwidth and the access timing sensitivity.

The first-level priority is assigned by a group, and within the group, a second-level priority has been assigned to each client. There are hard limit, in terms of clock cycles in accessing MPM continuously, imposed on the two top-tier groups so that any clients in the lowest priority group do not wait longer than 8 cycles.

The MPM block also includes several DMA blocks and a pattern search block. These DMA blocks are responsible for transferring data from or to MPM, and the pattern search block is designed to deliver two functionalists: searching for MPEG start_code and checking of the data integrity by computing the CRC.

The main features of the MPM are:

- Four 256x32-bit circular buffers with arbitrary word alignment access
- Two-level arbitration scheme with pre-defined maximum wait time
- ODMA with start-code search capability
- Two pairs of DMA channels dedicated to cipher blocks
- Dedicated channel for the D-Bus interface

11.4.4 Cipher Block

The ciphering module contains several modules to encrypt/decrypt the stream data. It supports the following algorithms:

- 1. DES/Triple DES (ECB, OFB, CBC)
- 2. AES (ECB, OFB, CTR, CBC, CFB)
- 3. RC4
- 4. DVD
- 5. DVB-CSA (decryption only)
- 6. Multi-2 (ECB, OFB, CBC, CFB)
- 7. C2 block (ECB, CBC)

The cipher RAM provides a storage space for multiple key sets and the initialization vectors. The keys for all the ciphers, except for the DVD and C2, are written to the cipher RAM by the CPU in a secure manner. The DVD keys are written directly to the register space. The read access to any key address space is disabled by the hardware. The CPU informs the demultiplexer RISC of the key sets to be used for descrambling the contents by means of key indices, channel ID and the PID.

Table 11-1 Cipher RAM code word allocations

Name	Configuration Size	Key Pairs	Num. Words	Address Range
TDES	8	8	128	0x2B80 - 0x2BFF
DVB	2	8	32	0x2B60 - 0x2B7F
AES	16	3	96	0x2B00 - 0x2B5F
RC4	8	4	64	0x2AC0 - 0x2AFF
Multi-2	12	8	192	0x2A00 - 0x2ABF

Cipher Block Clock Gating

The clock gating controls disabling of clock inputs for the lower-level blocks that are not in commission. Due to the limited number of data paths, the cipher blocks that can simultaneously be commissioned is two (the other blocks are idling). By disabling the clock activities during idle time, the power can only be consumed by the active cipher blocks; thus overall power consumption is reduced. As a cipher is decommissioned (i.e. the cipher path for the block is disabled.) the clock will be active for 4 more cycles, and disabled until the path is re-enabled. The clock line for the cipher block will be alive after one clock cycle once the path is connected.

Except for the C2 cipher block, the internal registers of each disabled cipher block are reset to their default values once the clock is inactive. Therefore, the firmware must save the IV values before disabling the cipher data path if cipher chaining is needed.

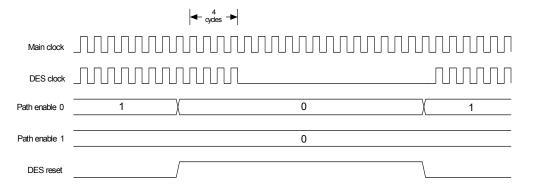


Figure 11-2 Clock gating timings

11.4.4.1 DES Encryption/Decryption Unit

The DES encryption/decryption unit can either encrypt or decrypt a 64-bit data block using the DES or Triple DES algorithm. The supported modes are DES ECB, CBC, OFB and Triple DES TECB TCBC and TOFB, both in encryption and decryption. The configuration is unique for a group of 64-bit data blocks. The number of blocks in a data group is 1 to 255.

Key format

Data Format

The data interface (input and output) is a standard valid/ready interface. Data block[63:0] = 64'h0011223344556677. The bytes will be sent in the order: 00 11 22 33 44 55 66 77. Thus the left most byte of the data block is sent for. The left most byte of the output block will be out first. If the encrypted/decrypted bytes received are in the order: 00, 11, 22, 33, 44, 55, 66 and 77, then output enciphered, deciphered block is 64'h0011223344556677.

Table 11-2 DES encryption/decryption performance

	DES - 64-bit to 8-byte	Triple DES - 64- bit to 8- byte
One Block	50 Cycles	86 Cycles
Several blocks	34 Cycles	49 Cycles

The total number of clock cycles represents the time between the start of the ciphering and the rising edge of the DES_END. If the number of the blocks is higher than one, then the blocks are received and sent while the other blocks are encrypted.

11.4.4.2 AES Encryption/Decryption Unit

The AES encryption/decryption unit can either encrypt or decrypt a 128, 192 or 256-bit data block using the AES algorithm. The supported modes are ECB, OFB and CTR, both in encryption and decryption. The supported key lengths are 128, 192 and 256-bit independent of the data block size. The configuration is unique for a group of data blocks. The number of blocks in a data group can be up to 255.

Data Format

The data interface (input and output) is a standard valid/ready interface. Data block[127:0] = 128'h00112233445566778899aabbccddeeff. The bytes will be sent in the order: 00 11 22 33 44 55 66 77 88 99 aa bb cc dd ee ff. The left most byte of the data block is sent first. The left most byte of the output block will be out first.

If the encrypted/decrypted bytes received are in the order, 00, 11, 22, 33, 44, 55, 66, 77...ff, then the output enciphered, deciphered block is 128'h00112233445566778899aabbccddeeff.

Table 11-3 AES encryption/decryption performance

Size of block (byte)	16	16	16	24	24	24	32	32	32
Size of Key ¹	16	24	32	16	24	32	16	24	32
Total Cycles	95	115	130	150	160	170	225	230	245

^{1.} In clock cycle (333MHz clock)

11.4.4.3 RC4 Encryption/Decryption Unit

The RC4 encryption/decryption unit can encrypt or decrypt data up to 65535 bytes using the RC4 algorithm. This module handles all the key lengths from 8 to 256-bit with 8-bit increments.

Data Format

If the given key is 48-bit long, 7B311D8415F0 then, key_1[31:0]= 32'h7B311D84, key 2[31:0]= 32'h15F00000 and the Length key [8:0] = 030.

Table 11-4 RC4 encryption/decryption performance

	Clock Cycle
First initialization	258 clock cycles
Second initialization	1538 clock cycles
Encrypt\Decrypt first byte	8 clock cycles
Encrypt\Decrypt following byte	6 clock cycles

11.4.4.4 DVD Decryption

The DVD decryption unit is controlled by 5 registers. The controller register indicates the number of bytes to process, typically 2048 for a DVD sector. If the count is programmed to 4095 (reset value), then the DVD decryption block is transparent. The start indicates how many bytes must be transferred before the decryption begins, typically 128 for a DVD sector. In a 2048-byte encrypted sector, the first 128-byte are clear and the last 1920-byte are encrypted. Before starting the decryption, the 40-bit title key must be programmed in the key registers. The two state registers allow a backup of the decryption block internal state. This is required when a context switch occurs while a DVD sector is only partially processed.

11.4.4.5 DVB-CSA

Typically the 64-bit control words, which are used to ciphering the MPEG-2 bitstream contents by the authoring head end, (scrambling authorization module and conditional access system) are also encrypted and embedded in the same bitstream by the means of EMM and ECM. The ECM carries the control word, while the EMM carries the entitlement messages in conjunction with the key to deciphering keys for the control words. These scrambled control words are then extracted and deciphered by the authorized decoders. The following figure depicts the key delivery scheme.

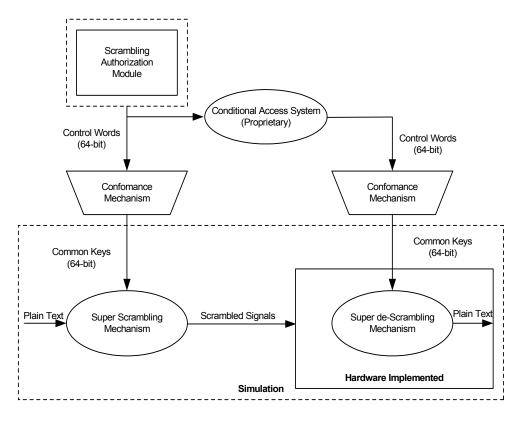


Figure 11-3 Overview of DVB-CSA

Once the control words are deciphered, the common keys are obtained by the conformance mechanism. This conformance mechanism is a simple combination of addition and modulus operations that can be easily performed by the secure processor before the keys are put to use. The hardware is designed to work with a set of common keys, which has 64-bit in length derived from the 64-bit control word.

Key Transfer

In general, the control words are produced in a pair, namely even and odd keys by the head-end authoring tools and this pair of keys are used to scramble in an alternative fashion. One set of the keys is used to scramble the program contents for a fixed time frame. The other set of the keys, is used to scramble the content for the next time frame. These are transmitted through the bitstream. This alternate key transmission mechanism provides the system with enough time for the key delivery, computation and the initialization of the hardware.

The set of the key pair used to scramble the contents is indicated at the scrambling control field in the corresponding transport packet header. Hence, the RISC firmware must program the key registers with the appropriate set of the keys, before initiating the deciphering process by the hardware.

Setting up DMA channels

Because the DVB CSA allows the payload being scrambled at either TS-level or PES level, the DMA channels to (ODMA), or out of (IDMA) the decipher hardware must be properly programmed with the payload byte counts based on the scrambling layer information. This, scrambling layer information should come from either the security core or the host CPU (as a result of the table parsing).

When the payload is scrambled at TS-level, the payload length is described with the packet length (188-byte) subtracted by the TS headers (4-byte) and the adaptation field length. However, if the packet is scrambled at the PES-level, the PES header length must be excluded from the payload byte count in addition to the ones for the TS-layer payload length computation. Thereby, the PES header will not be scrambled.

The DVB impose the following rules in order to facilitate the decoder hardware implementation in case the authoring head-end chooses the PES-layer scrambling schemes.

- 1. The PES header is not scrambled.
- 2. The TS packets containing parts of a scrambled PES packet do not contain an adaptation field, with the exception of the TS packet containing the end of the PES packet.
- 3. The first byte of a PES packet header is the first byte of the TS packet payload.

In addition, a couple of rules described below will also be applied irrespective of whether the payload is scrambled at the TS-layer or the PES-layer.

- 1. The scrambled PES header does not span over multiple TS packets.
- 2. The TS packet carrying the start of a scrambled PES packet is filled by the PES header and the first part of the PES packet payload.
- 3. The end of the PES packet payload is aligned with the end of the TS packet by inserting an adaptation field of suitable size.

11.4.4.6 Multi-2

The Multi-2 module provides the encryption and the decryption of the Multi-2 algorithm in all the chaining modes. The module can do an encryption or a decryption in ECB, CBC, CFB and OFB mode with an iteration number from 1 to 255, for data size 1-byte to 255-byte. Though the size of the base data block is 64-bit, it is not necessary for the data size to be a multiple of 64-bit for encryption. Moreover, a packet is not always likely to be a multiple of 8-byte. The base unit is a byte, therefore the module interface for data path will be based on 1-byte. The module loads data by 8-byte and processes it by 8 bytes block. If less than 8-byte remain, then this residual bytes are processed in an OFB mode.

The Multi-2 configuration is done through the D-Bus. The parameters are written into the cipher dedicated RAM. Writing into the configuration register (size of data to process, iteration number for the basic Multi-2 algorithm and the chaining mode) starts the module. The module begins to read the system key, the data key and the initial value from the RAM. It then computes the working key, reads the data, processes the data and writes the result back to the RAm. Except for the system keys, the current data, the initial value and the status bit can be read back through the D-Bus. As the last byte of the input data is processed, the module puts one of its outputs (end) high.

Performance

The performance measures the number of cycles to compute an encryption or a decryption once the module has all the parameters needed to do the computation. Therefore the time needed by the module to load the keys and the initial value from the cipher RAM (minimum 24 cycles, 12 values to load, 2 cycles per value) is not taken in the total. Moreover, the following performance asserts no delay in receiving the data from the input and no delay in sending the data to the output.

In the following performance table N is the number of 64-bit size blocks, R is the number of residual bytes, Twork is the number of cycles for the working keys and Tbase is the number of cycles for the base submodule.

Table 11-5 Performance index for various cases

Round	Size	N	R	T _{Work}	T _{Base}	Cycles	Bits/Cycle
1	1	0	1	14	2	23	0.34
1	8	1	0	6	2	29	2.20
16	8	1	0	6	21	48	1.30
32	1	0	1	14	21	62	0.12
32	8	1	0	6	21	68	0.94
32	128	16	0	6	21	698	1.40
32	255	31	7	6	21	1369	1.40
128	255	31	7	6	161	5209	0.39

11.4.4.7 C2 Block Cipher

The C2 Block deciphers the contents that are generated by the Content Protection for Prerecorded Media (CPPM) licensed authoring devices. This block supports 5 different ciphering modes namely, C2-D, C2-G, C2E, C2-ECBC and C2-DCBC. All the 5 modes are required during the deciphering process. The mode C2-ECBC is used when content is Content Protection for Recordable Media (CPRM) protected and the SMP8654 is used as the decoder.

The functionality of this block is largely partitioned into 3 independent logical blocks: C2 register, C2 control and C2 stream blocks. The C2 register block is responsible for the D-Bus interface to configure the necessary parameters including the Secret Constant RAM and other data blocks to be processed. Once the D-Bus programming is completed, the C2 control block uses the configuration parameters to generate the data flow control timings based on its state machine.

The stream key generation and data ciphering are performed by the C2 stream block. Depending on the mode of operation, the ciphered data will be routed to either the output port of the cipher or the D-Bus registers.

When the cipher is in the CBC mode, the ciphering is applied to the data from the input cipher ports, allowing the chaining mode for the successive input data blocks. Unlike the CBC modes in other cipher modules (like AES or Multi-2), the cipher key is updated for each data block. Hence in C2, the CBC chaining mode is called the converted CBC mode as the cipher key is chained as opposed to the ciphered data in the other cipher modules.

333

Once the C2 cipher block configuration is completed, it starts accepting the input data block from the input ports using the ready/valid protocol. Due to the C2-CBC algorithm, the first block takes 16 clock cycles longer then consecutive data blocks to generate the stream key. Two internal 64-bit buffers are provided at the block IO ports in order to eliminate the delays caused by the 64-bit block conversion from eight 8-bit bytes.

Performance

For a data block of 240, or 1920 bytes, the C2 ciphering in the CBC mode will consume,

Num_cycles =
$$20 + (4 \times [240-1]) + (30 \times 240) + (2 \times 240) + 16 = 8672$$
 clock cycles.

This yields 1.77bits/cycle of total ciphering performance or 1.88bits/cycle without considering the IO transactions. Unlike the CBC operation, the ECB mode and the one-way function always apply the ciphering process block-by-block. Num_cycles = 2 + 20 + 30 + 1 = 53 cycles/block.

11.4.5 Clock Recovery Process

In the MPEG system it is assumed that the network has a constant end-to-end delay, and the encoded bit stream is delivered to the decoder over the constant delay network. The elapsed time between two time instances; capturing of a frame by the encoder and the displaying the frame by the decoder, is constant. This delay is independent of both the coding type of a frame (i.e. I, P and B), and of the network types the data is transmitted over (e.g. ATM, SONNET, DBS etc.).

Due to the packet based processing nature of the network, the instantaneous bit rate of the network is not always constant. Rather, in most of the cases, the bit rate is burst and introduces jitter. Consequently, the constant network delay model fails in most real time applications. Typically, a well-behaved system accommodates the network jitter by putting a large amount of smoothing buffer at the decoder front end so that the output of the smoothing buffer is constant.

The clock recovery scheme at the decoder end has been developed based on the constant network delay assumption, by transporting the periodically sampled encoder system time to the decoder as part of the coded bit stream. These sampled time stamps are used to adjust the decoder clock frequency by comparing against its local time stamps.

The difference between the two time stamps (one from encoder and the other from the decoder) is fed back to the clock controller for frequency adjustment. When the decoder clock continuously runs faster than the encoder clock, the decoder does not get enough data, causing the same frame to be displayed repeatedly to fill the gap. When the frequency of the decoder clock is lower than that of the encoder, the amount of data from encoder is more than the decoder can handle, causing the dropping of data (frames) in order to keep up with the encoder.

Therefore, to avoid losing or repeating the frames, the encoder and decoder share a common time-base that synchronizes the display rate of decoded audio, video and other associated data. This also reduces the number of buffers needed for maintaining the appropriate frame rates, regardless of the amount of the data required for encoding a frame.

The clock reference resides within the MPEG packet. Although, the decoder can use other means to synchronize to the encoder clock, the use of a digital phase locked loop circuitry (DPLL) is discussed in this section.

For the decoder to decode and to display an MPEG bit stream, it should be able to generate a clock whose characteristics are the same as the encoder clock that produces the bit stream. Normally, a PLL is composed of the following parts: a reference clock, a system clock, a frequency multiplier and divider, a charge pump and control, a low pass filter and a voltage controlled oscillator (VCO). In a typical MPEG system, the PLL circuit consists of the following with all frequency multiplier and divider constants being 1:

- 1. Periodically sampled encoder system time stamps (SCR or PCR) as the clock reference.
- 2. Decoder system clock as the system clock.
- 3. PCR and STC compare as phase and frequency detectors.
- 4. Digital low pass filter and scaler and 12-bit DAC as the charge pump and controllers.
- 5. Analog low pass filter as the low pass filter to the VCO.
- 6. VCXO as the VCO.

When the demultiplexer detects the PCR information from the bit stream, it samples the current system STC value as it extracts the last bit of the PCR value from the bit stream. The local STC value is subtracted from the extracted PCR and the difference is forwarded to the CPU for further computation. This value is used to provide fine adjustment to the 27MHz system clock frequency. The local STC up-counters are driven by this system clock, and have the same relationship as PCR or SCR. The counter values are sampled and compared whenever the availability of a PCR is detected from the bit stream.

Both SCR and PCR are sampled at the 27MHz encoder clock and transmitted in two pieces, a 33-bit PCR base, sampled at 90KHz and a 9-bit PCR extension, sampled at 27MHz.

Since the PCR is sampled at the time when the last bit of the 33-bit base leaves the encoder, the MPEG spec requires this value to be compared against the value of the STC counter when LSB of the PCR base enters the decoder.

11.4.6 Section/ECM Filtering

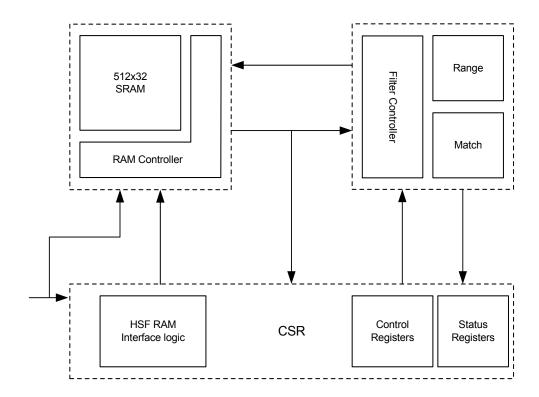


Figure 11-4 Hardware section filter

This demultiplexer supports various filtering schemes that applies to the sections from PSI/SI/PSIP and private tables. The section filtering schemes are typically applied to the clear text packets after the PID filtering and the de-scrambling operations. The section headers embedded in the payload part of all general PIDs from the PID bank as well as the dedicated, fixed PIDs can be filtered. The packets that need to be filtered are indicated by the saved packet attribute set during the PID filtering. Their packet types are defined as system or private data. The RISC collects this information by reading the TAG memory.

The hardware performs 32 match or range section-filtering for more complicated section header filtering. The RISC performs simple ECM filtering. However, the hardware can be set up to perform ECM filtering as well.

The section filter is a combination of 32 12-byte match/mask filters, or 12-byte range filters. Simultaneous operation of both types of section filters is permitted by indicating the applied filter type in the Link byte of the filter. The filtering vectors are stored in the HSF RAM.

11.4.6.1 Section Filtering

Match/Mask Section Filtering

Each of the 32 filters can be applied to any of the general PID entries in the PID bank or other dedicated PSI/SI PIDs from each channel. Each filter is made of 12 sets of match, mask and mode bytes. Each bit of the 12-byte section filter is configured to mask or match (either a positive match or a negative match as indicated in the mode vector). The filtering operation consists of a bit-wise comparison between the section header and a compare vector.

A byte is taken from the section header and compared bit-by-bit, against the corresponding byte from the compare vector. This bit-wise comparison is carried out in two independent operations, one for positive and one for negative match operation according to the mode vector setting. A logic state 1 in the mode vector represents a positive operation, and a logic state 0 represents a negative operation.

The comparison is considered a match if all the bits match in the positive mode and at least one of the bits does not match in the negative mode. A mask is applied bit-wise to the results from the comparison. The result vector is AND operated with the mask vector in order to sort out only the match result of interest.

It is possible to enable multiple filters for the same section header. In this case, all the applied filtering outputs will be logically ANDed (or ORed) by the RISC firmware. This results in the section to be posted to the memory if all (or any) the selected filters pass.

The HSF RAM holds the vectors for the section filtering. Each section filter consists of a set of 12-byte compare (C vector), mode (N vector), mask (M vector) values and a link. The link is used to chain the filters in a linked list for comparison. Linking increases the filtering depth, but the processing time is longer. To reduce the load of the RISC CPU, the firmware filters 4-byte at a time and to stops the filtering processing when a mismatch is found. It moves on to the next filter, if the filter is not the end-of-link.

Each filter consumes 0x30 bytes in the system address space. The filter starting address can be obtained quickly by multiplying the filter number n with 0x30 (n times 0x30).

Range Filter

The section range filtering compares the values of a byte from a section header, against a range specified for the byte in the section range filter. A section range filter consists of a minimum compare vector (Cmin), a maximum compare vector (Cmax), a minimum mask vector (MinM), a maximum mask vector (MaxM), function vector (FN) and a link value (LNK). Each of the Cmin and Cmax filtering vectors is 12-byte, FN is 12-bit and LNK is 8-bit, and are written by the applications in the HSF RAM area.

The operational range function is defined by the value of the FN byte. Each bit of the FN byte represents the corresponding compare byte range check operation. If a bit in FN is 0, then the operation on the corresponding byte is an 'inner range' check, or else it is an 'outer range' check.

11.4.6.2 ECM/EMM Filtering

The ECM filter mechanism allows selective transfer of new ECM messages to the external DRAM. It is used to eliminate the repeated ECM information from reaching the host CPU. The RISC supports up to 8 independent ECM filters, if the ECM bit CONSTRUCT follows the private section syntax format, or when the section is PES packetized as defined in ISO/ISE 13818-1.

The filtering will be performed by comparing the table id or the first byte of the PES payload. The STREAM_ID will be a part of the filtering process if the section is PES packetized. The host sets the 8-bit PID attributes, in addition to the 3-bit PID PTI for each ECM PID with proper values, before applying the ECM filters to the packets.

Usually, broadcasters transmit even or odd ECM packets, updated every few seconds in an alternating fashion. At power-up (or after user changes the programs), the host configures the PID attributes to receive both ECM in order to descramble the selected program properly. Once both the ECM's are obtained, the host configures the attribute settings again in order to receive the odd or even ECM information.

11.4.7 Arrival Time Stamp (ATS)

Some applications require generating non MPEG compliant transport streams. This block is used for controlling the input data flow based on this ATS information, or inserting ATS when desired. All ATS related control registers are located at D-Bus address of 0x3XXX range in order to allow the CPU to control directly.

11.4.7.1 ATS Extraction

Each stream processing channel in the SMP8654 provides the ATS extraction capability. When this feature is enabled, the first ATS value that the logic encounters is loaded onto the ATS counter. The ATS value of each subsequent packet is compared against the current value of the ATS counter. The result of this ATS comparison is reflected in the status bit. This bit value is used to control the output data rate of this block. The logic block will set the status bit when the ATS counter value is greater than the packet ATS.

The clock rate of the ATS counter can be programmed with 4 different options; 27MHz, system clock, system clock divided by 2 or, system clock divided by 4. Typically it is 27MHz.

11.4.7.2 ATS Pause

In order to accommodate possible trick mode operation, ATS pause control bit is provided. The ATS counter will not be incremented when this bit is set.

11.4.7.3 ATS Insertion

A 32-bit ATS counter value can also be attached to each incoming packet. The counter value and clock speed can be programmed with any desired value. The logic extracts the current value of ATS counter as TS sync is detected, and inserts the value at the beginning of the packet, constructing 192 byte packets. This feature, ATS insert can not be used when ATS extract is enabled.

11.4.8 DIT Detection

When the input TS stream is sourced from a digital storage devices saved over IEEE 1394, the stream may be a "partial TS". DVB-SI specification restricts PSI usage in partial TS stream. One of the mandated tables is DIT, whose presence in the stream indicates a discontinuity in time occurs in the stream. The hardware detects the presence of the table and generates an interrupt for handling of time discontinuity.

11.5 Pin Description

11.5.1 Transport Demultiplexer Pins

Table 11-6 SPI transport stream interface pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
TSIO_CLK	C3	I	SPI port clock input data is trans- ferred on the positive-going edge of this clock. When the port is operated in the SSI mode, this pin is not used.	К
TSI0_D0	D2	I	SPI input data bit 0 (LSB). When the port is operated in the SSI mode, this pin is the SSI0_DATA input.	J
TSI0_D1	D1	I	SPI input data bit 1. When the port is operated in the SSI mode, this pin is the SSIO_CLK input.	J
TSI0_D2	C1	I	SPI input data bit 2. When the port is operated in the SSI mode, this pin is the SSI0_SYNC input.	J
TSI0_D3	B1	I	SPI input data bit 3. When the port is operated in the SSI mode, this pin is the SSIO_VLD input.	J
TSI0_D4	E5	I	SPI input data bit 4. When the port is operated in the SSI mode, this pin is the SSI1_DATA input.	J
TSI0_D5	A2	I	SPI input data bit 5. When the port is operated in the SSI mode, this pin is the SSI1_CLK input.	J
TSI0_D6	В3	I	SPI input data bit 6. When the port is operated in the SSI mode, this pin is the SSI1_SYNC input.	J
TSI0_D7	C4	I	SPI input data bit 7 (MSB). When the port is operated in the SSI mode, this pin is the SSI1_VLD input.	J
TSI0_SYNC	C2	I	SPI sync (selectable polarity, active high/low). Identifies the first byte of a packet. When the port is operated in the SSI mode, this pin is not used.	J
TSI0_VLD	D3	I	SPI data valid (active high). Indicates valid transport packet bytes. When the port is operated in the SSI mode, this pin is not used.	J
TSI1_IN_DATA	E4	I	SSI2_DATA input	J
TSI1_IN_CLK	E3	I	SSI2_CLK input	J
TSI1_IN_SYNC	E2	I	SSI2_SYNC input	J
TSI1_IN_VLD	E1	I	SSI2_VLD input	J

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

11.6 Electrical Characteristics

11.6.1 Transport Demultiplexer AC Electrical Characteristics

11.6.1.1 8-bit Parallel (SPI) Input Mode

Table 11-7 Transport demultiplexer AC characteristics

Symbol	Units	Minimum	Typical	Maximum
T _{TSCLK}	ns	98.77		
T _{TSCLKH}	ns	3 x t _{SYSCLK}		
T _{TSCLKL}	ns	3 x t _{SYSCLK}		
T _{TSDSU}	ns	0		
T _{TSDH}	ns	4 x t _{SYSCLK}		

11.6.1.2 Serial Input (SSI) Mode

Table 11-8 Transport demultiplexer AC characteristics

Symbol	Units	Minimum	Typical	Maximum
T _{TSCLK}	ns	12.35		
T _{TSCLKH}	ns	4.9		
T _{TSCLKL}	ns	4.9		
T _{TSDSU}	ns	4		
T _{TSDH}	ns	1		

11.7 Timing Diagrams

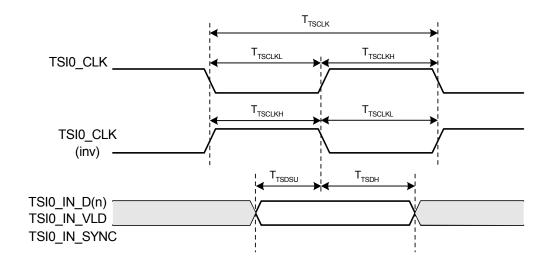


Figure 11-5 TS input timing diagram

11.7.1 Supported Transport Stream Input Interfaces

Serial Data Input Protocol

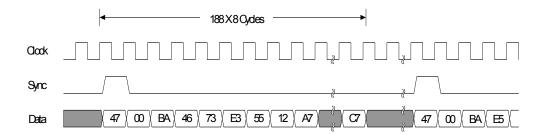


Figure 11-6 Clock, Data, Sync Protocol

The above figure shows the 3-pin interface protocol, where the sync signal indicates the start of a packet. With this protocol, the data is assumed to be valid for next 188 x 8 clock cycles, and any data after 188th clock cycle will be discarded until a new sync is asserted

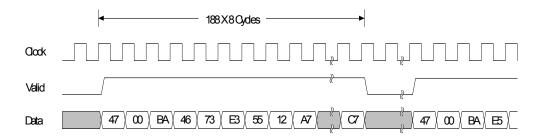


Figure 11-7 Clock, Data, Valid Protocol

Another possible 3-pin interface is shown in the above figure. In this protocol, the valid signal qualifies the data at the corresponding clock cycle. Since the channel decoder processes packet-wise data transfer in general, the valid signal is asserted during the entire packet time frame. However, with this protocol, intra-packet gaps are allowed, i.e., the channel decoder can de-assert the valid signal at any clock cycle.

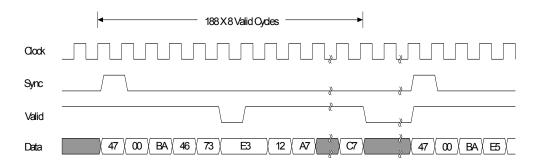


Figure 11-8 Clock, Data, Sync, Valid Protocol

The above figure shows a 4-pin input interface that is composed of clock, data, sync and valid signals. The assertion of sync indicates the start of a packet, while the valid signal qualifies the validity of the data at the clock cycle. Although, a de-assertion of the valid signal from the channel decoder during each packet time frame (i.e. 1503 subsequent cycles after sync is asserted) is unlikely due to the nature of FEC coder, this demultiplexer allows inter-packet gaps.

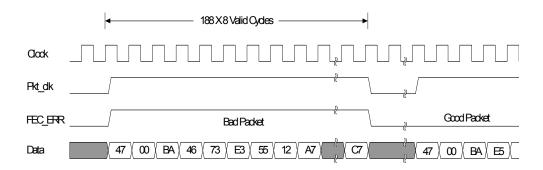


Figure 11-9 Traditional TS Input Protocol

The above figure depicts the traditional serial input interface where the interface is composed of four signals: channel clock (clock), clock valid (PKT_CLK), FEC error (FEC_ERR) and serial data (data). When the valid signal in the previous protocol is replaced with the inverted FEC error signal, this protocol can be treated the same as the clock, valid, data 3-pin interface protocol.

Parallel Data Input Protocol

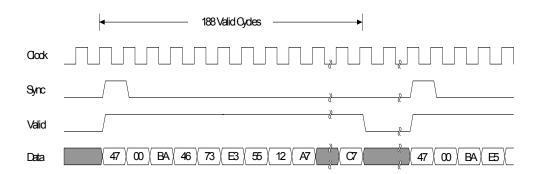


Figure 11-10 Parallel Input Protocol

The 11-pin parallel input protocol is shown in the above figure. This protocol consists of the same signals as in the clock, data, sync, data protocol except for the 8-bit data interface. Unlike the other serial input protocols, the 8-bit data is latched at each rising edge of the channel clock.

12

Pin Information

12.1 Pin Layout

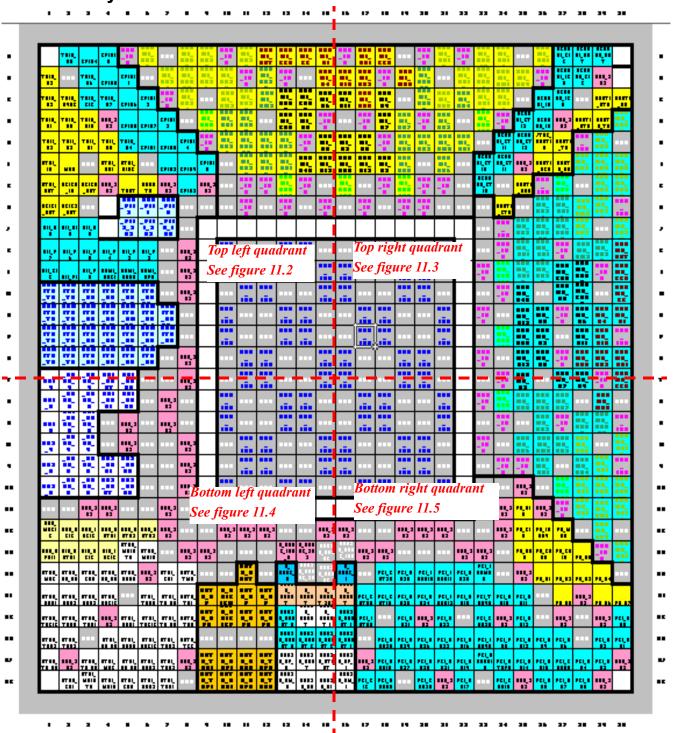


Figure 12-1 Overview of SMP8654 BGA (844 BGA)

7

10

11

12

13

14

15

DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 Α VDD_1V8 VDD_1V8 DQ29 DQS3 DQ27 DQ28 ODT CK# СK **A1** TSIO D5 GP104 GP1010 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 В VDD_1V8 VDD_1V8 DQ24 DQS3# DQ26 DQ30 DQ22 **A**4 TSIO D3 TSIO D6 GP105 GPI011 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 С VDD 1V8 TSIO_SY DQ31 DM3 DQ25 DM2 RAS# CAS# GP1012 TSIO_D2 NC TSIO_CLK TSIO_D7 GPI06 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 D VREFSS VDD_1V8 DQ16 DQS2 CS# A0 TSIO D1 TSI0_D0 TSI0_VLD VDD_3V3 GPI00 GP107 **GPIO13** L4 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 Ε VDD 1V8 VDD 1V8 DQ21 DQS2# DQ19 DQ20 **A8** GPI014 TSI1_D1 TSI0_D4 GPIO1 GPIO8 TSI1_D3 TSI1_D2 TSI1_D0 DRAM1 DRAM1 DRAM1 DRAM1 DRAM1 F XTAL_BU XTAL_DI DQ23 **DQ18** DQ17 A4H A13 GPI015 XTAL_IN WDO GPIO2 GPI09 F SC DRAM1 VDD_1V8 VDD_1V8 G **VREFSST** VDD_1V8 ROLKO_I RCLKO_C CTAL_OL Ν UΤ VDD 3V3 TEST RESET# VDD 3V3 GPI03 VDD 3V3 L3 NC VDD_1V8 VDD_1V8 VDD_1V8 Н CLK1_ORCLK3_C VSS_PL VSS_PLI VSS_PLL UΤ UΤ 2 1 0 NC J VDD_PLL VDD_PLL VDD_PLL V1_HS V1_VLD VI1_VS 2 3V3 1 3V3 0_1V0 VDD VDD VDD Κ 1V0 1V0 1V0 V11_P7 V11_P6 V11_P5 VI1_P4 V11_P3 VI1_P2 VDD_3V3 VDD VDD VDD L **HDMTX HDMTX HDMTX** 100 1V0 1V0 VII OLK **VI1 P1** VI1 P0 SDA HPD VDD 3V3 HDMTX **HDMTX** HDMITX HDMITX **HDMTX** HDMTX_ VDD_ VDD_ VDD_ М VDD_PLL VSS_PLI TXC_N VSS_TXC TXC_P AVSS_0 1V0 **1V0 1V0** A_3V3 Α VDD_3V3 HDMTX HDMTX HDMITX HDMITX HDMTX HDMITX HDMTX VDD_ VDD_ VDD_ Ν VDD_TX0 VDD_1V0 AVDD_1\ TX0 P TX0 N VSS_TX0 AMON 1V0 1V0 1V0 _3V3 0_0 0 HDMTX HDMTX **HDMTX** HDMITX HDMTX HDMITX HDMITX VDD_ VDD_ VDD_ Р VDD_TX1 VDD_1V0|AVDD_1V TX1_P TX1_N VSS_TX1 REXT 1V0 1V0 1V0 3V3 _1 0_1

Figure 12-2 SMP8654 pin diagram (top left quadrant)

Sigma Designs Confidential

1

2

3

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

VDD_1V8	DRAM1_ BA1	DRAM1_ CKE	VSS	VDD_1V8	DRAM1_ DQ13	VDD_1V8	DRAM1_ DQS1#	DRAM1_ DQ11	VSS	DRAM1_ DQ12	SCARD1_ CLK	SCARD1_ RST	SCARD0_ RST	
DRAM1_ A10	DRAM1_ BA2	VDD_1V8	DRAM1_ WE#	DRAM1_ DQS0#	VSS	DRAM1_ DQ15	DRAM1_ DQS1	DRAM1_ DM1	DRAM1_ DQ9	VDD_1V8	SCARD1_ FC#	SCARD0_ CLK	VDD_3V3	NC
DRAM1_ A11	DRAM1_ BA0	DRAM1_ A9	VSS	DRAM1_ DQS0	DRAM1_ DQ8	DRAM1_ DQ4	DRAM1_ DQ10	DRAM1_ DQ14	VSS	SCARD1_ IO	SCARDO_ FC#	VSS	UART1_D TR	UART1_R X
VSS	VDD_1V8	DRAM1_ A7	DRAM1_ DQ7	VDD_1V8	DRAM1_ DQ3	VSS	DRAM1_ VREFSST L0	VDD_1V8	SCARD1_ CTL2	SCARDO_ IO	VDD_3V3	_	UARTO_T X	DRAM0_ DQ29
DRAM1_ A2	DRAM1_ A5	VDD_1V8	DRAM1_ DQ5	DRAM1_ DQ2	DRAM1_ DM0	DRAM1_ DQ1	VSS	SCARD1_ CTL1	SCARD0_ CTL2	JTAG_UA RT1#	UART1_T X	VDD_ 1V8	DRAM0_ DQ24	VSS
DRAM1_ A5H	DRAM1_ A12	DRAM1_ A3	DRAM1_ DQ0	VSS	DRAM1_ DQ6	VSS	SCARD1_ CTL0	SCARD0_ CTL1	VDD_3V3		UARTO_R X	DRAM0_ DQ31	DRAM0_ DQS3#	DRAMO_ DQS3
DRAM1_ VREFSST L2	VSS	VDD_1V8	DRAM1_ VREFSST L1	VDD_1V8	VDD_1V8	VSS	SCARDO_ CTL0	VSS	UART1_D SR	VDD_ 1V8	DRAMO_ VREFSST L4	VSS	DRAM0_ DQ26	DRAM0_ DQ27
VSS	VDD_1V8	VSS	VDD_1V8	VDD_1V8	VSS	VSS	VSS	UART1_C TS	VSS	DRAM0_ DQ21	DRAM0_ DQ16	DRAMO_ DM3	DRAM0_ DQ30	VDD_ 1V8
							VSS	VDD_ 1V8	DRAMO_ DQ23	DRAM0_ DQS2#	DRAM0_ DQS2	DRAM0_ DQ25	VSS	DRAM0_ DQ28
VSS	VDD_ 1V0	VDD_ 1V0	VSS	VSS	VDD_ 1V0		VSS	VDD_1V8	DRAMO_ DQ18	DRAM0_ DQ19	VDD_1V8	DRAMO_ DM2	DRAM0_ DQ22	DRAM0_ ODT
VDD_ 1V0	VSS	VSS	VDD_ 1V0	VDD_ 1V0	VSS		VDD_1V8	DRAMO_ VREFSST L3	DRAM0_ DQ17	DRAM0_ DQ20	DRAM0_ CS#	DRAM0_ RAS#	VDD_1V8	DRAM0_ CK#
VDD_ 1V0	VSS	VSS	VDD_ 1V0	VDD_ 1V0	VSS		VSS	VDD_1V8	DRAM0_ A4H	VSS	DRAMO_ A0	DRAM0_ CAS#	VSS	DRAM0_ CK
VSS	VDD_ 1V0	VDD_ 1V0	VSS	VSS	VDD_ 1V0		VDD_1V8	VSS	DRAM0_ A13	DRAM0_ A8	VDD_1V8	DRAM0_ A6	DRAM0_ A4	DRAM0_ A1
VSS	VDD_ 1V0	VDD_ 1V0	VSS	VSS	VDD_ 1V0		VSS	DRAMO_ VREFSST L2	DRAM0_ A5H	DRAM0_ A2	VSS	DRAM0_ A11	DRAM0_ A10	VDD_ 1V8

Figure 12-3 SMP8654 pin diagram (top right quadrant)

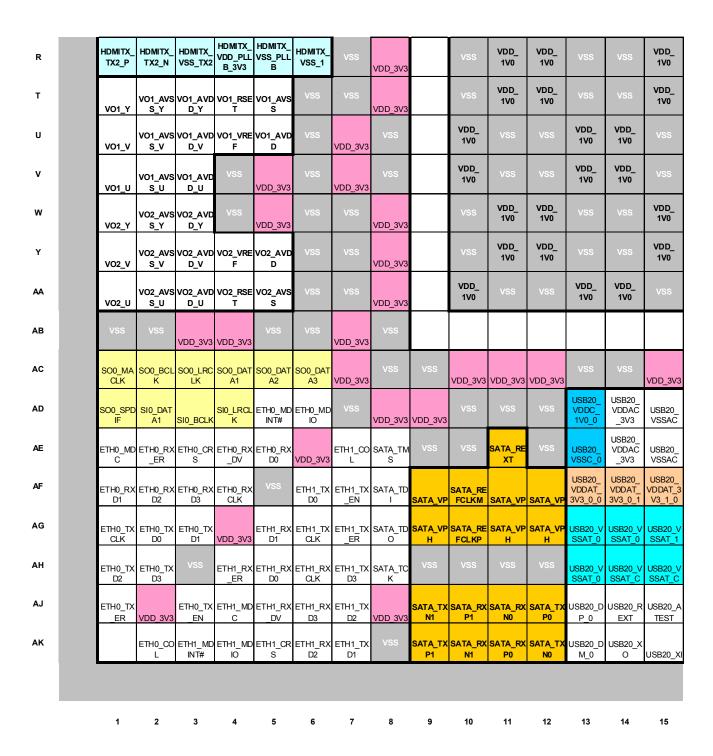


Figure 12-4 SMP8654 pin diagram (bottom left quadrant)

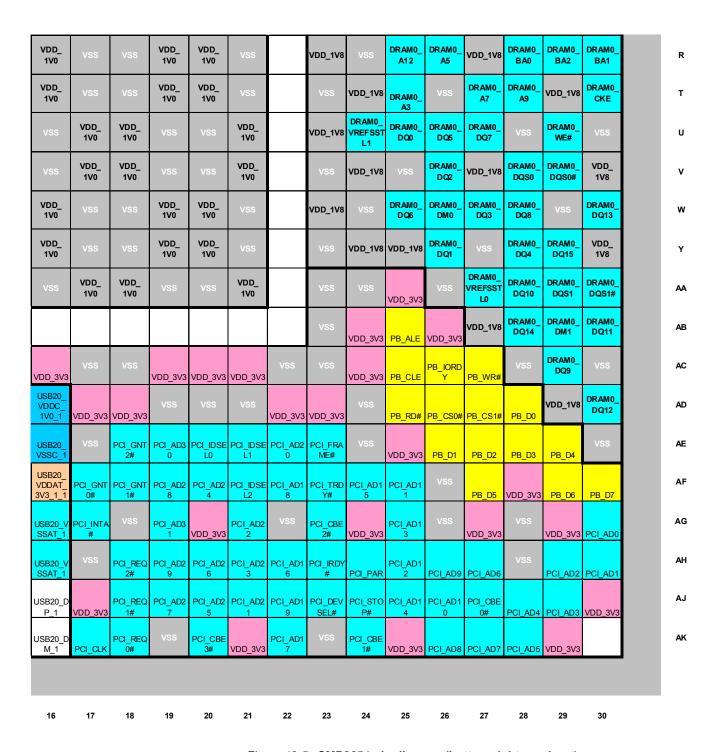


Figure 12-5 SMP8654 pin diagram (bottom right quadrant)

12.2 Pin Listing by Pin Id

Table 12-1. Pin listing by pin id

Pin Id	Pin Name
A1	-
A10	VDD_1V8
A11	DRAM1_DQ28
A12	DRAM1_ODT
A13	DRAM1_CK#
A14	DRAM1_CK
A15	DRAM1_A1
A16	VDD_1V8
A17	DRAM1_BA1
A18	DRAM1_CKE
A19	VSS
A2	TSI0_D5
A20	VDD_1V8
A21	DRAM1_DQ13
A22	VDD_1V8
A23	DRAM1_DQS1#
A24	DRAM1_DQ11
A25	VSS
A26	DRAM1_DQ12
A27	SCARD1_CLK
A28	SCARD1_RST
A29	SCARD0_RST
А3	GPIO4
A30	-
A4	GPIO10
A5	VDD_1V8
A6	DRAM1_DQ29
A7	VSS

Pin Id	Pin Name
A8	DRAM1_DQS3
A9	DRAM1_DQ27
AA1	VO2_U
AA10	VDD_1V0
AA11	VSS
AA12	VSS
AA13	VDD_1V0
AA14	VDD_1V0
AA15	VSS
AA16	VSS
AA17	VDD_1V0
AA18	VDD_1V0
AA19	VSS
AA2	VO2_AVSS_U
AA20	VSS
AA21	VDD_1V0
AA23	VSS
AA24	VSS
AA25	VDD_3V3
AA26	VSS
AA27	DRAM0_VREFSSTL0
AA28	DRAM0_DQ10
AA29	DRAM0_DQS1
AA3	VO2_AVDD_U
AA30	DRAM0_DQS1#
AA4	VO2_RSET
AA5	VO2_AVSS
AA6	VSS

Pin Id	Pin Name
AA7	VSS
AA8	VDD_3V3
AB1	VSS
AB2	VSS
AB23	VSS
AB24	VDD_3V3
AB25	FLASH_ALE
AB26	VDD_3V3
AB27	VDD_1V8
AB28	DRAM0_DQ14
AB29	DRAM0_DM1
AB3	VDD_3V3
AB30	DRAM0_DQ11
AB4	VDD_3V3
AB5	VSS
AB6	VSS
AB7	VDD_3V3
AB8	VSS
AC1	SO0_MACLK
AC10	VDD_3V3
AC11	VDD_3V3
AC12	VDD_3V3
AC13	VSS
AC14	VSS
AC15	VDD_3V3
AC16	VDD_3V3
AC17	VSS

VSS

AC18

Pin Id	Pin Name	Pin Id	Pin Name	Pin Id	Pin Name
AC19	VDD_3V3	AD19	VSS	AE2	ETH0_RX_ER
AC2	SO0_BCLK	AD2	SIO_DATA1	AE20	PCI_IDSEL0
AC20	VDD_3V3	AD20	VSS	AE21	PCI_IDSEL1
AC21	VDD_3V3	AD21	VSS	AE22	PCI_AD20
AC22	VSS	AD22	VDD_3V3	AE23	PCI_FRAME#
AC23	VSS	AD23	VDD_3V3	AE24	VSS
AC24	VDD_3V3	AD24	VSS	AE25	VDD_3V3
AC25	FLASH_CLE	AD25	FLASH_RD#	AE26	FLASH_D1
AC26	FLASH_IORDY	AD26	FLASH_CS0#	AE27	FLASH_D2
AC27	FLASH_WR#	AD27	FLASH_CS1#	AE28	FLASH_D3
AC28	VSS	AD28	FLASH_D0	AE29	FLASH_D4
AC29	DRAM0_DQ9	AD29	VDD_1V8	AE3	ETH0_CRS
AC3	SO0_LRCLK	AD3	SI0_BCLK	AE30	VSS
AC30	VSS	AD30	DRAM0_DQ12	AE4	ETH0_RX_DV
AC4	SO0_DATA1	AD4	SI0_LRCLK	AE5	ETH0_RXD0
AC5	SO0_DATA2	AD5	ETH0_MDINT#	AE6	VDD_3V3
AC6	SO0_DATA3	AD6	ETH0_MDIO	AE7	ETH1_COL
AC7	VDD_3V3	AD7	VSS	AE8	SATA_TMS
AC8	VSS	AD8	VDD_3V3	AE9	VSS
AC9	VSS	AD9	VDD_3V3	AF1	ETH0_RXD1
AD1	SO0_SPDIF	AE1	ETH0_MDC	AF10	SATA_REFCLKM
AD10	VSS	AE10	VSS	AF11	SATA_VP
AD11	VSS	AE11	SATA_REXT	AF12	SATA_VP
AD12	VSS	AE12	VSS	AF13	USB20_VDDAT_3V3 _0_0
AD13	USB20_VDDC_1V0_ 0	AE13	USB20_VSSC_0	AF14	USB20_VDDAT_3V3
AD14	USB20_VDDAC_3V	AE14	USB20_VDDAC_3V		_0_1
	3	AE15	USB20_VSSAC	AF15	USB20_VDDAT_3V3 _1_0
AD15	USB20_VSSAC	AE16	USB20_VSSC_1	AF16	USB20_VDDAT_3V3
AD16	USB20_VDDC_1V0_ 1	AE17	VSS		_1_1
AD17	VDD_3V3	AE18	PCI_GNT2#	AF17	PCI_GNT0#
AD18	VDD_3V3	AE19	PCI_AD30	AF18	PCI_GNT1#
				AF19	PCI_AD28

Pin Id	Pin Name	Pin Id	Pin Name	Pin Id	Pin Name
AF2	ETH0_RXD2	AG20	VDD_3V3	AH21	PCI_AD23
AF20	PCI_AD24	AG21	PCI_AD22	AH22	PCI_AD16
AF21	PCI_IDSEL2	AG22	VSS	AH23	PCI_IRDY#
AF22	PCI_AD18	AG23	PCI_CBE2#	AH24	PCI_PAR
AF23	PCI_TRDY#	AG24	VDD_3V3	AH25	PCI_AD12
AF24	PCI_AD15	AG25	PCI_AD13	AH26	PCI_AD9
AF25	PCI_AD11	AG26	VSS	AH27	PCI_AD6
AF26	VSS	AG27	VDD_3V3	AH28	VSS
AF27	FLASH_D5	AG28	VSS	AH29	PCI_AD2
AF28	VDD_3V3	AG29	VDD_3V3	AH3	VSS
AF29	FLASH_D6	AG3	ETH0_TXD1	AH30	PCI_AD1
AF3	ETH0_RXD3	AG30	PCI_AD0	AH4	ETH1_RX_ER
AF30	FLASH_D7	AG4	VDD_3V3	AH5	ETH1_RXD0
AF4	ETH0_RXCLK	AG5	ETH1_RXD1	AH6	ETH1_RXCLK
AF5	VSS	AG6	ETH1_TXCLK	AH7	ETH1_TXD3
AF6	ETH1_TXD0	AG7	ETH1_TX_ER	AH8	SATA_TCK
AF7	ETH1_TX_EN	AG8	SATA_TDO	AH9	VSS
AF8	SATA_TDI	AG9	SATA_VPH	AJ1	ETH0_TX_ER
AF9	SATA_VP	AH1	ETH0_TXD2	AJ10	SATA_RXP1
AG1	ETH0_TXCLK	AH10	VSS	AJ11	SATA_RXN0
AG10	SATA_REFCLKP	AH11	VSS	AJ12	SATA_TXP0
AG11	SATA_VPH	AH12	VSS	AJ13	USB20_DP_0
AG12	SATA_VPH	AH13	USB20_VSSAT_0	AJ14	USB20_REXT
AG13	USB20_VSSAT_0	AH14	USB20_VSSAT_C	AJ15	USB20_ATEST
AG14	USB20_VSSAT_0	AH15	USB20_VSSAT_C	AJ16	USB20_DP_1
AG15	USB20_VSSAT_1	AH16	USB20_VSSAT_1	AJ17	VDD_3V3
AG16	USB20_VSSAT_1	AH17	VSS	AJ18	PCI_REQ1#
AG17	PCI_INTA#	AH18	PCI_REQ2#	AJ19	PCI_AD27
AG18	VSS	AH19	PCI_AD29	AJ2	VDD_3V3
AG19	PCI_AD31	AH2	ETH0_TXD3	AJ20	PCI_AD25
AG2	ETH0_TXD0	AH20	PCI_AD26	AJ21	PCI_AD21
					

Pin Id	Pin Name	Pin Id	Pin Name	Pin Id	Pin Name
AJ22	PCI_AD19	AK23	VSS	B24	DRAM1_DM1
AJ23	PCI_DEVSEL#	AK24	PCI_CBE1#	B25	DRAM1_DQ9
AJ24	PCI_STOP#	AK25	VDD_3V3	B26	VDD_1V8
AJ25	PCI_AD14	AK26	PCI_AD8	B27	SCARD1_FC#
AJ26	PCI_AD10	AK27	PCI_AD7	B28	SCARD0_CLK
AJ27	PCI_CBE0#	AK28	PCI_AD5	B29	VDD_3V3
AJ28	PCI_AD4	AK29	VDD_3V3	В3	TSI0_D6
AJ29	PCI_AD3	AK3	ETH1_MDINT#	B30	NC
АЈЗ	ETH0_TX_EN	AK30	-	B4	GPIO5
AJ30	VDD_3V3	AK4	ETH1_MDIO	B5	GPIO11
AJ4	ETH1_MDC	AK5	ETH1_CRS	В6	VSS
AJ5	ETH1_RX_DV	AK6	ETH1_RXD2	B7	DRAM1_DQ24
AJ6	ETH1_RXD3	AK7	ETH1_TXD1	B8	DRAM1_DQS3#
АЈ7	ETH1_TXD2	AK8	VSS	В9	DRAM1_DQ26
AJ8	VDD_3V3	AK9	SATA_TXP1	C1	TSI0_D2
AJ9	SATA_TXN1	B1	TSI0_D3	C10	DRAM1_DM3
AK1	-	B10	DRAM1_DQ30	C11	DRAM1_DQ25
AK10	SATA_RXN1	B11	VDD_1V8	C12	DRAM1_DM2
AK11	SATA_RXP0	B12	DRAM1_DQ22	C13	DRAM1_RAS#
AK12	SATA_TXN0	B13	VDD_1V8	C14	DRAM1_CAS#
AK13	USB20_DM_0	B14	VSS	C15	DRAM1_A6
AK14	USB20_XO	B15	DRAM1_A4	C16	DRAM1_A11
AK15	USB20_XI	B16	DRAM1_A10	C17	DRAM1_BA0
AK16	USB20_DM_1	B17	DRAM1_BA2	C18	DRAM1_A9
AK17	PCI_CLK	B18	VDD_1V8	C19	VSS
AK18	PCI_REQ0#	B19	DRAM1_WE#	C2	TSI0_SYNC
AK19	VSS	B2	VSS	C20	DRAM1_DQS0
AK2	ETH0_COL	B20	DRAM1_DQS0#	C21	DRAM1_DQ8
AK20	PCI_CBE3#	B21	VSS	C22	DRAM1_DQ4
AK21	VDD_3V3	B22	DRAM1_DQ15	C23	DRAM1_DQ10
AK22	PCI_AD17	B23	DRAM1_DQS1	C24	DRAM1_DQ14

Pin Id	Pin Name	Pin Id	Pin Name	Pin Id	Pin Name
C25	VSS	D26	SCARD0_IO	E27	UART1_TX
C26	SCARD1_IO	D27	VDD_3V3	E28	VDD_1V8
C27	SCARD0_FC#	D28	UART1_RTS	E29	DRAM0_DQ24
C28	VSS	D29	UART0_TX	E3	TSI1_IN_CLK
C29	UART1_DTR	D3	TSI0_VLD	E30	VSS
C3	TSI0_CLK	D30	DRAM0_DQ29	E4	TSI1_IN_DATA
C30	UART1_RX	D4	VDD_3V3	E5	TSI0_D4
C4	TSI0_D7	D5	GPIO0	E6	GPIO1
C5	GPIO6	D6	GPIO7	E7	GPIO8
C6	GPIO12	D7	GPIO13	E8	GPIO14
C7	VDD_1V8	D8	VSS	E9	VDD_1V8
C8	DRAM1_DQ31	D9	DRAM1_VREFSSTL4	F1	XTAL_IN
C9	VSS	E1	TSI1_IN_VLD	F10	VSS
D1	TSI0_D1	E10	DRAM1_DQ21	F11	DRAM1_DQ23
D10	DRAM1_DQ16	E11	DRAM1_DQS2#	F12	DRAM1_DQ18
D11	DRAM1_DQS2	E12	DRAM1_DQ19	F13	DRAM1_DQ17
D12	VSS	E13	DRAM1_DQ20	F14	DRAM1_A4H
D13	DRAM1_CS#	E14	VDD_1V8	F15	DRAM1_A13
D14	DRAM1_A0	E15	DRAM1_A8	F16	DRAM1_A5H
D15	VDD_1V8	E16	DRAM1_A2	F17	DRAM1_A12
D16	VSS	E17	DRAM1_A5	F18	DRAM1_A3
D17	VDD_1V8	E18	VDD_1V8	F19	DRAM1_DQ0
D18	DRAM1_A7	E19	DRAM1_DQ5	F2	WDO
D19	DRAM1_DQ7	E2	TSI1_IN_SYNC	F20	VSS
D2	TSI0_D0	E20	DRAM1_DQ2	F21	DRAM1_DQ6
D20	VDD_1V8	E21	DRAM1_DM0	F22	VSS
D21	DRAM1_DQ3	E22	DRAM1_DQ1	F23	SCARD1_CTL0
D22	VSS	E23	VSS	F24	SCARD0_CTL1
D23	DRAM1_VREFSSTL0	E24	SCARD1_CTL1	F25	VDD_3V3
D24	VDD_1V8	E25	SCARD0_CTL2	F26	UART1_DCD
D25	SCARD1_CTL2	E26	JTAG_UART1#	F27	UARTO_RX

Pin Id	Pin Name	Pin Id	Pin Name	Pin Id	Pin Name
F28	DRAM0_DQ31	G29	DRAM0_DQ26	H3	VSS
F29	DRAM0_DQS3#	G3	RCLK0_OUT	H30	VDD_1V8
F3	VSS	G30	DRAM0_DQ27	H4	NC
F30	DRAM0_DQS3	G4	VDD_3V3	H5	VSS_PLL2
F4	XTAL_BUF	G5	TEST	H6	VSS_PLL1
F5	XTAL_DISC	G6	RESET#	H7	VSS_PLL0
F6	VSS	G7	VDD_3V3	H8	VSS
F7	GPIO2	G8	GPIO3	H9	VSS
F8	GPIO9	G9	VDD_3V3	J1	VI1_HS
F9	GPIO15	H1	RCLK1_OUT	J2	VI1_VLD
G1	XTAL_OUT	H10	VSS	J23	VSS
G10	VSS	H11	VDD_1V8	J24	VDD_1V8
G11	VDD_1V8	H12	VSS	J25	DRAM0_DQ23
G12	VDD_1V8	H13	VDD_1V8	J26	DRAM0_DQS2#
G13	DRAM1_VREFSSTL3	H14	VSS	J27	DRAM0_DQS2
G14	VDD_1V8	H15	VDD_1V8	J28	DRAM0_DQ25
G15	VSS	H16	VSS	J29	VSS
G16	DRAM1_VREFSSTL2	H17	VDD_1V8	J3	VI1_VS
G17	VSS	H18	VSS	J30	DRAM0_DQ28
G18	VDD_1V8	H19	VDD_1V8	J4	NC
G19	DRAM1_VREFSSTL1	H2	RCLK3_OUT	J5	VDD_PLL2_3V3
G2	RCLK0_IN	H20	VDD_1V8	J6	VDD_PLL1_3V3
G20	VDD_1V8	H21	VSS	J7	VDD_PLL0_1V0
G21	VDD_1V8	H22	VSS	J8	VSS
G22	VSS	H23	VSS	K1	VI1_P7
G23	SCARD0_CTL0	H24	UART1_CTS	K10	VDD_1V0
G24	VSS	H25	VSS	K11	VSS
G25	UART1_DSR	H26	DRAM0_DQ21	K12	VSS
G26	VDD_1V8	H27	DRAM0_DQ16	K13	VDD_1V0
G27	DRAM0_VREFSSTL4	H28	DRAM0_DM3	K14	VDD_1V0
G28	VSS	H29	DRAM0_DQ30	K15	VSS

K16 VSS K17 VDD_1V0 K18 VDD_1V0 K19 VSS K2 VI1_P6 K20 VSS K21 VDD_1V0 K23 VSS K24 VDD_1V8 K25 DRAM0_DQ18 K26 DRAM0_DQ19 K27 VDD_1V8 K28 DRAM0_DM2 K29 DRAM0_DQ22 K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L17 VSS L18 VSS	Pin Id	Pin Name
K18 VDD_1V0 K19 VSS K2 VI1_P6 K20 VSS K21 VDD_1V0 K23 VSS K24 VDD_1V8 K25 DRAM0_DQ19 K27 VDD_1V8 K28 DRAM0_DM2 K29 DRAM0_DQ22 K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L17 VSS	K16	VSS
K19 VSS K2 VI1_P6 K20 VSS K21 VDD_1V0 K23 VSS K24 VDD_1V8 K25 DRAM0_DQ19 K27 VDD_1V8 K28 DRAM0_DM2 K29 DRAM0_DQ22 K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L17 VSS	K17	VDD_1V0
K2 VI1_P6 K20 VSS K21 VDD_1V0 K23 VSS K24 VDD_1V8 K25 DRAM0_DQ18 K26 DRAM0_DQ19 K27 VDD_1V8 K28 DRAM0_DM2 K29 DRAM0_DQ22 K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L17 VSS	K18	VDD_1V0
K20 VSS K21 VDD_1V0 K23 VSS K24 VDD_1V8 K25 DRAM0_DQ18 K26 DRAM0_DQ19 K27 VDD_1V8 K28 DRAM0_DM2 K29 DRAM0_DQ22 K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L17 VSS	K19	VSS
K21 VDD_1V0 K23 VSS K24 VDD_1V8 K25 DRAM0_DQ18 K26 DRAM0_DQ19 K27 VDD_1V8 K28 DRAM0_DM2 K29 DRAM0_DQ22 K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L17 VSS	K2	VI1_P6
K23 VSS K24 VDD_1V8 K25 DRAMO_DQ18 K26 DRAMO_DQ19 K27 VDD_1V8 K28 DRAMO_DM2 K29 DRAMO_DQ22 K3 VI1_P5 K30 DRAMO_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K20	VSS
K24 VDD_1V8 K25 DRAM0_DQ18 K26 DRAM0_DQ19 K27 VDD_1V8 K28 DRAM0_DM2 K29 DRAM0_DQ22 K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L17 VSS	K21	VDD_1V0
K25 DRAMO_DQ18 K26 DRAMO_DQ19 K27 VDD_1V8 K28 DRAMO_DM2 K29 DRAMO_DQ22 K3 VI1_P5 K30 DRAMO_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L17 VSS	K23	VSS
K26 DRAMO_DQ19 K27 VDD_1V8 K28 DRAMO_DM2 K29 DRAMO_DQ22 K3 VI1_P5 K30 DRAMO_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K24	VDD_1V8
K27 VDD_1V8 K28 DRAM0_DM2 K29 DRAM0_DQ22 K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K25	DRAM0_DQ18
K28 DRAMO_DM2 K29 DRAMO_DQ22 K3 VI1_P5 K30 DRAMO_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K26	DRAM0_DQ19
K29 DRAMO_DQ22 K3 VI1_P5 K30 DRAMO_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K27	VDD_1V8
K3 VI1_P5 K30 DRAM0_ODT K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K28	DRAM0_DM2
K30 DRAMO_ODT	K29	DRAM0_DQ22
K4 VI1_P4 K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K3	VI1_P5
K5 VI1_P3 K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K30	DRAM0_ODT
K6 VI1_P2 K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K4	VI1_P4
K7 VSS K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K5	VI1_P3
K8 VDD_3V3 L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K6	VI1_P2
L1 VI1_CLK L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K7	VSS
L10 VSS L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	K8	VDD_3V3
L11 VDD_1V0 L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	L1	VI1_CLK
L12 VDD_1V0 L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	L10	VSS
L13 VSS L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	L11	VDD_1V0
L14 VSS L15 VDD_1V0 L16 VDD_1V0 L17 VSS	L12	VDD_1V0
L15 VDD_1V0 L16 VDD_1V0 L17 VSS	L13	VSS
L16 VDD_1V0 L17 VSS	L14	VSS
L17 VSS	L15	VDD_1V0
	L16	VDD_1V0
L18 VSS	L17	VSS
	L18	VSS

Pin Id	Pin Name
L19	VDD_1V0
L2	VI1_P1
L20	VDD_1V0
L21	VSS
L23	VDD_1V8
L24	DRAM0_VREFSSTL3
L25	DRAM0_DQ17
L26	DRAM0_DQ20
L27	DRAM0_CS#
L28	DRAM0_RAS#
L29	VDD_1V8
L3	VI1_P0
L30	DRAM0_CK#
L4	HDMITX_SCL
L5	HDMITX_SDA
L6	HDMITX_HPD
L7	VSS
L8	VDD_3V3
M1	HDMITX_TXC_P
M10	VSS
M11	VDD_1V0
M12	VDD_1V0
M13	VSS
M14	VSS
M15	VDD_1V0
M16	VDD_1V0
M17	VSS
M18	VSS
M19	VDD_1V0
M2	HDMITX_TXC_N
M20	VDD_1V0

Pin Id	Pin Name
M21	VSS
M23	VSS
M24	VDD_1V8
M25	DRAM0_A4H
M26	VSS
M27	DRAMO_A0
M28	DRAM0_CAS#
M29	VSS
M3	HDMITX_VSS_TXC
M30	DRAM0_CK
M4	HDMITX_VDD_PLLA _3V3
M5	HDMITX_VSS_PLLA
M6	HDMITX_AVSS_0
M7	VSS
M8	VDD_3V3
N1	HDMITX_TX0_P
N10	VDD_1V0
N11	VSS
N12	VSS
N13	VDD_1V0
N14	VDD_1V0
N15	VSS
N16	VSS
N17	VDD_1V0
N18	VDD_1V0
N19	VSS
N2	HDMITX_TX0_N
N20	VSS
N21	VDD_1V0
N23	VDD_1V8
N24	VSS

Pin Id	Pin Name	Pin Id	Pin Name	Pin Id	Pin Name
N25	DRAM0_A13	P27	VSS	R29	DRAM0_BA2
N26	DRAM0_A8	P28	DRAM0_A11	R3	HDMITX_VSS_TX2
N27	VDD_1V8	P29	DRAM0_A10	R30	DRAM0_BA1
N28	DRAM0_A6	P3	HDMITX_VSS_TX1	R4	HDMITX_VDD_PLLB _3V3
N29	DRAM0_A4	P30	VDD_1V8	 R5	HDMITX_VSS_PLLB
N3	HDMITX_VSS_TX0	P4	HDMITX_VDD_TX1_ 3V3	R6	HDMITX_VSS_1
N30	DRAM0_A1	 P5	HDMITX_REXT	R7	VSS
N4	HDMITX_VDD_TX0_ 3V3	P6	HDMITX_VDD_1V0_	R8	VDD_3V3
 N5			1	T1	-
N6	HDMITX_AMON HDMITX_VDD_1V0_	P7	HDMITX_AVDD_1V 0_1	T10	V01_Y VSS
INO	0	P8	VSS		
N7	HDMITX_AVDD_1V 0_0	R1	HDMITX_TX2_P	T11	VDD_1V0
N8	VSS	R10	VSS	T12	VDD_1V0
P1	HDMITX_TX1_P	R11	VDD_1V0	T13	VSS
P10	VDD_1V0	R12	VDD_1V0	T14	VSS
P11	VSS	R13	VSS	T15	VDD_1V0
P12	VSS	R14	VSS	T16	VDD_1V0
P13	VDD_1V0	R15	VDD_1V0	T17	VSS
P14	VDD_1V0	R16	VDD_1V0	T18	VSS
P15	VSS	R17	VSS	T19	VDD_1V0
P16	VSS	R18	VSS	T2	VO1_AVSS_Y
P17	VDD 1V0	R19	VDD_1V0	T20	VDD_1V0
P18	VDD_1V0	R2	HDMITX_TX2_N	T21	VSS
P19	VSS	R20		T23	VSS
P19 ————————————————————————————————————		R21	VDD_1V0 VSS	T24	VDD_1V8
	HDMITX_TX1_N			T25	DRAM0_A3
P20	VSS	R23	VDD_1V8	T26	VSS
P21	VDD_1V0	R24	VSS	T27	DRAM0_A7
P23	VSS	R25	DRAMO_A12	T28	DRAM0_A9
P24	DRAMO_VREFSSTL2	R26	DRAMO_A5	T29	VDD_1V8
P25	DRAMO_A5H	R27	VDD_1V8	T3	VO1_AVDD_Y
P26	DRAM0_A2	R28	DRAM0_BA0	T30	DRAM0_CKE

Pin Id	Pin Name	Pin Id	Pin Name	Pin Id	Pin Name
T4	VO1_RSET	U7	VDD_3V3	W10	VSS
T5	VO1_AVSS	U8	VSS	W11	VDD_1V0
T6	VSS	V1	VO1_U	W12	VDD_1V0
T7	VSS	V10	VDD_1V0	W13	VSS
T8	VDD_3V3	V11	VSS	W14	VSS
U1	VO1_V	V12	VSS	W15	VDD_1V0
U10	VDD_1V0	V13	VDD_1V0	W16	VDD_1V0
U11	VSS	V14	VDD_1V0	W17	VSS
U12	VSS	V15	VSS	W18	VSS
U13	VDD_1V0	V16	VSS	W19	VDD_1V0
U14	VDD_1V0	V17	VDD_1V0	W2	VO2_AVSS_Y
U15	VSS	V18	VDD_1V0	W20	VDD_1V0
U16	VSS	V19	VSS	W21	VSS
U17	VDD_1V0	V2	VO1_AVSS_U	W23	VDD_1V8
U18	VDD_1V0	V20	VSS	W24	VSS
U19	VSS	V21	VDD_1V0	W25	DRAM0_DQ6
U2	VO1_AVSS_V	V23	VSS	W26	DRAM0_DM0
U20	VSS	V24	VDD_1V8	W27	DRAM0_DQ3
U21	VDD_1V0	V25	VSS	W28	DRAM0_DQ8
U23	VDD_1V8	V26	DRAM0_DQ2	W29	VSS
U24	DRAM0_VREFSSTL1	V27	VDD_1V8	W3	VO2_AVDD_Y
U25	DRAM0_DQ0	V28	DRAM0_DQS0	W30	DRAM0_DQ13
U26	DRAM0_DQ5	V29	DRAM0_DQS0#	W4	VSS
U27	DRAM0_DQ7	V3	VO1_AVDD_U	W5	VDD_3V3
U28	VSS	V30	VDD_1V8	W6	VSS
U29	DRAM0_WE#	V4	VSS	W7	VSS
U3	VO1_AVDD_V	V5	VDD_3V3	W8	VDD_3V3
U30	VSS	V6	VSS	Y1	VO2_V
U4	VO1_VREF	V7	VDD_3V3	Y10	VSS
U5	VO1_AVDD	V8	VSS	Y11	VDD_1V0
U6	VSS	W1	VO2_Y	Y12	VDD_1V0

Pin Id	Pin Name
Y13	VSS
Y14	VSS
Y15	VDD_1V0
Y16	VDD_1V0
Y17	VSS
Y18	VSS
Y19	VDD_1V0
Y2	VO2_AVSS_V
Y20	VDD_1V0
Y21	VSS
Y23	VSS
Y24	VDD_1V8
Y25	VDD_1V8
Y26	DRAM0_DQ1
Y27	VSS
Y28	DRAM0_DQ4
Y29	DRAM0_DQ15
Y3	VO2_AVDD_V
Y30	VDD_1V8
Y4	VO2_VREF
Y5	VO2_AVDD
Y6	VSS
Y7	VSS
Y8	VDD_3V3

12.3 Pin Listing by Pin Name

Table 12-2. Pin listing by pin name

Pin Name	Pin Id
-	A1
-	A30
-	AK1
-	AK30
DRAMO_A0	M27
DRAMO_A1	N30
DRAMO_A10	P29
DRAMO_A11	P28
DRAM0_A12	R25
DRAM0_A13	N25
DRAM0_A2	P26
DRAM0_A3	T25
DRAM0_A4	N29
DRAM0_A4H	M25
DRAMO_A5	R26
DRAM0_A5H	P25
DRAM0_A6	N28
DRAM0_A7	T27
DRAM0_A8	N26
DRAM0_A9	T28
DRAM0_BA0	R28
DRAM0_BA1	R30
DRAM0_BA2	R29
DRAMO_CAS#	M28
DRAM0_CK	M30
DRAM0_CK#	L30
DRAM0_CKE	T30
DRAM0_CS#	L27

DRAMO_DM0 W26 DRAM0_DM1 AB29 DRAM0_DM2 K28 DRAM0_DM3 H28	
DRAM0_DM2 K28	
DRAM0_DM3 H28	
DRAM0_DQ0 U25	
DRAM0_DQ1 Y26	
DRAMO_DQ10 AA28	
DRAMO_DQ11 AB30	
DRAMO_DQ12 AD30	
DRAMO_DQ13 W30	
DRAMO_DQ14 AB28	
DRAMO_DQ15 Y29	
DRAMO_DQ16 H27	
DRAM0_DQ17 L25	
DRAMO_DQ18 K25	
DRAM0_DQ19 K26	
DRAM0_DQ2 V26	
DRAM0_DQ20 L26	
DRAM0_DQ21 H26	
DRAM0_DQ22 K29	
DRAM0_DQ23 J25	
DRAMO_DQ24 E29	
DRAM0_DQ25 J28	
DRAMO_DQ26 G29	
DRAM0_DQ27 G30	
DRAM0_DQ28 J30	
DRAMO_DQ29 D30	
DRAM0_DQ3 W27	

Pin Na	me	Pin Id
DRAM0_	_DQ30	H29
DRAM0_	_DQ31	F28
DRAM0_	_DQ4	Y28
DRAM0_	_DQ5	U26
DRAM0_	_DQ6	W25
DRAM0_	_DQ7	U27
DRAM0_	_DQ8	W28
DRAM0_	_DQ9	AC29
DRAM0_	_DQS0	V28
DRAM0_	_DQS0#	V29
DRAM0_	_DQS1	AA29
DRAM0_	_DQS1#	AA30
DRAM0_	_DQS2	J27
DRAM0_	_DQS2#	J26
DRAM0_	_DQS3	F30
DRAM0_	_DQS3#	F29
DRAM0_	_ODT	K30
DRAM0_	_RAS#	L28
DRAM0_	_VREFSSTL0	AA27
DRAM0_	_VREFSSTL1	U24
DRAM0_	_VREFSSTL2	P24
DRAM0_	_VREFSSTL3	L24
DRAM0_	_VREFSSTL4	G27
DRAM0_	_WE#	U29
DRAM1_	_A0	D14
DRAM1_	_A1	A15
DRAM1_	_A10	B16
DRAM1_	_A11	C16

DRAM1_A12 DRAM1_A13 DRAM1_A2	F17 F15 E16	DRAM1_DQ15 DRAM1_DQ16	B22	DRAM1_DQS3	A8
		DRAM1_DQ16			
DRAM1_A2	E16		D10	DRAM1_DQS3#	В8
		DRAM1_DQ17	F13	DRAM1_ODT	A12
DRAM1_A3	F18	DRAM1_DQ18	F12	DRAM1_RAS#	C13
DRAM1_A4	B15	DRAM1_DQ19	E12	DRAM1_VREFSSTL0	D23
DRAM1_A4H	F14	DRAM1_DQ2	E20	DRAM1_VREFSSTL1	G19
DRAM1_A5	E17	DRAM1_DQ20	E13	DRAM1_VREFSSTL2	G16
DRAM1_A5H	F16	DRAM1_DQ21	E10	DRAM1_VREFSSTL3	G13
DRAM1_A6	C15	DRAM1_DQ22	B12	DRAM1_VREFSSTL4	D9
DRAM1_A7	D18	DRAM1_DQ23	F11	DRAM1_WE#	B19
DRAM1_A8	E15	DRAM1_DQ24	B7	ETH0_COL	AK2
DRAM1_A9	C18	DRAM1_DQ25	C11	ETH0_CRS	AE3
DRAM1_BA0	C17	DRAM1_DQ26	B9	ETH0_MDC	AE1
DRAM1_BA1	A17	DRAM1_DQ27	A9	ETH0_MDINT#	AD5
DRAM1_BA2	B17	DRAM1_DQ28	A11	ETH0_MDIO	AD6
DRAM1_CAS#	C14	DRAM1_DQ29	A6	ETH0_RX_DV	AE4
DRAM1_CK	A14	DRAM1_DQ3	D21	ETH0_RX_ER	AE2
DRAM1_CK#	A13	DRAM1_DQ30	B10	ETH0_RXCLK	AF4
DRAM1_CKE	A18	DRAM1_DQ31	C8	ETH0_RXD0	AE5
DRAM1_CS#	D13	DRAM1_DQ4	C22	ETH0_RXD1	AF1
DRAM1_DM0	E21	DRAM1_DQ5	E19	ETH0_RXD2	AF2
DRAM1_DM1	B24	DRAM1_DQ6	F21	ETH0_RXD3	AF3
DRAM1_DM2	C12	DRAM1_DQ7	D19	ETH0_TX_EN	AJ3
DRAM1_DM3	C10	DRAM1_DQ8	C21	ETH0_TX_ER	AJ1
DRAM1_DQ0	F19	DRAM1_DQ9	B25	ETH0_TXCLK	AG1
DRAM1_DQ1	E22	DRAM1_DQS0	C20	ETH0_TXD0	AG2
DRAM1_DQ10	C23	DRAM1_DQS0#	B20	ETH0_TXD1	AG3
DRAM1_DQ11	A24	DRAM1_DQS1	B23	ETH0_TXD2	AH1
DRAM1_DQ12	A26	DRAM1_DQS1#	A23	ETH0_TXD3	AH2
DRAM1_DQ13	A21	DRAM1_DQS2	D11	ETH1_COL	AE7
DRAM1_DQ14	C24	DRAM1_DQS2#	E11	ETH1_CRS	AK5

Pin Name	Pin Id
ETH1_MDC	AJ4
ETH1_MDINT#	AK3
ETH1_MDIO	AK4
ETH1_RX_DV	AJ5
ETH1_RX_ER	AH4
ETH1_RXCLK	AH6
ETH1_RXD0	AH5
ETH1_RXD1	AG5
ETH1_RXD2	AK6
ETH1_RXD3	АЈ6
ETH1_TX_EN	AF7
ETH1_TX_ER	AG7
ETH1_TXCLK	AG6
ETH1_TXD0	AF6
ETH1_TXD1	AK7
ETH1_TXD2	АЈ7
ETH1_TXD3	AH7
FLASH_ALE	AB25
FLASH_CLE	AC25
FLASH_CS0#	AD26
FLASH_CS1#	AD27
FLASH_D0	AD28
FLASH_D1	AE26
FLASH_D2	AE27
FLASH_D3	AE28
FLASH_D4	AE29
FLASH_D5	AF27
FLASH_D6	AF29
FLASH_D7	AF30
FLASH_IORDY	AC26
FLASH_RD#	AD25

FLASH_WR# AC2 GPIO0 D5 GPIO1 E6 GPIO10 A4 GPIO11 B5 GPIO12 C6	7
GPIO1 E6 GPIO10 A4 GPIO11 B5	
GPIO10 A4 GPIO11 B5	
GPIO11 B5	
CDIO12 C6	
GF1012 C0	
GPIO13 D7	
GPIO14 E8	
GPIO15 F9	
GPIO2 F7	
GPIO3 G8	
GPIO4 A3	
GPIO5 B4	
GPIO6 C5	
GPIO7 D6	
GPIO8 E7	
GPIO9 F8	
HDMITX_SCL L4	
HDMITX_SDA L5	
HDMITX_AMON N5	
HDMITX_AVDD_1V N7 0_0	
HDMITX_AVDD_1V P7 0_1	
HDMITX_AVSS_0 M6	
HDMITX_HPD L6	
HDMITX_REXT P5	
HDMITX_TX0_N N2	
HDMITX_TX0_P N1	
HDMITX_TX1_N P2	
HDMITX_TX1_P P1	
HDMITX_TX2_N R2	
HDMITX_TX2_P R1	

Pin Name	Pin Id
HDMITX_TXC_N	M2
HDMITX_TXC_P	M1
HDMITX_VDD_1V0 _0	N6
HDMITX_VDD_1V0	P6
HDMITX_VDD_PLLA _3V3	M4
HDMITX_VDD_PLLB _3V3	R4
HDMITX_VDD_TX0 _3V3	N4
HDMITX_VDD_TX1 _3V3	P4
HDMITX_VSS_1	R6
HDMITX_VSS_PLLA	M5
HDMITX_VSS_PLLB	R5
HDMITX_VSS_TX0	N3
HDMITX_VSS_TX1	Р3
HDMITX_VSS_TX2	R3
HDMITX_VSS_TXC	М3
JTAG_UART1#	E26
NC	B30
NC	H4
NC	J4
PCI_AD0	AG30
PCI_AD1	AH30
PCI_AD10	AJ26
PCI_AD11	AF25
PCI_AD12	AH25
PCI_AD13	AG25
PCI_AD14	AJ25
PCI_AD15	AF24
PCI_AD16	AH22
PCI_AD17	AK22

PCI_AD19 PCI_AD2	AF22 AJ22 AH29 AE22 AJ21	PCI_GNT2# PCI_IDSEL0 PCI_IDSEL1	AE18 AE20	SATA_TXP1 SATA_VP	AK9
PCI_AD2	AH29 AE22			SATA_VP	A.F.C.
	AE22	PCI_IDSEL1			AF9
PCI_AD20			AE21	SATA_VP	AF11
	A121	PCI_IDSEL2	AF21	SATA_VP	AF12
PCI_AD21	AJZI	PCI_INTA#	AG17	SATA_VPH	AG9
PCI_AD22	AG21	PCI_IRDY#	AH23	SATA_VPH	AG11
PCI_AD23	AH21	PCI_PAR	AH24	SATA_VPH	AG12
PCI_AD24	AF20	PCI_REQ0#	AK18	SCARD0_CLK	B28
PCI_AD25	AJ20	PCI_REQ1#	AJ18	SCARD0_CTL0	G23
PCI_AD26	AH20	PCI_REQ2#	AH18	SCARD0_CTL1	F24
PCI_AD27	AJ19	PCI_STOP#	AJ24	SCARD0_CTL2	E25
PCI_AD28	AF19	PCI_TRDY#	AF23	SCARD0_FC#	C27
PCI_AD29	AH19	RCLK0_IN	G2	SCARD0_IO	D26
PCI_AD3	AJ29	RCLK0_OUT	G3	SCARD0_RST	A29
PCI_AD30	AE19	RCLK1_OUT	H1	SCARD1_CLK	A27
PCI_AD31	AG19	RCLK3_OUT	H2	SCARD1_CTL0	F23
PCI_AD4	AJ28	RESET#	G6	SCARD1_CTL1	E24
PCI_AD5	AK28	SATA_REFCLKM	AF10	SCARD1_CTL2	D25
PCI_AD6	AH27	SATA_REFCLKP	AG10	SCARD1_FC#	B27
PCI_AD7	AK27	SATA_REXT	AE11	SCARD1_IO	C26
PCI_AD8	AK26	SATA_RXN0	AJ11	SCARD1_RST	A28
PCI_AD9	AH26	SATA_RXN1	AK10	SI0_BCLK	AD3
PCI_CBE0#	AJ27	SATA_RXP0	AK11	SI0_DATA1	AD2
PCI_CBE1#	AK24	SATA_RXP1	AJ10	SI0_LRCLK	AD4
PCI_CBE2#	AG23	SATA_TCK	AH8	SO0_BCLK	AC2
PCI_CBE3#	AK20	SATA_TDI	AF8	SO0_DATA1	AC4
PCI_CLK	AK17	SATA_TDO	AG8	SO0_DATA2	AC5
PCI_DEVSEL#	AJ23	SATA_TMS	AE8	SO0_DATA3	AC6
PCI_FRAME#	AE23	SATA_TXN0	AK12	SO0_LRCLK	AC3
PCI_GNT0#	AF17	SATA_TXN1	AJ9	SO0_MACLK	AC1
PCI_GNT1#	AF18	SATA_TXP0	AJ12	SO0_SPDIF	AD1

TEST G5 TSIO_CLK C3 TSIO_DO D2 TSIO_D1 D1 TSIO_D2 C1 TSIO_D3 B1 TSIO_D4 E5 TSIO_D5 A2 TSIO_D6 B3 TSIO_SYNC C2 TSIO_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DDCD F26 UART1_DTR C29 UART1_RTS D28 UART1_RTS D28 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16 USB20_REXT AJ14	Pin Name	Pin Id
TSIO_DO D2 TSIO_D1 D1 TSIO_D2 C1 TSIO_D3 B1 TSIO_D4 E5 TSIO_D5 A2 TSIO_D6 B3 TSIO_D7 C4 TSIO_SYNC C2 TSIO_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UARTO_RX F27 UARTO_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DTR C29 UART1_RTS D28 UART1_TX E27 USB2O_DM_0 AK13 USB2O_DP_0 AJ13 USB2O_DP_1 AJ16	TEST	G5
TSIO_D1 D1 TSIO_D2 C1 TSIO_D3 B1 TSIO_D4 E5 TSIO_D5 A2 TSIO_D6 B3 TSIO_D7 C4 TSIO_SYNC C2 TSIO_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UARTO_RX F27 UARTO_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB2O_DM_0 AK13 USB2O_DP_0 AJ13 USB2O_DP_1 AJ16	TSI0_CLK	C3
TSIO_D2 C1 TSIO_D3 B1 TSIO_D4 E5 TSIO_D5 A2 TSIO_D6 B3 TSIO_D7 C4 TSIO_SYNC C2 TSIO_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UARTO_RX F27 UARTO_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DTR C29 UART1_DTR C29 UART1_RTS D28 UART1_TX E27 USB2O_DM_0 AK13 USB2O_DP_0 AJ13 USB2O_DP_1 AJ16	TSI0_D0	D2
TSI0_D3 B1 TSI0_D4 E5 TSI0_D5 A2 TSI0_D6 B3 TSI0_D7 C4 TSI0_SYNC C2 TSI0_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DSR G25 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI0_D1	D1
TSI0_D4 E5 TSI0_D5 A2 TSI0_D6 B3 TSI0_D7 C4 TSI0_SYNC C2 TSI0_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DTR C29 UART1_DTR C29 UART1_RX C30 UART1_TX E27 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI0_D2	C1
TSI0_D5 A2 TSI0_D6 B3 TSI0_D7 C4 TSI0_SYNC C2 TSI0_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI0_D3	B1
TSI0_D6 B3 TSI0_D7 C4 TSI0_SYNC C2 TSI0_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI0_D4	E5
TSI0_D7 C4 TSI0_SYNC C2 TSI0_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI0_D5	A2
TSI0_SYNC C2 TSI0_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI0_D6	В3
TSI0_VLD D3 TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI0_D7	C4
TSI1_IN_CLK E3 TSI1_IN_DATA E4 TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI0_SYNC	C2
TSI1_IN_DATA	TSI0_VLD	D3
TSI1_IN_SYNC E2 TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI1_IN_CLK	E3
TSI1_IN_VLD E1 UART0_RX F27 UART0_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI1_IN_DATA	E4
UARTO_RX F27 UARTO_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI1_IN_SYNC	E2
UARTO_TX D29 UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	TSI1_IN_VLD	E1
UART1_CTS H24 UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UARTO_RX	F27
UART1_DCD F26 UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UARTO_TX	D29
UART1_DSR G25 UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UART1_CTS	H24
UART1_DTR C29 UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UART1_DCD	F26
UART1_RTS D28 UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UART1_DSR	G25
UART1_RX C30 UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UART1_DTR	C29
UART1_TX E27 USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UART1_RTS	D28
USB20_ATEST AJ15 USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UART1_RX	C30
USB20_DM_0 AK13 USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	UART1_TX	E27
USB20_DM_1 AK16 USB20_DP_0 AJ13 USB20_DP_1 AJ16	USB20_ATEST	AJ15
USB20_DP_0 AJ13 USB20_DP_1 AJ16	USB20_DM_0	AK13
USB20_DP_1 AJ16	USB20_DM_1	AK16
	USB20_DP_0	AJ13
USB20_REXT AJ14	USB20_DP_1	AJ16
	USB20_REXT	AJ14

Pin Name	Pin Id
USB20_VDDAC_3V	AD14
USB20_VDDAC_3V	AE14
USB20_VDDAT_3V3 _0_0	AF13
USB20_VDDAT_3V3 _0_1	AF14
USB20_VDDAT_3V3 _1_0	AF15
USB20_VDDAT_3V3 _1_1	AF16
USB20_VDDC_1V0 _0	AD13
USB20_VDDC_1V0 _1	AD16
USB20_VSSAC	AD15
USB20_VSSAC	AE15
USB20_VSSAT_0	AG14
USB20_VSSAT_0	AH13
USB20_VSSAT_0	AG13
USB20_VSSAT_1	AG15
USB20_VSSAT_1	AH16
USB20_VSSAT_1	AG16
USB20_VSSAT_C	AH14
USB20_VSSAT_C	AH15
USB20_VSSC_0	AE13
USB20_VSSC_1	AE16
USB20_XI	AK15
USB20_XO	AK14
VDD_1V0	K10
VDD_1V0	K13
VDD_1V0	K14
VDD_1V0	K17
VDD_1V0	K18
VDD_1V0	K21

Pin Name	Pin Id
VDD_1V0	L11
VDD_1V0	L12
VDD_1V0	L15
VDD_1V0	L16
VDD_1V0	L19
VDD_1V0	L20
VDD_1V0	M11
VDD_1V0	M12
VDD_1V0	M15
VDD_1V0	M16
VDD_1V0	M19
VDD_1V0	M20
VDD_1V0	N10
VDD_1V0	N13
VDD_1V0	N14
VDD_1V0	N17
VDD_1V0	N18
VDD_1V0	N21
VDD_1V0	P10
VDD_1V0	P13
VDD_1V0	P14
VDD_1V0	P17
VDD_1V0	P18
VDD_1V0	P21
VDD_1V0	R11
VDD_1V0	R12
VDD_1V0	R15
VDD_1V0	R16
VDD_1V0	R19
VDD_1V0	R20
VDD_1V0	T11

Pin Name	Pin Id	Pin Name	Pin Id	Pin Name	Pin Id
VDD_1V0	T12	VDD_1V0	AA14	VDD_1V8	H15
VDD_1V0	T15	VDD_1V0	AA17	VDD_1V8	H17
VDD_1V0	T16	VDD_1V0	AA18	VDD_1V8	H19
VDD_1V0	T19	VDD_1V0	AA21	VDD_1V8	H20
VDD_1V0	T20	VDD_1V8	A5	VDD_1V8	H30
VDD_1V0	U10	VDD_1V8	A10	VDD_1V8	J24
VDD_1V0	U13	VDD_1V8	A16	VDD_1V8	K24
VDD_1V0	U14	VDD_1V8	A20	VDD_1V8	K27
VDD_1V0	U17	VDD_1V8	A22	VDD_1V8	L23
VDD_1V0	U18	VDD_1V8	B11	VDD_1V8	L29
VDD_1V0	U21	VDD_1V8	B13	VDD_1V8	M24
VDD_1V0	V10	VDD_1V8	B18	VDD_1V8	N23
VDD_1V0	V13	VDD_1V8	B26	VDD_1V8	N27
VDD_1V0	V14	VDD_1V8	C7	VDD_1V8	P30
VDD_1V0	V17	VDD_1V8	D15	VDD_1V8	R23
VDD_1V0	V18	VDD_1V8	D17	VDD_1V8	R27
VDD_1V0	V21	VDD_1V8	D20	VDD_1V8	T24
VDD_1V0	W11	VDD_1V8	D24	VDD_1V8	T29
VDD_1V0	W12	VDD_1V8	E9	VDD_1V8	U23
VDD_1V0	W15	VDD_1V8	E14	VDD_1V8	V24
VDD_1V0	W16	VDD_1V8	E18	VDD_1V8	V27
VDD_1V0	W19	VDD_1V8	E28	VDD_1V8	V30
VDD_1V0	W20	VDD_1V8	G11	VDD_1V8	W23
VDD_1V0	Y11	VDD_1V8	G12	VDD_1V8	Y24
VDD_1V0	Y12	VDD_1V8	G14	VDD_1V8	Y25
VDD_1V0	Y15	VDD_1V8	G18	VDD_1V8	Y30
VDD_1V0	Y16	VDD_1V8	G20	VDD_1V8	AB27
VDD_1V0	Y19	VDD_1V8	G21	VDD_1V8	AD29
VDD_1V0	Y20	VDD_1V8	G26	VDD_3V3	B29
VDD_1V0	AA10	VDD_1V8	H11	VDD_3V3	D4
VDD_1V0	AA13	VDD_1V8	H13	VDD_3V3	D27

Pin Name	Pin Id	Pin Name	Pin Id	Pin Name	Pin Id
VDD_3V3	F25	VDD_3V3	AC24	VI1_P4	K4
VDD_3V3	G4	VDD_3V3	AD8	VI1_P5	К3
VDD_3V3	G7	VDD_3V3	AD9	VI1_P6	K2
VDD_3V3	G9	VDD_3V3	AD17	VI1_P7	K1
VDD_3V3	K8	VDD_3V3	AD18	VI1_VLD	J2
VDD_3V3	L8	VDD_3V3	AD22	VI1_VS	J3
VDD_3V3	M8	VDD_3V3	AD23	VO1_AVDD	U5
VDD_3V3	R8	VDD_3V3	AE6	VO1_AVDD_U	V3
VDD_3V3	Т8	VDD_3V3	AE25	VO1_AVDD_V	U3
VDD_3V3	U7	VDD_3V3	AF28	VO1_AVDD_Y	Т3
VDD_3V3	V5	VDD_3V3	AG4	VO1_AVSS	T5
VDD_3V3	V7	VDD_3V3	AG20	VO1_AVSS_U	V2
VDD_3V3	W5	VDD_3V3	AG24	VO1_AVSS_V	U2
VDD_3V3	W8	VDD_3V3	AG27	VO1_AVSS_Y	T2
VDD_3V3	Y8	VDD_3V3	AG29	VO1_RSET	T4
VDD_3V3	AA8	VDD_3V3	AJ2	VO1_U	V1
VDD_3V3	AA25	VDD_3V3	AJ8	VO1_V	U1
VDD_3V3	AB3	VDD_3V3	AJ17	VO1_VREF	U4
VDD_3V3	AB4	VDD_3V3	AJ30	VO1_Y	T1
VDD_3V3	AB7	VDD_3V3	AK21	VO2_AVDD	Y5
VDD_3V3	AB24	VDD_3V3	AK25	VO2_AVDD_U	AA3
VDD_3V3	AB26	VDD_3V3	AK29	VO2_AVDD_V	Y3
VDD_3V3	AC7	VDD_PLL0_1V0	J7	VO2_AVDD_Y	W3
VDD_3V3	AC10	VDD_PLL1_3V3	J6	VO2_AVSS	AA5
VDD_3V3	AC11	VDD_PLL2_3V3	J5	VO2_AVSS_U	AA2
VDD_3V3	AC12	VI1_CLK	L1	VO2_AVSS_V	Y2
VDD_3V3	AC15	VI1_HS	J1	VO2_AVSS_Y	W2
VDD_3V3	AC16	VI1_P0	L3	VO2_RSET	AA4
VDD_3V3	AC19	VI1_P1	L2	VO2_U	AA1
VDD_3V3	AC20	VI1_P2	K6	VO2_V	Y1
VDD_3V3	AC21	VI1_P3	K5	VO2_VREF	Y4

Pin Name	Pin Id	Pin Name	Pin Id	Pin Name	Pin Id
VO2_Y	W1	VSS	H9	VSS	M14
VSS	A7	VSS	H10	VSS	M17
VSS	A19	VSS	H12	VSS	M18
VSS	A25	VSS	H14	VSS	M21
VSS	B2	VSS	H16	VSS	M23
VSS	В6	VSS	H18	VSS	M26
VSS	B14	VSS	H21	VSS	M29
VSS	B21	VSS	H22	VSS	N8
VSS	C9	VSS	H23	VSS	N11
VSS	C19	VSS	H25	VSS	N12
VSS	C25	VSS	Ј8	VSS	N15
VSS	C28	VSS	J23	VSS	N16
VSS	D8	VSS	J29	VSS	N19
VSS	D12	VSS	K7	VSS	N20
VSS	D16	VSS	K11	VSS	N24
VSS	D22	VSS	K12	VSS	P8
VSS	E23	VSS	K15	VSS	P11
VSS	E30	VSS	K16	VSS	P12
VSS	F3	VSS	K19	VSS	P15
VSS	F6	VSS	K20	VSS	P16
VSS	F10	VSS	K23	VSS	P19
VSS	F20	VSS	L7	VSS	P20
VSS	F22	VSS	L10	VSS	P23
VSS	G10	VSS	L13	VSS	P27
VSS	G15	VSS	L14	VSS	R7
VSS	G17	VSS	L17	VSS	R10
VSS	G22	VSS	L18	VSS	R13
VSS	G24	VSS	L21	VSS	R14
VSS	G28	VSS	M7	VSS	R17
VSS	Н3	VSS	M10	VSS	R18
VSS	Н8	VSS	M13	VSS	R21

Pin Name	Pin Id	Pin Name	Pin Id	Pin Name	Pin Id
VSS	R24	VSS	V25	VSS	AA24
VSS	Т6	VSS	W4	VSS	AA26
VSS	T7	VSS	W6	VSS	AB1
VSS	T10	VSS	W7	VSS	AB2
VSS	T13	VSS	W10	VSS	AB5
VSS	T14	VSS	W13	VSS	AB6
VSS	T17	VSS	W14	VSS	AB8
VSS	T18	VSS	W17	VSS	AB23
VSS	T21	VSS	W18	VSS	AC8
VSS	T23	VSS	W21	VSS	AC9
VSS	T26	VSS	W24	VSS	AC13
VSS	U6	VSS	W29	VSS	AC14
VSS	U8	VSS	Y6	VSS	AC17
VSS	U11	VSS	Y7	VSS	AC18
VSS	U12	VSS	Y10	VSS	AC22
VSS	U15	VSS	Y13	VSS	AC23
VSS	U16	VSS	Y14	VSS	AC28
VSS	U19	VSS	Y17	VSS	AC30
VSS	U20	VSS	Y18	VSS	AD7
VSS	U28	VSS	Y21	VSS	AD10
VSS	U30	VSS	Y23	VSS	AD11
VSS	V4	VSS	Y27	VSS	AD12
VSS	V6	VSS	AA6	VSS	AD19
VSS	V8	VSS	AA7	VSS	AD20
VSS	V11	VSS	AA11	VSS	AD21
VSS	V12	VSS	AA12	VSS	AD24
VSS	V15	VSS	AA15	VSS	AE9
VSS	V16	VSS	AA16	VSS	AE10
VSS	V19	VSS	AA19	VSS	AE12
VSS	V20	VSS	AA20	VSS	AE17
VSS	V23	VSS	AA23	VSS	AE24

Pin Name	Pin Id
VSS	AE30
VSS	AF5
VSS	AF26
VSS	AG18
VSS	AG22
VSS	AG26
VSS	AG28
VSS	AH3
VSS	AH9
VSS	AH10
VSS	AH11
VSS	AH12
VSS	AH17
VSS	AH28
VSS	AK8
VSS	AK19
VSS	AK23
VSS_PLL0	H7
VSS_PLL1	Н6
VSS_PLL2	H5
WDO	F2
XTAL_BUF	F4
XTAL_DISC	F5
XTAL_IN	F1
XTAL_OUT	G1

12.4 Miscellaneous Pins

12.4.1 Miscellaneous Pins

Table 12-1 Miscellaneous pin descriptions

Pin Name	Pin Id	Direction	Description	Driver Type ¹
-	A1	-	No connect	
-	A30	-	No connect	
-	AK1	-	No connect	
-	AK30	-	No connect	
NC	B30	-	No connect	
NC	H4	-	No connect	
NC	J4	-	No connect	
RESET#	G6	I	Device reset input. Active low.	К
TEST	G5	I	Test mode input. Tie to VSS for normal operation.	G
XTAL_DISC	F5	I	Used for manufacturing purposes only	G

^{1.} The letters under the column 'Driver Type' denote the DC characteristics of the corresponding pins as detailed in the 'DC Characteristics' table of the chapter 'System Specifications'.

13

System Specifications

13.1 Electrical Specifications

13.1.1 Absolute Maximum Ratings

Table 13-1 Absolute maximum ratings

Parameter	Symbol	Unit	Maximum
DC supply voltage	VDD_1V0	V	1.2
DC supply voltage	VDD_1V8	V	2.0
DC supply voltage	VDD_3V3	V	3.6
DC input voltage	V _{Imax}	V	5.5
Storage temperature	T _{STG}	⁰ C	125

13.1.2 Recommended Operating Conditions

Table 13-2 Recommended operating conditions

Parameter	Symbol	Unit	Minimum	Nominal	Maximum
DC supply voltage	VDD_1V0	V	1.0	1.05	1.1
DC supply voltage	VDD_1V8	V	1.7	1.8	1.9
DC supply voltage	VDD_3V3	V	3.15	3.3	3.45
Operating temperature ¹	T _{OP}	⁰ C	θ	-	95

^{1.} T_{OP} specifies the case surface temperature as measured at the center of the device package, after reaching thermal equilibrium.

13.1.3 DC Characteristics

Table 13-3 DC characteristics

Paramete (Units)	er		V _{OH} (V)	V _{OL} (V)	I _{OH} (mA)	I _{OL} (mA)	V _{IH} (V)	V _{IL} (V)	V _T (V)	V _{T+} (V)	V _{T-} (V)	I _{IN} (μΑ)	R _{PU} (KΩ)	R _{PD} (KΩ)
Driver Type	Dir													
A	I/O	Min	2.4		13	10	2	-0.3	1.28	1.55	1.13			
		Тур			26	16			1.36	1.65	1.22			
		Max		0.4	50	23	5.5	0.8	1.44	1.72	1.29	±10		
В	I/O	Min	2.4		13	10	2	-0.3	1.28				63K	
		Тур			26	16			1.36				92K	
		Max		0.4	50	23	5.5	0.8	1.44			±10	142K	
С	I/O	Min	2.4		13	10	2	-0.3	1.28					
		Тур			26	16			1.36					
		Max		0.4	50	23	5.5	0.8	1.44			±10		
D	0	Min	2.4		13	10								
		Тур			26	16								
		Max		0.4	50	23								
Е	0	Min	2.4		25	20								
		Тур			51	32								
		Max		0.4	86	46								
F	I	Min					2	-0.3	1.28	1.55	1.13			
		Тур							1.36	1.65	1.22			
		Max					5.5	0.8	1.44	1.72	1.29	±10		
G	I	Min					2	-0.3	1.28					57K
		Тур							1.36					91K
		Max					5.5	0.8	1.44			±10		159K
Н	I	Min					2	-0.3	1.28	1.55	1.13			57K
		Тур							1.36	1.65	1.22			91K
		Max					5.5	0.8	1.44	1.72	1.29	±10		159K
I	I	Min					2	-0.3	1.28					
		Тур							1.36					
		Max					5.5	0.8	1.44			±10		

Table 13-3 DC characteristics (Continued)

Parameter (Units)			V _{ОН} (V)	V _{OL} (V)	I _{OH} (mA)	I _{OL} (mA)	V _{IH} (V)	V _{IL} (V)	V _T (V)	V _{T+} (V)	V _{T-} (V)	I _{IN} (μΑ)	R _{PU} (KΩ)	R _{PD} (KΩ)
Driver Type	Dir													
J	I	Min					2	-0.3	1.28				63K	
		Тур							1.36				92K	
		Max					5.5	0.8	1.44			±10	142K	
К	I	Min					2	-0.3	1.28	1.55	1.13		63K	
		Тур							1.36	1.65	1.22		92K	
		Max					5.5	0.8	1.44	1.72	1.29	±10	142K	

13.2 Power Consumption

The table below provides consolidated test and simulation results for the typical current requirements for the various SMP8654 power supply rails under typical operating conditions. The current and power figures DO NOT represent guaranteed worst case values, but values measured with device activity as established by Sigma demo applications. The data was measured with the device decoding MPEG-2 (1080P30), displaying 1080P60 over HDMI, all 6 video DACs enabled, and decoding AC-3 5.1 channel audio. All processors were enabled and running. It is possible that in some applications the device 'activity' could be increased somewhat over the test case, resulting in a corresponding increase in current and power. The designers are encouraged to measure supply current in the final configuration to ensure proper power supply sizing and thermal evaluation.

The data listed here represents averaged values over time rather than peak values. These values are useful for thermal evaluation, but power supplies should be designed to provide approximately 20% minimum 'headroom' to account for peak current demands.

Table 13-4 SMP8654 power consumption data

Power Supply	V (nominal)	V (maximum)	I (typical)	Power
Digital Core	1.05	1.10	1350mA	1.42W
DRAM I/F	1.8	1.9	160mA	0.30W
Digital I/O	3.3	3.45	40mA	0.14W
Video DACs	3.3	3.45	240mA	0.76W
USB I/F	3.3	3.45	80mA	0.28W
SATA I/F	3.3	3.45	42mA	0.15W

13.3 Power Supply Sequencing

In order to minimize excessive current flow through the device IO cells during power-up, and to eliminate the possibility of latch-up, the power supply sequencing guidelines shown in the figure below should be observed.

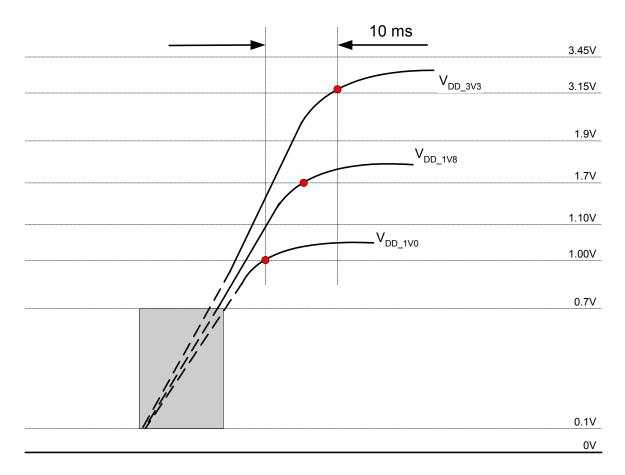


Figure 13-1 Power supply sequencing

- 1. Ideally, VDD_3V3 and VDD_1V8 should exceed VDD_1V0 at all times as the supplies are ramping up, and be within the range of 0.1V-0.7V (gray region in the above figure).
- 2. The rule VDD_3V3 > VDD_1V0 and VDD_1V8 > VDD_1V0 may be relaxed as long as both supplies ramp up through the 0.1V to 0.7V region in 250 microseconds or less, and VDD_1V0 at no time exceeds VDD_3V3 or VDD_1V8 by more than 0.5V.
- 3. VDD_3V3 and VDD_1V0 should each reach their specified operating ranges within 10ms of each other.

13.3.1 Power Reset Specifications

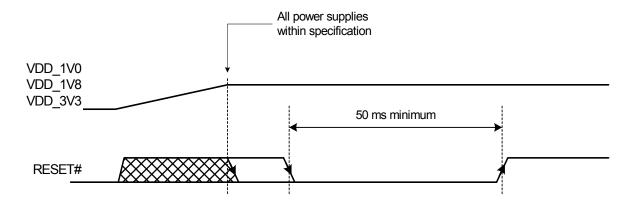


Figure 13-2 Power reset specifications

- 1. 50ms RESET# active interval may begin with power supplies reaching spec range or later, as shown in the diagram.
- 2. It is not necessary for RESET# to transition from high-to-low to begin the reset sequence. RESET# may be held low throughout the power-up and just taken inactive (high) a minimum of 50ms after the power supplies have reached spec limits.

13.3.2 Listing of Ground Pins (VSS)

The following table lists the SMP8654 ground pins:

Table 13-5 SMP8654 ground pins

Pin Name	Pin Id	Direction	Description
VSS	A7	I	Ground
VSS	A19	I	Ground
VSS	A25	I	Ground
VSS	B2	I	Ground
VSS	В6	I	Ground
VSS	B14	I	Ground
VSS	B21	I	Ground
VSS	С9	I	Ground
VSS	C19	I	Ground
VSS	C25	I	Ground
VSS	C28	I	Ground
VSS	D8	I	Ground

Table 13-5 SMP8654 ground pins (Continued)

VCC		Direction	Description
VSS	D12	I	Ground
VSS	D16	I	Ground
VSS	D22	I	Ground
VSS	E23	I	Ground
VSS	E30	I	Ground
VSS	F3	I	Ground
VSS	F6	I	Ground
VSS	F10	I	Ground
VSS	F20	I	Ground
VSS	F22	I	Ground
VSS	G10	I	Ground
VSS	G15	I	Ground
VSS	G17	I	Ground
VSS	G22	I	Ground
VSS	G24	I	Ground
VSS	G28	I	Ground
VSS	Н3	I	Ground
VSS	H8	I	Ground
VSS	H9	I	Ground
VSS	H10	I	Ground
VSS	H12	I	Ground
VSS	H14	I	Ground
VSS	H16	I	Ground
VSS	H18	I	Ground
VSS	H21	I	Ground
VSS	H22	I	Ground
VSS	H23	I	Ground
VSS	H25	I	Ground
VSS	J8	I	Ground
VSS	J23	I	Ground

377

Table 13-5 SMP8654 ground pins (Continued)

Pin Name	Pin Id	Direction	Description
VSS	J29	I	Ground
VSS	K7	I	Ground
VSS	K11	I	Ground
VSS	K12	I	Ground
VSS	K15	I	Ground
VSS	K16	I	Ground
VSS	K19	I	Ground
VSS	K20	I	Ground
VSS	K23	I	Ground
VSS	L7	I	Ground
VSS	L10	I	Ground
VSS	L13	I	Ground
VSS	L14	I	Ground
VSS	L17	I	Ground
VSS	L18	I	Ground
VSS	L21	I	Ground
VSS	M7	I	Ground
VSS	M10	I	Ground
VSS	M13	I	Ground
VSS	M14	I	Ground
VSS	M17	I	Ground
VSS	M18	I	Ground
VSS	M21	I	Ground
VSS	M23	I	Ground
VSS	M26	I	Ground
VSS	M29	I	Ground
VSS	N8	I	Ground
VSS	N11	I	Ground
VSS	N12	I	Ground
VSS	N15	I	Ground

Table 13-5 SMP8654 ground pins (Continued)

Pin Name	Pin Id	Direction	Description
VSS	N16	I	Ground
VSS	N19	I	Ground
VSS	N20	I	Ground
VSS	N24	I	Ground
VSS	P8	I	Ground
VSS	P11	I	Ground
VSS	P12	I	Ground
VSS	P15	I	Ground
VSS	P16	I	Ground
VSS	P19	I	Ground
VSS	P20	I	Ground
VSS	P23	I	Ground
VSS	P27	I	Ground
VSS	R7	I	Ground
VSS	R10	I	Ground
VSS	R13	I	Ground
VSS	R14	I	Ground
VSS	R17	I	Ground
VSS	R18	I	Ground
VSS	R21	I	Ground
VSS	R24	I	Ground
VSS	Т6	I	Ground
VSS	T7	I	Ground
VSS	T10	I	Ground
VSS	T13	I	Ground
VSS	T14	I	Ground
VSS	T17	I	Ground
VSS	T18	I	Ground
VSS	T21	I	Ground
VSS	T23	I	Ground

Table 13-5 SMP8654 ground pins (Continued)

Pin Name	Pin Id	Direction	Description
VSS	T26	I	Ground
VSS	U6	I	Ground
VSS	U8	I	Ground
VSS	U11	I	Ground
VSS	U12	I	Ground
VSS	U15	I	Ground
VSS	U16	I	Ground
VSS	U19	I	Ground
VSS	U20	I	Ground
VSS	U28	I	Ground
VSS	U30	I	Ground
VSS	V4	I	Ground
VSS	V6	I	Ground
VSS	V8	I	Ground
VSS	V11	I	Ground
VSS	V12	I	Ground
VSS	V15	I	Ground
VSS	V16	I	Ground
VSS	V19	I	Ground
VSS	V20	I	Ground
VSS	V23	I	Ground
VSS	V25	I	Ground
VSS	W4	I	Ground
VSS	W6	I	Ground
VSS	W7	I	Ground
VSS	W10	I	Ground
VSS	W13	I	Ground
VSS	W14	I	Ground
VSS	W17	I	Ground
VSS	W18	I	Ground

Table 13-5 SMP8654 ground pins (Continued)

VSS W24 I Ground VSS W29 I Ground VSS Y6 I Ground VSS Y7 I Ground VSS Y10 I Ground VSS Y13 I Ground VSS Y14 I Ground VSS Y17 I Ground VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA20 I Ground VSS AA24 I Ground VSS AB2 I<	Pin Name	Pin Id	Direction	Description
VSS W29 I Ground VSS Y6 I Ground VSS Y7 I Ground VSS Y10 I Ground VSS Y13 I Ground VSS Y14 I Ground VSS Y17 I Ground VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA24 I Ground VSS AA26	VSS	W21	I	Ground
VSS Y6 I Ground VSS Y7 I Ground VSS Y10 I Ground VSS Y13 I Ground VSS Y14 I Ground VSS Y17 I Ground VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB2	VSS	W24	I	Ground
VSS Y7 I Ground VSS Y10 I Ground VSS Y13 I Ground VSS Y14 I Ground VSS Y17 I Ground VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA26 I Ground VSS AB2 I Ground VSS AB2 <td< td=""><td>VSS</td><td>W29</td><td>I</td><td>Ground</td></td<>	VSS	W29	I	Ground
VSS Y10 I Ground VSS Y13 I Ground VSS Y14 I Ground VSS Y17 I Ground VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB2 I Ground VSS AB5 <	VSS	Y6	I	Ground
VSS Y13 I Ground VSS Y14 I Ground VSS Y17 I Ground VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA20 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground	VSS	Y7	I	Ground
VSS Y14 I Ground VSS Y17 I Ground VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground	VSS	Y10	I	Ground
VSS Y17 I Ground VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground	VSS	Y13	I	Ground
VSS Y18 I Ground VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	Y14	I	Ground
VSS Y21 I Ground VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground	VSS	Y17	I	Ground
VSS Y23 I Ground VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA29 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	Y18	I	Ground
VSS Y27 I Ground VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA29 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	Y21	I	Ground
VSS AA6 I Ground VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA29 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	Y23	I	Ground
VSS AA7 I Ground VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA19 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	Y27	I	Ground
VSS AA11 I Ground VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA19 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA6	I	Ground
VSS AA12 I Ground VSS AA15 I Ground VSS AA16 I Ground VSS AA19 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA7	I	Ground
VSS AA15 I Ground VSS AA16 I Ground VSS AA19 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA11	I	Ground
VSS AA16 I Ground VSS AA19 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA12	I	Ground
VSS AA19 I Ground VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA15	I	Ground
VSS AA20 I Ground VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA16	I	Ground
VSS AA23 I Ground VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA19	I	Ground
VSS AA24 I Ground VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA20	I	Ground
VSS AA26 I Ground VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA23	I	Ground
VSS AB1 I Ground VSS AB2 I Ground VSS AB5 I Ground	VSS	AA24	I	Ground
VSS AB2 I Ground VSS AB5 I Ground	VSS	AA26	I	Ground
VSS AB5 I Ground	VSS	AB1	I	Ground
	VSS	AB2	I	Ground
100	VSS	AB5	I	Ground
VSS AB6 I Ground	VSS	AB6	I	Ground
VSS AB8 I Ground	VSS	AB8	I	Ground
VSS AB23 I Ground	VSS	AB23	I	Ground

Table 13-5 SMP8654 ground pins (Continued)

Pin Name	Pin Id	Direction	Description
VSS	AC8	I	Ground
VSS	AC9	I	Ground
VSS	AC13	I	Ground
VSS	AC14	I	Ground
VSS	AC17	I	Ground
VSS	AC18	I	Ground
VSS	AC22	I	Ground
VSS	AC23	I	Ground
VSS	AC28	I	Ground
VSS	AC30	I	Ground
VSS	AD7	I	Ground
VSS	AD10	I	Ground
VSS	AD11	I	Ground
VSS	AD12	I	Ground
VSS	AD19	I	Ground
VSS	AD20	I	Ground
VSS	AD21	I	Ground
VSS	AD24	I	Ground
VSS	AE9	I	Ground
VSS	AE10	I	Ground
VSS	AE12	I	Ground
VSS	AE17	I	Ground
VSS	AE24	I	Ground
VSS	AE30	I	Ground
VSS	AF5	I	Ground
VSS	AF26	I	Ground
VSS	AG18	I	Ground
VSS	AG22	I	Ground
VSS	AG26	I	Ground
VSS	AG28	I	Ground

Table 13-5 SMP8654 ground pins (Continued)

Pin Name	Pin Id	Direction	Description
VSS	AH3	I	Ground
VSS	AH9	I	Ground
VSS	AH10	I	Ground
VSS	AH11	I	Ground
VSS	AH12	I	Ground
VSS	AH17	I	Ground
VSS	AH28	I	Ground
VSS	AK8	I	Ground
VSS	AK19	I	Ground
VSS	AK23	I	Ground
VSS_PLL0	H7	I	Ground. Dedicated connection for PLL#3.
VSS_PLL1	Н6	I	Ground. Dedicated connection for PLL#2.
VSS_PLL2	H5	I	Ground. Dedicated connection for PLL#1.

13.3.3 Volt Power Rail

13.3.3.1 1.05V Power Rail

Table 13-6 1.05V power rail

Pin Name	Pin Id	Direction	Description
VDD_1V0	K10	I	1.05V (nominal) power supply
VDD_1V0	K13	I	1.05V (nominal) power supply
VDD_1V0	K14	I	1.05V (nominal) power supply
VDD_1V0	K17	I	1.05V (nominal) power supply
VDD_1V0	K18	I	1.05V (nominal) power supply
VDD_1V0	K21	I	1.05V (nominal) power supply
VDD_1V0	L11	I	1.05V (nominal) power supply
VDD_1V0	L12	I	1.05V (nominal) power supply
VDD_1V0	L15	I	1.05V (nominal) power supply
VDD_1V0	L16	I	1.05V (nominal) power supply
VDD_1V0	L19	I	1.05V (nominal) power supply

Table 13-6 1.05V power rail (Continued)

VDD_1V0 L20 I 1.05V (nominal) power supply VDD_1V0 M11 I 1.05V (nominal) power supply VDD_1V0 M12 I 1.05V (nominal) power supply VDD_1V0 M15 I 1.05V (nominal) power supply VDD_1V0 M16 I 1.05V (nominal) power supply VDD_1V0 M19 I 1.05V (nominal) power supply VDD_1V0 M10 I 1.05V (nominal) power supply VDD_1V0 N10 I 1.05V (nominal) power supply VDD_1V0 N13 I 1.05V (nominal) power supply VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (n	Pin Name	Pin Id	Direction	Description
VDD_1V0 M12 I 1.05V (nominal) power supply VDD_1V0 M15 I 1.05V (nominal) power supply VDD_1V0 M16 I 1.05V (nominal) power supply VDD_1V0 M19 I 1.05V (nominal) power supply VDD_1V0 M20 I 1.05V (nominal) power supply VDD_1V0 N10 I 1.05V (nominal) power supply VDD_1V0 N13 I 1.05V (nominal) power supply VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (n	VDD_1V0	L20	I	1.05V (nominal) power supply
VDD_1V0 M15 I 1.05V (nominal) power supply VDD_1V0 M16 I 1.05V (nominal) power supply VDD_1V0 M19 I 1.05V (nominal) power supply VDD_1V0 M20 I 1.05V (nominal) power supply VDD_1V0 N10 I 1.05V (nominal) power supply VDD_1V0 N13 I 1.05V (nominal) power supply VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P16 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (n	VDD_1V0	M11	I	1.05V (nominal) power supply
VDD_1V0 M16 I 1.05V (nominal) power supply VDD_1V0 M19 I 1.05V (nominal) power supply VDD_1V0 M20 I 1.05V (nominal) power supply VDD_1V0 N10 I 1.05V (nominal) power supply VDD_1V0 N13 I 1.05V (nominal) power supply VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (n	VDD_1V0	M12	I	1.05V (nominal) power supply
VDD_1V0 M19 I 1.05V (nominal) power supply VDD_1V0 M20 I 1.05V (nominal) power supply VDD_1V0 N10 I 1.05V (nominal) power supply VDD_1V0 N13 I 1.05V (nominal) power supply VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (n	VDD_1V0	M15	I	1.05V (nominal) power supply
VDD_1V0 M20 I 1.05V (nominal) power supply VDD_1V0 N10 I 1.05V (nominal) power supply VDD_1V0 N13 I 1.05V (nominal) power supply VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R10 I 1.05V (n	VDD_1V0	M16	I	1.05V (nominal) power supply
VDD_1V0 N10 I 1.05V (nominal) power supply VDD_1V0 N13 I 1.05V (nominal) power supply VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R10 I 1.05V (n	VDD_1V0	M19	I	1.05V (nominal) power supply
VDD_1V0 N13 I 1.05V (nominal) power supply VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (n	VDD_1V0	M20	I	1.05V (nominal) power supply
VDD_1V0 N14 I 1.05V (nominal) power supply VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (n	VDD_1V0	N10	I	1.05V (nominal) power supply
VDD_1V0 N17 I 1.05V (nominal) power supply VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (n	VDD_1V0	N13	I	1.05V (nominal) power supply
VDD_1V0 N18 I 1.05V (nominal) power supply VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (n	VDD_1V0	N14	I	1.05V (nominal) power supply
VDD_1V0 N21 I 1.05V (nominal) power supply VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (n	VDD_1V0	N17	I	1.05V (nominal) power supply
VDD_1V0 P10 I 1.05V (nominal) power supply VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply	VDD_1V0	N18	I	1.05V (nominal) power supply
VDD_1V0 P13 I 1.05V (nominal) power supply VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply	VDD_1V0	N21	I	1.05V (nominal) power supply
VDD_1V0 P14 I 1.05V (nominal) power supply VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply	VDD_1V0	P10	I	1.05V (nominal) power supply
VDD_1V0 P17 I 1.05V (nominal) power supply VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply	VDD_1V0	P13	I	1.05V (nominal) power supply
VDD_1V0 P18 I 1.05V (nominal) power supply VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	P14	I	1.05V (nominal) power supply
VDD_1V0 P21 I 1.05V (nominal) power supply VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	P17	I	1.05V (nominal) power supply
VDD_1V0 R11 I 1.05V (nominal) power supply VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	P18	I	1.05V (nominal) power supply
VDD_1V0 R12 I 1.05V (nominal) power supply VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	P21	I	1.05V (nominal) power supply
VDD_1V0 R15 I 1.05V (nominal) power supply VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	R11	I	1.05V (nominal) power supply
VDD_1V0 R16 I 1.05V (nominal) power supply VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	R12	I	1.05V (nominal) power supply
VDD_1V0 R19 I 1.05V (nominal) power supply VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	R15	I	1.05V (nominal) power supply
VDD_1V0 R20 I 1.05V (nominal) power supply VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	R16	I	1.05V (nominal) power supply
VDD_1V0 T11 I 1.05V (nominal) power supply VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	R19	I	1.05V (nominal) power supply
VDD_1V0 T12 I 1.05V (nominal) power supply VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	R20	I	1.05V (nominal) power supply
VDD_1V0 T15 I 1.05V (nominal) power supply VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	T11	I	1.05V (nominal) power supply
VDD_1V0 T16 I 1.05V (nominal) power supply	VDD_1V0	T12	I	1.05V (nominal) power supply
	VDD_1V0	T15	I	1.05V (nominal) power supply
VDD_1V0 T19 I 1.05V (nominal) power supply	VDD_1V0	T16	I	1.05V (nominal) power supply
	VDD_1V0	T19	I	1.05V (nominal) power supply

Table 13-6 1.05V power rail (Continued)

Pin Name	Pin Id	Direction	Description
VDD_1V0	T20	I	1.05V (nominal) power supply
VDD_1V0	U10	I	1.05V (nominal) power supply
VDD_1V0	U13	I	1.05V (nominal) power supply
VDD_1V0	U14	I	1.05V (nominal) power supply
VDD_1V0	U17	I	1.05V (nominal) power supply
VDD_1V0	U18	I	1.05V (nominal) power supply
VDD_1V0	U21	I	1.05V (nominal) power supply
VDD_1V0	V10	I	1.05V (nominal) power supply
VDD_1V0	V13	I	1.05V (nominal) power supply
VDD_1V0	V14	I	1.05V (nominal) power supply
VDD_1V0	V17	I	1.05V (nominal) power supply
VDD_1V0	V18	I	1.05V (nominal) power supply
VDD_1V0	V21	I	1.05V (nominal) power supply
VDD_1V0	W11	I	1.05V (nominal) power supply
VDD_1V0	W12	I	1.05V (nominal) power supply
VDD_1V0	W15	I	1.05V (nominal) power supply
VDD_1V0	W16	I	1.05V (nominal) power supply
VDD_1V0	W19	I	1.05V (nominal) power supply
VDD_1V0	W20	I	1.05V (nominal) power supply
VDD_1V0	Y11	I	1.05V (nominal) power supply
VDD_1V0	Y12	I	1.05V (nominal) power supply
VDD_1V0	Y15	I	1.05V (nominal) power supply
VDD_1V0	Y16	I	1.05V (nominal) power supply
VDD_1V0	Y19	I	1.05V (nominal) power supply
VDD_1V0	Y20	I	1.05V (nominal) power supply
VDD_1V0	AA10	I	1.05V (nominal) power supply
VDD_1V0	AA13	I	1.05V (nominal) power supply
VDD_1V0	AA14	I	1.05V (nominal) power supply
VDD_1V0	AA17	I	1.05V (nominal) power supply
VDD_1V0	AA18	I	1.05V (nominal) power supply

Table 13-6 1.05V power rail (Continued)

Pin Name	Pin Id	Direction	Description
VDD_1V0	AA21	I	1.05V (nominal) power supply
VDD_PLL0_1V0	J7	I	1.05V (nominal) power supply Dedicated power connection for PLL#0.

13.3.3.2 1.8V Power Rail

The VDD_1V8 powers the SSTL-1.8 I/O signals which form the DDR DRAM interfaces. Nominal voltage for this supply is 1.8V when using DDR667 DRAMs (system clock frequency = 333MHz).

Table 13-7 1.8V power rail

Pin Name	Pin Id	Direction	Description
VDD_1V8	A5	I	1.8V (nominal) power supply
VDD_1V8	A10	I	1.8V (nominal) power supply
VDD_1V8	A16	I	1.8V (nominal) power supply
VDD_1V8	A20	I	1.8V (nominal) power supply
VDD_1V8	A22	I	1.8V (nominal) power supply
VDD_1V8	B11	I	1.8V (nominal) power supply
VDD_1V8	B13	I	1.8V (nominal) power supply
VDD_1V8	B18	I	1.8V (nominal) power supply
VDD_1V8	B26	I	1.8V (nominal) power supply
VDD_1V8	C7	I	1.8V (nominal) power supply
VDD_1V8	D15	I	1.8V (nominal) power supply
VDD_1V8	D17	I	1.8V (nominal) power supply
VDD_1V8	D20	I	1.8V (nominal) power supply
VDD_1V8	D24	I	1.8V (nominal) power supply
VDD_1V8	E9	I	1.8V (nominal) power supply
VDD_1V8	E14	I	1.8V (nominal) power supply
VDD_1V8	E18	I	1.8V (nominal) power supply
VDD_1V8	E28	I	1.8V (nominal) power supply
VDD_1V8	G11	I	1.8V (nominal) power supply
VDD_1V8	G12	I	1.8V (nominal) power supply
VDD_1V8	G14	I	1.8V (nominal) power supply

Table 13-7 1.8V power rail (Continued)

Pin Name	Pin Id	Direction	Description
VDD_1V8	G18	I	1.8V (nominal) power supply
VDD_1V8	G20	I	1.8V (nominal) power supply
VDD_1V8	G21	I	1.8V (nominal) power supply
VDD_1V8	G26	I	1.8V (nominal) power supply
VDD_1V8	H11	I	1.8V (nominal) power supply
VDD_1V8	H13	I	1.8V (nominal) power supply
VDD_1V8	H15	I	1.8V (nominal) power supply
VDD_1V8	H17	I	1.8V (nominal) power supply
VDD_1V8	H19	I	1.8V (nominal) power supply
VDD_1V8	H20	I	1.8V (nominal) power supply
VDD_1V8	H30	I	1.8V (nominal) power supply
VDD_1V8	J24	I	1.8V (nominal) power supply
VDD_1V8	K24	I	1.8V (nominal) power supply
VDD_1V8	K27	I	1.8V (nominal) power supply
VDD_1V8	L23	I	1.8V (nominal) power supply
VDD_1V8	L29	I	1.8V (nominal) power supply
VDD_1V8	M24	I	1.8V (nominal) power supply
VDD_1V8	N23	I	1.8V (nominal) power supply
VDD_1V8	N27	I	1.8V (nominal) power supply
VDD_1V8	P30	I	1.8V (nominal) power supply
VDD_1V8	R23	I	1.8V (nominal) power supply
VDD_1V8	R27	I	1.8V (nominal) power supply
VDD_1V8	T24	I	1.8V (nominal) power supply
VDD_1V8	T29	I	1.8V (nominal) power supply
VDD_1V8	U23	I	1.8V (nominal) power supply
VDD_1V8	V24	I	1.8V (nominal) power supply
VDD_1V8	V27	I	1.8V (nominal) power supply
VDD_1V8	V30	I	1.8V (nominal) power supply
VDD_1V8	W23	I	1.8V (nominal) power supply
VDD_1V8	Y24	I	1.8V (nominal) power supply

Table 13-7 1.8V power rail (Continued)

Pin Name	Pin Id	Direction	Description
VDD_1V8	Y25	I	1.8V (nominal) power supply
VDD_1V8	Y30	I	1.8V (nominal) power supply
VDD_1V8	AB27	I	1.8V (nominal) power supply
VDD_1V8	AD29	I	1.8V (nominal) power supply

13.3.3.3 3.3V Power Rail

Table 13-8 3.3V power rail

VDD_3V3 B29 I 3.3V (nominal) power supply VDD_3V3 D4 I 3.3V (nominal) power supply VDD_3V3 D27 I 3.3V (nominal) power supply VDD_3V3 F25 I 3.3V (nominal) power supply VDD_3V3 G4 I 3.3V (nominal) power supply VDD_3V3 G7 I 3.3V (nominal) power supply VDD_3V3 G9 I 3.3V (nominal) power supply VDD_3V3 K8 I 3.3V (nominal) power supply VDD_3V3 L8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W6 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply	Description	Direction	Pin Id	Pin Name
VDD_3V3 D27 I 3.3V (nominal) power supply VDD_3V3 F25 I 3.3V (nominal) power supply VDD_3V3 G4 I 3.3V (nominal) power supply VDD_3V3 G7 I 3.3V (nominal) power supply VDD_3V3 G9 I 3.3V (nominal) power supply VDD_3V3 K8 I 3.3V (nominal) power supply VDD_3V3 L8 I 3.3V (nominal) power supply VDD_3V3 M8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 T8 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	B29	VDD_3V3
VDD_3V3 F25 I 3.3V (nominal) power supply VDD_3V3 G4 I 3.3V (nominal) power supply VDD_3V3 G7 I 3.3V (nominal) power supply VDD_3V3 G9 I 3.3V (nominal) power supply VDD_3V3 K8 I 3.3V (nominal) power supply VDD_3V3 L8 I 3.3V (nominal) power supply VDD_3V3 M8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 T8 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 A88 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	D4	VDD_3V3
VDD_3V3 G4 I 3.3V (nominal) power supply VDD_3V3 G7 I 3.3V (nominal) power supply VDD_3V3 G9 I 3.3V (nominal) power supply VDD_3V3 K8 I 3.3V (nominal) power supply VDD_3V3 L8 I 3.3V (nominal) power supply VDD_3V3 M8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	D27	VDD_3V3
VDD_3V3 G7 I 3.3V (nominal) power supply VDD_3V3 G9 I 3.3V (nominal) power supply VDD_3V3 K8 I 3.3V (nominal) power supply VDD_3V3 L8 I 3.3V (nominal) power supply VDD_3V3 M8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	F25	VDD_3V3
VDD_3V3 G9 I 3.3V (nominal) power supply VDD_3V3 K8 I 3.3V (nominal) power supply VDD_3V3 L8 I 3.3V (nominal) power supply VDD_3V3 M8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 T8 I 3.3V (nominal) power supply VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	G4	VDD_3V3
VDD_3V3 K8 I 3.3V (nominal) power supply VDD_3V3 L8 I 3.3V (nominal) power supply VDD_3V3 M8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 T8 I 3.3V (nominal) power supply VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	G7	VDD_3V3
VDD_3V3 L8 I 3.3V (nominal) power supply VDD_3V3 M8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 T8 I 3.3V (nominal) power supply VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	G9	VDD_3V3
VDD_3V3 M8 I 3.3V (nominal) power supply VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 T8 I 3.3V (nominal) power supply VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	K8	VDD_3V3
VDD_3V3 R8 I 3.3V (nominal) power supply VDD_3V3 T8 I 3.3V (nominal) power supply VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	L8	VDD_3V3
VDD_3V3 T8 I 3.3V (nominal) power supply VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	M8	VDD_3V3
VDD_3V3 U7 I 3.3V (nominal) power supply VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	R8	VDD_3V3
VDD_3V3 V5 I 3.3V (nominal) power supply VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	Т8	VDD_3V3
VDD_3V3 V7 I 3.3V (nominal) power supply VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	U7	VDD_3V3
VDD_3V3 W5 I 3.3V (nominal) power supply VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	V5	VDD_3V3
VDD_3V3 W8 I 3.3V (nominal) power supply VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	V7	VDD_3V3
VDD_3V3 Y8 I 3.3V (nominal) power supply VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	W5	VDD_3V3
VDD_3V3 AA8 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	W8	VDD_3V3
	3.3V (nominal) power supply	I	Y8	VDD_3V3
VDD_3V3 AA25 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	AA8	VDD_3V3
	3.3V (nominal) power supply	I	AA25	VDD_3V3
VDD_3V3 AB3 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	AB3	VDD_3V3
VDD_3V3 AB4 I 3.3V (nominal) power supply	3.3V (nominal) power supply	I	AB4	VDD_3V3

Table 13-8 3.3V power rail (Continued)

		Direction	Description
VDD_3V3	AB7	I	3.3V (nominal) power supply
VDD_3V3	AB24	I	3.3V (nominal) power supply
VDD_3V3	AB26	I	3.3V (nominal) power supply
VDD_3V3	AC7	I	3.3V (nominal) power supply
VDD_3V3	AC10	I	3.3V (nominal) power supply
VDD_3V3	AC11	I	3.3V (nominal) power supply
VDD_3V3	AC12	I	3.3V (nominal) power supply
VDD_3V3	AC15	I	3.3V (nominal) power supply
VDD_3V3	AC16	I	3.3V (nominal) power supply
VDD_3V3	AC19	I	3.3V (nominal) power supply
VDD_3V3	AC20	I	3.3V (nominal) power supply
VDD_3V3	AC21	I	3.3V (nominal) power supply
VDD_3V3	AC24	I	3.3V (nominal) power supply
VDD_3V3	AD8	I	3.3V (nominal) power supply
VDD_3V3	AD9	I	3.3V (nominal) power supply
VDD_3V3	AD18	I	3.3V (nominal) power supply
VDD_3V3	AD22	I	3.3V (nominal) power supply
VDD_3V3	AD23	I	3.3V (nominal) power supply
VDD_3V3	AE6	I	3.3V (nominal) power supply
VDD_3V3	AE25	I	3.3V (nominal) power supply
VDD_3V3	AF28	I	3.3V (nominal) power supply
VDD_3V3	AG4	I	3.3V (nominal) power supply
VDD_3V3	AG20	I	3.3V (nominal) power supply
VDD_3V3	AG24	I	3.3V (nominal) power supply
VDD_3V3	AG27	I	3.3V (nominal) power supply
VDD_3V3	AG29	I	3.3V (nominal) power supply
VDD_3V3	AJ2	I	3.3V (nominal) power supply
VDD_3V3	АЈ8	I	3.3V (nominal) power supply
VDD_3V3	AJ17	I	3.3V (nominal) power supply
VDD_3V3	AJ30	I	3.3V (nominal) power supply

Table 13-8 3.3V power rail (Continued)

Pin Name	Pin Id	Direction	Description
VDD_3V3	AK21	I	3.3V (nominal) power supply
VDD_3V3	AK25	I	3.3V (nominal) power supply
VDD_3V3	AK29	I	3.3V (nominal) power supply
VDD_PLL1_3V3	J6	I	3.3V (nominal) power supply Dedicated power connection for PLL#1.
VDD_PLL2_3V3	J5	I	3.3V (nominal) power supply. Dedicated power connection for PLL#2.

13.4 Thermal Specifications

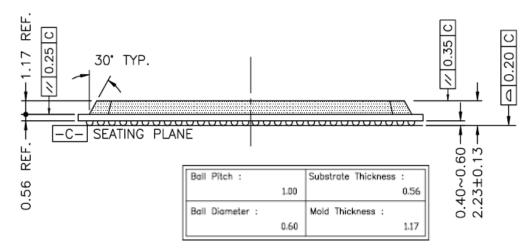

13.4.1 Package Thermal Characteristics

Table 13-9 Package thermal characteristics

Thermal Parameter	Symbol	Units	Value	Conditions
Junction temperature (max)	T _J (max)	₀ C	120	
Case temperature (max)	T _C (max)	₀ C	95	Device power = 3.2W 0 m/s airflow
Thermal resistance, junction to case	θ_{JC}	⁰ C/W	4.4	4-layer PCB 0 m/s airflow
Thermal resistance, junction to ambient	$\theta_{ exttt{JA}}$	⁰ C/W	12.4	0 m/s airflow
Thermal resistance, junction to ambient	$\theta_{ exttt{JA}}$	⁰ C/W	10.5	1 m/s airflow
Thermal resistance, junction to ambient	$\theta_{ exttt{JA}}$	⁰ C/W	9.9	2 m/s airflow

13.5 Mechanical Specifications

13.5.1 Package Specifications

13.5.2 Package Drawings

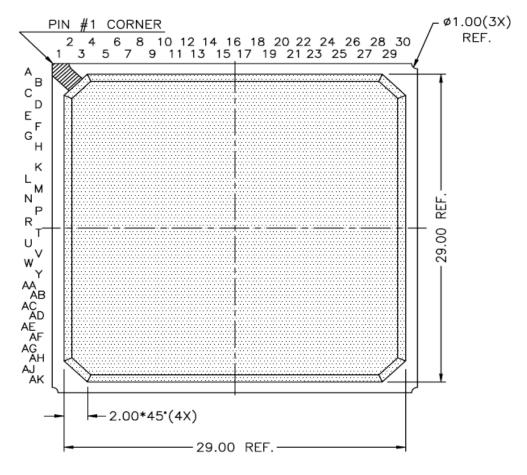


Figure 13-3 Package diagram - top view (844 BGA)

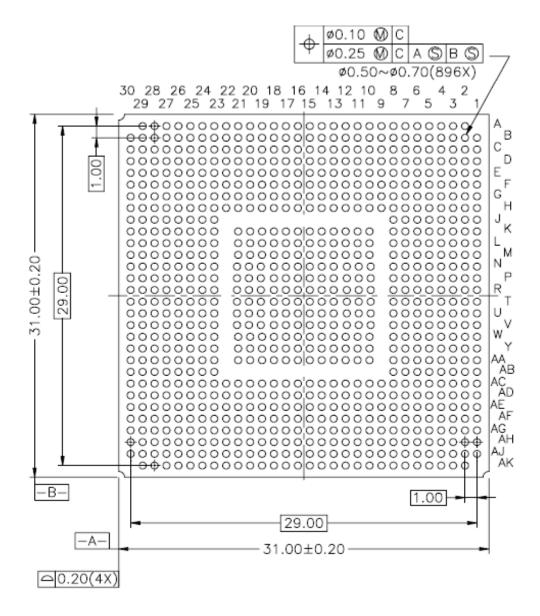


Figure 13-4 Package diagram - bottom view (844 BGA)

14

DDR Implementation

14.1 Memory System Implementation Guidelines

The SMP8654 supports the use of DDR2 SDRAM devices in the 'point-to-point' configuration. Two identical 32-bit wide DRAM channels are implemented, and the speed of operation is 333MHz (667Mbps/pin).

The DDR2 SDRAM technology includes several key new features, which together make a robust memory system easier to achieve. These features include:

- Small package footprints (FBGA packages)
- On-die termination
- Differential signaling on critical signals (clock and strobes)
- Programmable drive strength

14.1.1 Signal Topology

The recommended signal topologies are shown below. For signals that branch to drive two DDR devices (all signals except DRAMn_A5, DRAMn_A4, DRAMn_A5H, DRAMn_A4H), the total trace length from the split to each DRAM should be kept equal. Matching of trace length among all DDR signals should be kept within approximately 5mm.

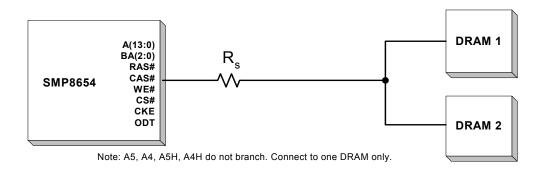


Figure 14-1 Signal topology: Address/Command

Figure 14-2 Signal topology: DQ/DM

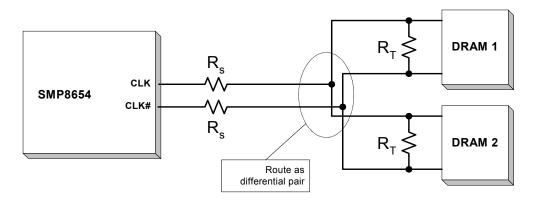


Figure 14-3 Signal topology: Differential clock

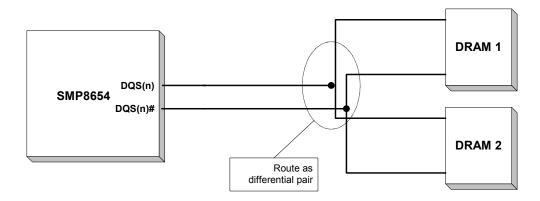


Figure 14-4 Signal topology: Differential

14.1.2 Design Considerations

It is recommended that the PCB layout used in the Sigma reference designs be followed as closely as possible, since it has been tested, characterized and shown to provide reliable performance. Of particular importance are the following:

- Route the differential signals as true differential pairs. Careful matching of the differential pairs will maximize timing margins.
- Clean Vref voltage is critical. Separate RC filters should be used to generate clean 1.8V sources for each SMP8634 DDR2 channel (5 Vref pins), and also for the DRAMs associated with each DDR2 channel. Follow the Vref filtering circuit as shown in the reference schematics.
- Series resistors (RS): Sigma recommends the use of series resistors on all address and control signals (An, BAn, RAS#, CAS#, CS#, WE#, CLKE, ODT). They are also recommended to be used on each of the differential clock signals. Series terminators are NOT used on: DQSn pairs, DMn signals. Optimum resistor value can be determined experimentally, but 22 33 ohms can be used as a good starting point.
- Shunt resistors (RT): Sigma recommends a value of 300 ohms at each DRAM between CLK and CLK# (150 ohm effective termination impedance).
- The differential clock signal must be routed as parallel traces, and impedance value calculated as differential. The clock traces should have shield traces on both sides tied to Vss.

15

Ordering Information

The SMP8654 Secure Media Processors are produced in 2 distinct variations, referred to as 'Production' or 'Development' versions. The versions differ in the internal keys which are used to authenticate and decrypt the software during the bootup process. The standard product configuration for the SMP8654 is the 'production' configuration. Most software development and system integration work can be easily done using the production devices. Certain developers who need to port DRM or CA software to run on the security processor (XPU) may require development versions of the device. Please contact your Sigma account representative to see if you are eligible to receive development devices, and to get additional ordering and availability information.

Ordering Information

Table 15-1. SMP8654 ordering information

Part Number	Keyset	Solder Type	Package Type	Package Size	Ball Pitch	Macrovision
SMP8654A-CBE3	Production	Pb-free	844BGA	31x31mm	1mm	Yes
SMP8654AS-CBE3	Development	Pb-free	844BGA	31x31mm	1mm	Yes
SMP8655A-CBE3	Production	Pb-free	844BGA	31x31mm	1mm	No

16 Licensing

16.1 Licensing

16.1.1 General Notifications

'Dolby' and the 'double-D' symbol are trademarks of Dolby Laboratories. Manufactured under license from Dolby Laboratories. This product contains one or more programs protected under international and U.S. copyright laws as unpublished works. They are confidential and proprietary to Dolby Laboratories. Their reproduction or disclosure, in whole or in part, or the production of derivative works therefrom without the express permission of Dolby Laboratories is prohibited. Copyright 1993-2005 by Dolby Laboratories. All rights reserved. Supply of this Implementation of Dolby technology does not convey a license nor imply a right under any patent, or any other industrial or intellectual property right of Dolby Laboratories, to use this Implementation in any finished end-user or ready-to-use final product. It is hereby notified that a license for such use is required from Dolby Laboratories.

16.1.2 3rd-party Intellectual Property Licenses

Many 3rd party intellectual property licenses are typically required before a product can go into production. These licenses are required regardless of the chosen chip supplier. For your convenience, we have indicated various 3rd party intellectual property licenses you may need.

16.1.2.1 Macrovision

Prior to ordering Macrovision-enabled chips, you will need to have a Macrovision (http://www.macrovision.com) license. Before shipping each order, Sigma Designs will verify your license with Macrovision.

16.1.2.2 Licenses that Sigma will Verify

If your product supports any of the following features, you will need to have the corresponding license(s) before ordering production chips. Before providing you with a secure 'authorization token' that enables the desired feature(s), Sigma Designs will ask for a copy of the appropriate license(s) and/or verify your license(s) with licensee(s). We will again verify your license(s) before shipping each order.

Audio

• Dolby audio decoding and /or encoding feature(s): appropriate license(s) from Dolby (http://www.dolby.com).

- WMA and/or WMA Pro audio decoding feature(s): 'Windows Media Components
 Final Product Agreement' from Microsoft (http://www.microsoft.com/windows/windows/windows/windowsmedia/licensing/default.aspx).
- ATRAC3 audio decoding feature: ATRAC3 license from Sony (http://www.sony.com).

Video

 WMV9 decoding feature: 'Windows Media Components Final Product Agreement' from Microsoft (http://www.microsoft.com/windows/windowsmedia/licensing/default.aspx).

Optical Media Playback

- DVD-Video playback feature: CSS license from DVD CCA (http://www.dvdcca.org).
 Note that you must get a DVD format/logo license from DVD FLLC before a CSS license will be issued. You will also need to sign our CSS Microcode License Agreement.
- DVD-R and DVD-RW playback feature: CPRM for DVD license from 4C (http://www.4centity.com)
- DVD+R and DVD+RW playback feature: VCPS license from Philips (http://www.licensing.philips.com)

DRM

- WM DRM 10 feature: 'Windows Media DRM 10 for Devices Final Product Distribution Agreement' from Microsoft (http://www.microsoft.com/windows/windowsme-dia/licensing/default.aspx)
- DTCP/IP feature: DTCP/IP license from DTLA (http://www.dtcp.com)
- HDMI output feature: HDCP license from Digital Content Protection (http://www.hdmi.org)
 HDMI license from HDMI LLC (http://www.hdmi.org)

Note that since Sigma Designs only provides low-level software tools, additional application-level software development is required to make any desired feature fully functional.

16.1.2.3 Licenses that Sigma does not Verify

For your convenience, we also indicate other various 3rd party intellectual property licenses you may need to obtain prior to going into production. Sigma Designs does not verify these licenses and does not guarantee that all required licenses are listed.

- ATSC feature: MPEG LA (http://www.mpegla.com)
- DVB-T feature: MPEG LA (http://www.mpegla.com)
- DVD-Video feature: DVD FLLC (http://www.dvdfllc.com); DVD 6C (http://www.dvdfllc.com); Nissim (http://www.nissim.com); Nissim (http://www.nissim.com)
- HD DVD-Video feature: DVD FLLC (http://www.dvdfllc.com)
- JPEG feature: Forgent Networks (http://www.forgent.com)
- MPEG audio feature(s): Via Licensing (http://www.vialicensing.com) for MPEG-2 AAC and MPEG-4, including HE-AAC. Philips (http://www.licensing.philips.com) for Layers I and II for DVD players. For Layer III (mp3): Sisvel (http://www.sis-vel.com) (Philips) for non-US patents; Audio MPEG (http://www.audiompeg.com) (Philips) for US patents; MP3 Licensing (http://www.mp3licensing.com) (Thomson)
- MPEG-2 system and/or video feature(s): MPEG LA (http://www.mpegla.com)
- MPEG-4.2 video feature: MPEG LA (http://www.mpegla.com); AT&T (<a href="http://www.
- MPEG-4.10 (H.264) video feature: MPEG LA (http://www.mpegla.com); Via Licensing (http://www.mpegla.com); AT&T (http://www.mpegla.com)
- MPEG-4.1 systems feature: MPEG LA (http://www.mpegla.com)
- SMPTE 421M (VC-1) video feature: MPEG LA (http://www.mpegla.com)
- WMA, WMV9, WM DRM and/or HighMAT feature(s): 'Logo Agreement' from Microsoft (http://www.microsoft.com/windows/windowsmedia/licensing/default.aspx)

16.1.3 Licenses and Royalty Responsibility

Licensing and any associated royalty payments for 3rd party intellectual property are the responsibility of the customer.

17 Appendix

17.1 Basic Analog Video Parameters

Table 17-1 Basic analog video parameters

	NTSC-M NTSC-J	PAL-B/D/ G/H/I	480P	576P	720P	1080i	1080P
Frame Rate	29.97	29.97	59.94	25	59.94	29.97 (25)	59.94
HEIGHT	0x020D 525	0x0271 625	0x020D 525	0x0271 625	0x02EE 750	0x0465 1125	0x0465 1125
WIDTH	0x0D68 3432	0x0D80 3456	0x0D68 3432	0x0D80 3456	0x0672 1650	0x0898 (0x0A50) 2200 (2640)	0x0898 (0x0A50) 2200 (2640)
HSYNC1	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000
HSYNC0	0x0001	0x0001	0x0001	0x0001	0x0001	0x0001	0x0001
VSYNC_O_0_PIXEL	0x0001	0x0001	0x0001	0x0001	0x0001	0x0001	0x0001
VSYNC_O_0_LINE	0x0001	0x0001	0x0001	0x0001	0x0001	0x0001	0x0001
VSYNC_O_1_PIXEL	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000	0x0000
VSYNC_O_1_LINE	0x0001	0x0001	0x0001	0x0001	0x0001	0x0001	0x0001
VSYNC_E_0_PIXEL	0x06B5 WIDTH/2+1 1717	0x06C1 WIDTH/2+1 1729	-	-	-	0x044D (0x0529) WIDTH/2+1 1101 (1321)	-
VSYNC_E_0_LINE	0x0107 263	0x0139 313	-	-	-	0x0233 563	-
VSYNC_E_1_PIXEL	0x06B4 WIDTH/2 1716	0x06C0 WIDTH/2 1728	-	-	-	0x044C (0x0528) WIDTH/2 1100 (1320)	-
VSYNC_E_1_LINE	0x0107 263	0x0139 313	-	-	-	0x0233 563	-
HSYNC_WIDTH	-	-	-	-	0x0050 80	0x0058 88	0x0058 58

Table 17-1 Basic analog video parameters

	NTSC-M NTSC-J	PAL-B/D/ G/H/I	480P	576P	720P	1080i	1080P
VSYNC_START	-	-	-	-	0x0104 260	0x0084 132	0x0084 132
VSYNC_WIDTH	-	-	-	-	0x0500 1280	0x0370 880	0x07BC 1980
X Offset	130*4	132*4	130*4	132*4	305	240	240
Y Offset (Top)	18	22	36	44	25	20	40
Y Offset (Bottom)	18	22	-	-	-	21	=

17.2 Main Video Scaler Filters

Four '4-taps' filters are available in the main video scaler for luma/chroma horizontal/vertical filtering. They are four 63-coefficient, 16 times interpolating filters. For each of the 16 interpolating positions 4 coefficients (taps) are used $(64 = 4 \times 16)$.

17.2.1 Frequency Response

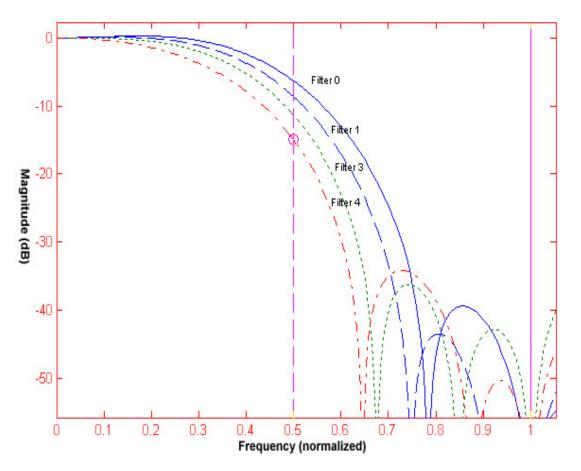


Figure 17-1 Frequency response

17.2.2 Impulse Response (x 1024)

Filter 0	64	64	62	60	57	53	48	44	38	33	28	22	17	12	8	4	0	-2	-4	-6	-7	-7	-7	-7	-6	-6	-5	-4	-3	-2	-2	-2
Filter 1	58	58	57	55	52	49	46	42	37	33	28	24	20	15	11	8	3	2	-1	-3	-4	-5	-5	-6	-5	-5	-5	-4	-4	-3	-3	-4
Filter 2	52	52	51	50	48	46	43	40	36	33	29	25	21	17	14	10	6	5	2	1	-1	-2	-3	-4	-4	-5	-5	-5	-4	-4	-3	-3
Filter 3	46	46	44	43	42	40	38	36	34	31	28	25	22	19	16	12	$_{\odot}$	8	6	4	3	1	0	-1	-2	-2	-2	-2	ი	-2	-2	-2

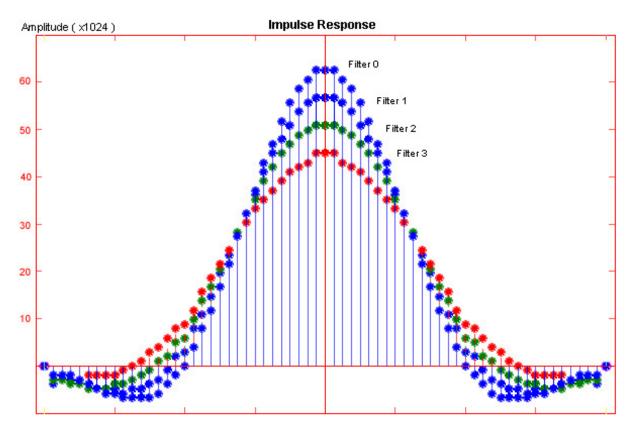


Figure 17-2 Impulse response

17.3 Color Space Conversion Basic Matrices

$$\begin{bmatrix} Y/G \\ Cb/B \\ C\gamma/R \end{bmatrix} = \begin{bmatrix} \mathbf{m00} & \mathbf{m01} & \mathbf{m02} \\ \mathbf{m10} & \mathbf{m11} & \mathbf{m12} \\ \mathbf{m20} & \mathbf{m21} & \mathbf{m22} \end{bmatrix} \times \begin{bmatrix} Y/G \\ Cb/B \\ C\gamma/R \end{bmatrix} + \begin{bmatrix} \mathbf{Cst0} \\ \mathbf{Cst1} \\ \mathbf{Cst2} \end{bmatrix}$$

	Real	Analog	Digital
	[1.164 -0.391 -0.813][135488]	[4768 31166 29438][2168]	[2384 15583 14719][1084]
601 → RGB 0-255	1.164 2.018 0 -276928	4768 8266 0 11953	2384 4133 0 5977
	[1.164 0 1.596][-222912]	4768 0 6537 12817	[2384 0 3268][6409]
	[] -0.336 -0.698[[132352]]	[4096 31392 2990¶[2118]	[2048 15696 14954][1059]
601 → RGB 16-235	1 1.732 0 -221696	4096 7094 0 12837	2048 3547 0 6418
	[1 0 1371][-175488	4096 0 5616 13576	[2048 0 2808][6788]
	[1.164 -0.213 -0.534][76.992]	[4768 31896 3058][[1232]	[2384 15948 15290][616]
709 → RGB 0-255	1.164 2.115 0 -289344	4768 8663 0 11754	2384 4332 0 5877
	1.164 0 1.793 -248.128	4768 0 7344 12414	[2384 0 3672][6207]
	1 -0.183 -0.45 9 [82.176]	[4096 32018 30888 [1315]	[2048 16009 15444][657]
709 → RGB 16-235	1 1816 0 -232448	4096 7438 0 12665	2048 3719 0 6332
	[1 0 1540][-19712]	4096 0 6308 13230	[2048 0 3154][6615]
	[0.504 0.098 0.257][16]	[2064 401 1053][256]	[1032 201 526][128]
RGB 0-255 → 601	-0291 0.439 -0.148 128	31576 1798 32162 2048	15788 899 16081 1024
	[-0.368 -0.071 0.439][128]	31261 32477 1798 2048	[15630 16239 899][1024]
	[0.587 0.114 0.299][0]	[2404 467 1225][0]	[1202 233 612][0]
RGB 16-235 → 601	-0.339 0.511 -0.172 128	31379 2093 32063 2048	15690 1047 16032 1024
	[-0.428 -0.083 0 <i>5</i> 11][128]	[31015 32428 2093][2048	[15507 16214 1047][1024]
	[0614 0.062 0.183][16]	[2515 254 750][256]	[1257 127 375][128]
RGB 0-255 → 709	-0.338 0.439 -0.101 128	31384 1798 32354 2048	15692 899 16177 1024
	[-0.399 -0.040 0.439][128]	[31134 32604 1798][2048]	[15567 16302 899][1024
	[0.715 0.072 0.213] [0]	[2929 295 872][0]	[1464 147 436][0]
RGB 16-235 → 709	-0.394 0.511 -0.117 128	31154 2093 32289 128	15577 1047 16144 1024
	[-0.464 -0.047 0.511][128]	[30867 32575 2093][128]	[15434 16288 1047][1024]
	[1 -0.116 -0207][41344]	[4096 32293 3192 0 [662]	[2048 16146 1596¶[331]
601 → 709	0 1017 0.115 -16896	0 4166 471 16114	0 2083 236 8057
	[0 0.075 1.024][-12.672]	[0 307 4194][16181]	[0 154 2097][8091]
	Γ1 0.1 0.191∏−3724 8	[4096 410 782][1578 8	[2048 205 391][7894
709 → 601	0 0.99 -0.109 15232	0 4055 32322 244	0 2028 16161 122
	[0 -0.072 0.983][11392]	0 32473 4026][182]	[0 16237 2013][91]
cian(v) = 1 if v / 0:0 athor	nuico.	m = 22789 * cian(m) + m * 4008	m = 18204*cian(m) + m * 2040

sign(x) = 1 if x < 0; 0 otherwise round macstame and cstato the closest integer m_a = 32768 * sign(m,) + m, * 4096 cst_a = 16384 * sign(cst.) + cst, * 16

നു = 16384*sign(സ്ല) + സ്ല.* 2048 ടൂട്ടൂ = 8192*sign(ട്രൂട്ടു) + ട്രൂട്ടു.* 8

17.4 Video Output Scaling Examples

4:3 display

Left and right portions of 16:9 picture cropped

Figure 17-3 Scaling 16:9 content for a 4:3 display - "Crop" mode

16:9 source

4:3 display

Figure 17-4 Scaling 16:9 content for a 4:3 display - "Letterbox" mode

16:9 source

4:3 display

Entire picture horizontally squeezed to fit 4:3 display width, distorted picture

Figure 17-5 Scaling 16:9 content for a 4:3 display – "Squeezed" mode

4:3 source

16:9 display

Left and right portions of 16:9 display not used so made black or gray

Figure 17-6 Scaling 4:3 content for a 16:9 display – "Pillar" mode

4:3 source

16:9 display

Entire picture linearly scaled horizontally to fill 16:9 display, distorted picture unless used with anamorphic content

Figure 17-7 Scaling 4:3 content for a 16:9 display – "Wide" mode

4:3 source

16:9 display

Top and bottom portion of picture deleted, then scaled to fill 16:9 display

Figure 17-8 Scaling 4:3 content for a 16:9 display – "Zoom" mode

4:3 source

16:9 display

Edges of picture nonlinearly scaled horizontally to fill 16:9 display, distorted picture on left and right sides

Figure 17-9 Scaling 4:3 content for a 16:9 display – "Panorama" mode

17.5 SDTV vs. HDTV Colorimetry Example

Figure 17-10 SDTV Vs. SDTV Colorimetry Example

17.6 Supported Media Formats

Table 17-2 Supported Media Formats

Format		Feature	Supported
DVD-Video	Media	DVD-R	х
		DVD-RW	х
		DVD-R Dual Layer	х
	Trick Play	Pause / resume	х
		Stop	х
		Next / Previous	х
		Fast forward (2X, 32X)	х
		Fast reverse (2X, 32X)	х
		Audio playback during FF or RW	х
		Slow playback (1/2X, 1/32X)	х
		Reverse playback	
		Frame advance	х
		Title Search	х
		Chapter Search	х
		Time search	х
		Time advance (user defined)	х
		Angle	х
		Subtitle	х
		Audio Select	х
		Changeable Subpicture position	
		Brightness control - subpicture	х
		'Scan' of (chapter, title)	х
		Playback speed control (x0.6 - x1.4), with audio	
		Instant replay	х
		Advance x seconds and resume playback	х
		Bookmark	х
		Playlist	х
		Shuffle playback	х
		Repeat (chapter, title, disc)	х

Table 17-2 Supported Media Formats

Format		Feature	Supported
		A-B Repeat	х
		Jacket picture support	х
DVD-VR	Media	DVD-R	х
		DVD-RW	х
		DVD-RAM	х
		DVD-R Dual Layer	
	Trick Play	Pause / resume	х
		Stop	x
		Next / Previous	x
		Fast forward (2X, 32X)	х
		Fast reverse (2X, 32X)	x
		Audio playback during FF or RW	х
		Slow playback (1/2X, 1/32X)	х
		Reverse playback	
		Frame advance	х
		Title Search	х
		Chapter Search	х
		Time search	х
		Time advance (user defined)	х
		Angle	х
		Subtitle	х
		Audio Select	х
		Changeable Subpicture position	
		Brightness control - subpicture	х
		'Scan' of (chapter, title) -	×
		Playback speed control (x0.6 - x1.4), with audio	×
		Instant replay	×
		Advance x seconds and resume playback.	х
		Bookmark	×
		Playlist	x

Table 17-2 Supported Media Formats

Format		Feature	Supported
		Shuffle playback	х
		Repeat (chapter, title, disc)	х
		A-B Repeat	х
		Thumbnails of playlist	
		Thumbnail of playlist	
DVD+VR	Media	+R	х
		+RW	х
		+R Dual Layer	х
CD-DA	Media	CD-R	х
		CD-R with HighMAT	х
		CD-RW	х
		CD-RW with HighMAT	x
		CD-TEXT	х
		dtsCD	х
		HDCD	
	Trick Play	Pause / resume	х
		Stop	х
		Skip	х
		Fast forward	х
		Fast reverse	х
		Audio output during search	х
		Track search	х
		Time search	х
		Instant replay	х
		Bookmark	х
		Playlist support	х
		Shuffle	х
		Repeat (track, disc)	х
		A-B Repeat	х
		Jacket picture support	

Table 17-2 Supported Media Formats

Format		Feature	Supported
VideoCD v1.x and v2.0	Media	CD-R	х
		CD-RW	х
	Trick Play	Pause / resume	х
		Stop	х
		Next / previous	х
		Fast forward	х
		Fast reverse	х
		Audio output during search	х
		Slow playback	Х
		Reverse playback	
		Frame advance	х
		Time search	Х
		Track search	Х
		Audio Select (same audio to both left and right)	Х
		Instant replay	Х
		Advance x seconds and resume playback.	Х
		Bookmark	Х
		Playlist support	Х
		Shuffle	Х
		Repeat	Х
		A-B Repeat	Х
		PBC select	Х
		PBC select during Play Back	Х
		Zoom	Х
		Karaoke CD	х
		VCD with CDDA	х
SVCD EC 62107-2000	Media	CD-R	×
		CD-RW	х
	Trick Play	Pause / resume	x

Table 17-2 Supported Media Formats

Format	Feature	Supported
	Stop	х
	Next / previous	х
	Fast forward	х
	Fast reverse	х
	Audio output during search	х
	Slow playback	х
	Reverse playback	
	Frame advance	х
	Time search	х
	Track search	х
	Audio Select (same audio to both left and right)	х
	Instant replay	х
	Advance x seconds and resume playback.	х
	Bookmark	х
	Playlist support	х
	Shuffle	х
	Repeat	х
	A-B Repeat	х
	PBC select	х
	PBC select during Play Back	х
	Zoom	х
	Karaoke CD	х
	VCD with CDDA	х
	OGT display & select	х

17.7 Supported File Formats

Table 17-3 File formats supported by SMP8654

Format		Feature	Supported
File Player		ISO9660 level 2	х
		UDF 1.02	х
		UDF 1.5	х
		UDF 2.01	х
		UDF 2.5	х
		UDF 2.6	
		Number of folders	х
		Number of files	х
		Display by filename	х
		Display font	х
		Slideshow mode	х
AVI	Video	MPEG-2	х
		MPEG-4.2	х
		MPEG-4.10 (H.264)	
		SMPTE 421M (VC-1)	
		WMV9	х
	Audio	LPCM	
		Dolby Digital	х
		WMA	
-		WMA Pro	
ASF	Video	MPEG-2	х
-		MPEG-4.2	х
		MPEG-4.10 (H.264)	
		SMPTE 421M (VC-1)	
		WMV9	х
	Audio	LPCM	
		Dolby Digital	х
		WMA	
		WMA Pro	

Table 17-3 File formats supported by SMP8654

Format		Feature	Supported
MP3	Trick Play	Pause/resume	х
		Stop	х
		Next / previous	х
		Fast forward	х
		Fast reverse	
		Audio output during search	х
		Elapsed time	х
WMA	Trick Play	Pause/resume	х
		Stop	х
		Next/previous	х
		Fast forward	х
		Fast reverse	
		Audio output during search	х
		Elapsed time	х
		Time search	х
		Instant replay	х
		Bookmark	х
		Playlist	х
		Shuffle	х
		Repeat	х
		A-B Repeat	х
		Time search	х
		Instant replay	х
		Bookmark	х
		Playlist	х
		Shuffle	х
		Repeat	х
		A-B Repeat	X
WMA Pro	Trick Play	Pause/resume	X
		Stop	X

Table 17-3 File formats supported by SMP8654

Format	Feature	Supported
	Next/previous	х
	Fast forward	х
	Fast reverse	
	Audio output during search	х
	Elapsed time	х
	Time search	х
	Instant replay	х
	Bookmark	х
	Playlist	х
	Shuffle	х
	Repeat	х
	A-B Repeat	х
DivX	v3.11	х
	v4.x	х
	v5.x	x
Trick Play	Pause/resume	х
	Stop	х
	Next/previous	х
	Fast forward	х
	Fast reverse	х
	Audio output during search	х
	Slow playback	х
	Reverse playback	х
	Frame advance	х
	Time search	х
	Time advance (user defined)	х
	Subtitle	x
	Audio Select	х
	Changeable subpicture position	х
	Brightness control of subpicture	х

Table 17-3 File formats supported by SMP8654

Format		Feature	Supported
		Instant replay	х
		Advance x seconds and resume playback	х
		Bookmark	х
		Playlist	х
		Shuffle	х
		Repeat	х
		A-B Repeat	х
		DivX DRM	
JPEG	Trick Play	Pause/resume	х
		Stop	х
		Next/previous	х
		Bookmark	х
		Playlist	х
		Shuffle	х
		Repeat	х
		Zoom	х
		Rotate CW/CCW 90 degrees	х
		Thumbnail	х
		File information	х
		Slideshow	х
		Set up a time of slide show	х

17.8 Supported Broadcast Formats

17.8.1 Broadcast Formats supported by SMP8654

Table 17-4 Broadcast Formats supported by SMP8654

Format		Feature	Supported
ATSC	Video	MPEG-2	х
	Audio	Dolby Digital	х
DVB	Video	MPEG-2	х
	Audio	Dolby Digital	х

17.9 Raster Operations

Ternary (256) raster-operation codes define how GDI combines the bits in a source bitmap with the bits in the destination bitmap. Each raster-operation code represents a Boolean operation in which the values of the pixels in the source, the selected brush, and the destination are combined. Following are the three operands used in these operations:

Table 17-5 Operands used in raster operations

Operand	Meaning
D	Destination bitmap
Р	Selected brush (also called pattern)
S	Source bitmap

Boolean operators used in these operations follow:

Table 17-6 Boolean operator meanings

Operator	Meaning
a	Bitwise AND
n	Bitwise NOT (inverse)
0	Bitwise OR
X	Bitwise exclusive OR (XOR)

All Boolean operations are presented in reverse Polish notation. For example, the following operation replaces the values of the pixels in the destination bitmap with a combination of the pixel values of the source and brush: PSo

The following operation combines the values of the pixels in the source and brush with the pixel values of the destination bitmap (there are alternative spellings of the same function, so although a particular spelling may not be in the list, an equivalent form would be): DPSoo

Each raster-operation code is a 32-bit integer whose high-order word is a Boolean operation index and whose low-order word is the operation code. The 16-bit operation index is a zero-extended, 8-bit value that represents the result of the Boolean operation on predefined brush, source, and destination values. For example, the operation indexes for the PSo and DPSoo operations are shown in the following list:

Table 17-7 Operation indexes for the PSo and DPSoo operations

P	S	D	PSo	DPSoo
0	0	0	0	0
0	0	1	0	1
0	1	0	1	1
0	1	1	1	1
1	0	0	1	1
1	0	1	1	1
1	1	0	1	1
1	1	1	1	1
Operation index:			00FCh	00FEh

In this case, PSo has the operation index 00FC (read from the bottom up); DPSoo has the operation index 00FE. These values define the location of the corresponding raster-operation codes, as shown in the 'Raster-Operation Codes' table. The PSo operation is in line 252 (00FCh) of the table; DPSoo is in line 254 (00FEh).

The most commonly used raster operations have been given special names in the SDK header file, WINDOWS.H. You should use these names whenever possible in your applications.

When the source and destination bitmaps are monochrome, a bit value of zero represents a black pixel and a bit value of 1 represents a white pixel. When the source and the destination bitmaps are color, those colors are represented with RGB values.

17.9.1 Raster Operation Codes

Table 17-8 Raster operation codes SMP8654

Boolean function (hexadecimal)	Raster operation (hexadecimal)	Boolean function in reverse Polish	Common name
00	00000042	0	BLACKNESS
01	00010289	DPSoon	-
02	00020C89	DPSona	-
03	000300AA	PSon	-
04	00040C88	SDPona	-
05	000500A9	DPon	-
06	00060865	PDSxnon	-
07	000702C5	PDSaon	-
08	00080F08	SDPnaa	-
09	00090245	PDSxon	-
0A	000A0329	DPna	-
0B	000B0B2A	PSDnaon	-
0C	000C0324	SPna	-
0D	000D0B25	PDSnaon	-
0E	000E08A5	PDSonon	-
0F	000F0001	Pn	-
10	00100C85	PDSona	-
11	001100A6	DSon	NOTSRCERASE
12	00120868	SDPxnon	-
13	001302C8	SDPaon	-
14	00140869	DPSxnon	-
15	001502C9	DPSaon	-
16	00165CCA	PSDPSanaxx	-
17	00171D54	SSPxDSxaxn	-
18	00180D59	SPxPDxa	-
19	00191CC8	SDPSanaxn	-
1A	001A06C5	PDSPaox	-
1B	001B0768	SDPSxaxn	-

Table 17-8 Raster operation codes SMP8654

1C 001C06CA PSDPaox 1D 001D0766 DSPDxaxn 1E 001E01A5 PDSox 1F 001F0385 PDSoan	- - -
1E 001E01A5 PDSox	- - -
	-
1F 001F0385 PDSoan	-
20 00200F09 DPSnaa	-
21 00210248 SDPxon	-
22 00220326 DSna	-
23 00230B24 SPDnaon	-
24 00240D55 SPxDSxa	-
25 00251CC5 PDSPanaxn	-
26 002606C8 SDPSaox	-
27 00271868 SDPSxnox	-
28 00280369 DPSxa	-
29 002916CA PSDPSaoxxn	-
2A 002A0CC9 DPSana	-
2B 002B1D58 SSPxPDxaxn	-
2C 002C0784 SPDSoax	-
2D 002D060A PSDnox	-
2E 002E064A PSDPxox	-
2F 002F0E2A PSDnoan	-
30 0030032A PSna	-
31 00310B28 SDPnaon	-
32 00320688 SDPSoox	-
33 00330008 Sn	NOTSRCCOPY
34 003406C4 SPDSaox	-
35 00351864 SPDSxnox	-
36 003601A8 SDPox	-
37 00370388 SDPoan	-
38 0038078A PSDPoax	-
39 00390604 SPDnox	-

Table 17-8 Raster operation codes SMP8654

3A 003A0644 SPDSxox - 3B 003B0E24 SPDnoan - 3C 003C004A PSx - 3D 003B18A4 SPDSnaox - 3E 003F00EA PSan - 3F 003F00EA PSan - 40 00400F0A PSDnaa - 41 00410249 DPSxon - 41 00410249 DPSxon - 42 00420D5D SDxPDxa - 43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450829 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxxn - 4A 004A0789 DPSDaox - 4C 004E0645 PDSPxxxxx	Boolean function (hexadecimal)	Raster operation (hexadecimal)	Boolean function in reverse Polish	Common name
3C 003C004A PSX - 3D 003D18A4 SPDSonox - 3E 003F00EA PSan - 40 00400F0A PSDnaa - 41 00410249 DPSxon - 42 00420D5D SDxPDxa - 43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450829 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxx - 4A 004A0789 DPSDoax - 4B 004B0605 PDSDoax - 4C 004C0CC8 SDPana - 4C 004C0CC8 SDPxox - 4F 004E0645 PDSPxox - 4F 004E0645 PDSnoan	3A	003A0644	SPDSxox	-
3D 003D18A4 SPDSonox - 3E 003E1B24 SPDSnaox - 3F 003F00EA PSan - 40 00400F0A PSDnaa - 41 00410249 DPSxon - 42 00420D5D SDxPDxa - 43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450B29 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0C28 SDPana - 4E 004E0645 PDSPxox - 4F 004E0645 PDSPxox - 50 00500325 PDna	3B	003B0E24	SPDnoan	-
3E 003E1B24 SPDSnaox - 3F 003F00EA PSan - 40 00400F0A PSDnaa - 41 00410249 DPSxon - 42 00420D5D SDxPDxa - 43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450829 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPXDSxoxn - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510826 DSPnaon	3C	003C004A	PSx	-
3F 003F00EA PSan - 40 00400F0A PSDnaa - 41 00410249 DPSxon - 42 00420D5D SDxPDxa - 43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450829 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPXDSxoxn - 4F 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510826 DSPnaon	3D	003D18A4	SPDSonox	-
40 00400F0A PSDnaa - 41 00410249 DPSxon - 42 00420D5D SDxPDxa - 43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450829 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPXDSxoxn - 4F 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510826 DSPnaon - 52 005206C9 DPSDaox <td>3E</td> <td>003E1B24</td> <td>SPDSnaox</td> <td>-</td>	3E	003E1B24	SPDSnaox	-
41 00410249 DPSxon - 42 00420D5D SDxPDxa - 43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450B29 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPXDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT <t< td=""><td>3F</td><td>003F00EA</td><td>PSan</td><td>-</td></t<>	3F	003F00EA	PSan	-
42 00420D5D SDxPDxa - 43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450B29 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPXDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox - <td>40</td> <td>00400F0A</td> <td>PSDnaa</td> <td>-</td>	40	00400F0A	PSDnaa	-
43 00431CC4 SPDSanaxn - 44 00440328 SDna SRCERASE 45 00450B29 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPXDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	41	00410249	DPSxon	-
44 00440328 SDna SRCERASE 45 00450829 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	42	00420D5D	SDxPDxa	-
45 00450B29 DPSnaon - 46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT	43	00431CC4	SPDSanaxn	-
46 004606C6 DSPDaox - 47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	44	00440328	SDna	SRCERASE
47 0047076A PSDPxaxn - 48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	45	00450B29	DPSnaon	-
48 00480368 SDPxa - 49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	46	004606C6	DSPDaox	-
49 004916C5 PDSPDaoxxn - 4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	47	0047076A	PSDPxaxn	-
4A 004A0789 DPSDoax - 4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	48	00480368	SDPxa	-
4B 004B0605 PDSnox - 4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	49	004916C5	PDSPDaoxxn	-
4C 004C0CC8 SDPana - 4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	4A	004A0789	DPSDoax	-
4D 004D1954 SSPxDSxoxn - 4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	4B	004B0605	PDSnox	-
4E 004E0645 PDSPxox - 4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	4C	004C0CC8	SDPana	-
4F 004F0E25 PDSnoan - 50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	4D	004D1954	SSPxDSxoxn	-
50 00500325 PDna - 51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	4E	004E0645	PDSPxox	-
51 00510B26 DSPnaon - 52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	4F	004F0E25	PDSnoan	-
52 005206C9 DPSDaox - 53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	50	00500325	PDna	-
53 00530764 SPDSxaxn - 54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	51	00510B26	DSPnaon	-
54 005408A9 DPSonon - 55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	52	005206C9	DPSDaox	-
55 00550009 Dn DSTINVERT 56 005601A9 DPSox -	53	00530764	SPDSxaxn	-
56 005601A9 DPSox -	54	005408A9	DPSonon	-
	55	00550009	Dn	DSTINVERT
57 00570389 DPSoan –	56	005601A9	DPSox	-
	57	00570389	DPSoan	-

Table 17-8 Raster operation codes SMP8654

Boolean function (hexadecimal)	Raster operation (hexadecimal)	Boolean function in reverse Polish	Common name
58	00580785	PDSPoax	-
59	00590609	DPSnox	-
5A	005A0049	DPx	PATINVERT
5B	005B18A9	DPSDonox	-
5C	005C0649	DPSDxox	-
5D	005D0E29	DPSnoan	-
5E	005E1B29	DPSDnaox	-
5F	005F00E9	DPan	-
60	00600365	PDSxa	-
61	006116C6	DSPDSaoxxn	-
62	00620786	DSPDoax	-
63	00630608	SDPnox	-
64	00640788	SDPSoax	-
65	00650606	DSPnox	-
66	00660046	DSx	SRCINVERT
67	006718A8	SDPSonox	-
68	006858A6	DSPDSonoxxn	-
69	00690145	PDSxxn	-
6A	006A01E9	DPSax	-
6B	006B178A	PSDPSoaxxn	-
6C	006C01E8	SDPax	-
6D	006D1785	PDSPDoaxxn	-
6E	006E1E28	SDPSnoax	-
6F	006F0C65	PDSxnan	-
70	00700CC5	PDSana	-
71	00711D5C	SSDxPDxaxn	-
72	00720648	SDPSxox	-
73	00730E28	SDPnoan	-
74	00740646	DSPDxox	-
75	00750E26	DSPnoan	-

Table 17-8 Raster operation codes SMP8654

76 00761B28 SDPSnaox - 77 007700E6 DSan - 78 007801E5 PDSax - 79 00791786 DSPDSoaxxn - 7A 007A1E29 DPSDnoax - 7B 007B0C68 SDPxnan - 7C 007C1E24 SPDSnoax - 7D 007B0C69 DPSxnan - 7E 007E0955 SPXDSxo - 80 008003E9 DPSaa - 81 00810975 SPXDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPosaxx - 86 008617A6 DSPDSoaxx - 87 00870L5 PDSan - 88 00880C6 DSP Dxoxn - 8A 00880E0 SDPSoax	Boolean function (hexadecimal)	Raster operation (hexadecimal)	Boolean function in reverse Polish	Common name
78 007801E5 PDSax - 79 00791786 DSPDSoaxxn - 7A 007A1E29 DPSDnoax - 7B 007B0C68 SDPxnan - 7C 007C1E24 SPDSnoax - 7D 007D0C69 DPSxnan - 7E 007E0955 SPXDSxo - 80 008003E9 DPSaa - 81 00810975 SPXDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 88 008800C6 DSPnoaxn - 8A 00800E08 SDPSnoaxn - 8B 0080G66 DSPDxox	76	00761B28	SDPSnaox	-
79 00791786 DSPDSoaxxn - 7A 007A1E29 DPSDnoax - 7B 007B0C68 SDPxnan - 7C 007C1E24 SPDSnoax - 7D 007D0C69 DPSxnan - 7E 007E0955 SPxDSxo - 80 00803E9 DPSaa - 81 00810975 SPxDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSan - 88 00880C6 DSa SRCAND 89 00891B08 SDPSnoaxn - 8A 008A0E06 DSPDxoxn - 8C 008C0E08 SDPnoa - 8B 008C0E08 SDPSxoxn	77	007700E6	DSan	-
7A 007A1E29 DPSDnoax - 7B 007B0C68 SDPxnan - 7C 007C1E24 SPDSnoax - 7D 007D0C69 DPSxnan - 7E 007E0955 SPxDSxo - 7F 007F03C9 DPSaan - 80 008003E9 DPSaa - 81 00810975 SPXDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPDsoaxx - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSan - 88 00880C6 DSa SRCAND 89 00891B08 SDPSnoaxn - 8A 008A0E06 DSPDxoxn - 8C 008C0E08 SDPnoa - 8E 008C0E08 SDPSxoxn </td <td>78</td> <td>007801E5</td> <td>PDSax</td> <td>-</td>	78	007801E5	PDSax	-
7B 007B0C68 SDPxnan - 7C 007C1E24 SPDSnoax - 7D 007D0C69 DPSxnan - 7E 007E0955 SPxDSxo - 7F 007F03C9 DPSaan - 80 008003E9 DPSaa - 81 00810975 SPxDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 00870LC5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891808 SDPSnoaxn - 8C 008C0E08 SDPnoa - 8C 008C0E08 SDPnoa - 8E 008C0E08 SDPSxoxn - 8E 008E0CE5 PDSanan <td>79</td> <td>00791786</td> <td>DSPDSoaxxn</td> <td>-</td>	79	00791786	DSPDSoaxxn	-
7C 007C1E24 SPDSnoax - 7D 007D0C69 DPSxnan - 7E 007E0955 SPxDSxo - 7F 007F03C9 DPSaan - 80 008003E9 DPSaa - 81 00810975 SPxDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnoaxn - 8A 008A0E06 DSPDxoxn - 8B 008C0E08 SDPnoa - 8C 008C0E08 SDPSxoxn - 8B 008C0E08 SDPSxoxn - 8E 008F0CE5 PDSanan<	7A	007A1E29	DPSDnoax	-
7D 007D0C69 DPSxnan - 7E 007E0955 SPxDSxo - 7F 007F03C9 DPSaan - 80 008003E9 DPSaa - 81 00810975 SPXDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPDsoaxx - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnoaxn - 8A 008A0E06 DSPDxoxn - 8C 008C0E08 SDPSnoaxn - 8C 008C0E08 SDPSxoxn - 8E 008E1D7C SSDxPDxax - 8F 008F0CES PDSxna - 90 00900C45 PDSxna	7B	007B0C68	SDPxnan	-
7E 007E0955 SPXDSx0 - 7F 007F03C9 DPSaan - 80 008003E9 DPSaa - 81 00810975 SPXDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnoaxn - 8A 008A0E06 DSPDxoxn - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPSnoaxn - 8E 008E0D7C SSDxPDxax - 8E 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSno	7C	007C1E24	SPDSnoax	-
7F 007F03C9 DPSaan - 80 008003E9 DPSaa - 81 00810975 SPXDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnoaxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPnoa - 8B 008D0668 SDPSxoxn - 8E 008F0CE5 PDSanan - 90 0090C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx </td <td>7D</td> <td>007D0C69</td> <td>DPSxnan</td> <td>-</td>	7D	007D0C69	DPSxnan	-
80 008003E9 DPSaa - 81 00810975 SPxDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnoaxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPSnoax - 8B 008D0668 SDPSxoxn - 8E 008F0CE5 PDSanan - 90 0090C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	7E	007E0955	SPxDSxo	-
81 00810975 SPxDSxon - 82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPSxoxn - 8B 008C0E08 SDPSxoxn - 8E 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 0091E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	7F	007F03C9	DPSaan	-
82 00820C49 DPSxna - 83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPSxoxn - 8D 008D0668 SDPSxoxn - 8E 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSDoaxn - 92 009217A9 DPSDPoaxx -	80	008003E9	DPSaa	-
83 00831E04 SPDSnoaxn - 84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPnoa - 8D 008D0668 SDPSxoxn - 8E 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	81	00810975	SPxDSxon	-
84 00840C48 SDPxna - 85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPnoa - 8D 008D0668 SDPSxoxn - 8E 008F1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	82	00820C49	DPSxna	-
85 00851E05 PDSPnoaxn - 86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPDxoxn - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPSxoxn - 8B 008D0668 SDPSxoxn - 8E 008F1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSDPoaxx - 92 009217A9 DPSDPoaxx -	83	00831E04	SPDSnoaxn	-
86 008617A6 DSPDSoaxx - 87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPDxoxn - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPSxoxn - 8B 008D0668 SDPSxoxn - 8E 008E1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	84	00840C48	SDPxna	-
87 008701C5 PDSaxn - 88 008800C6 DSa SRCAND 89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPnoa - 8D 008D0668 SDPSxoxn - 8E 008F1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	85	00851E05	PDSPnoaxn	-
88 008800C6 DSa SRCAND 89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPnoa - 8D 008D0668 SDPSxoxn - 8E 008E1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	86	008617A6	DSPDSoaxx	-
89 00891B08 SDPSnaoxn - 8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPnoa - 8D 008D0668 SDPSxoxn - 8E 008E1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	87	008701C5	PDSaxn	-
8A 008A0E06 DSPnoa - 8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPnoa - 8D 008D0668 SDPSxoxn - 8E 008E1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	88	008800C6	DSa	SRCAND
8B 008B0666 DSPDxoxn - 8C 008C0E08 SDPnoa - 8D 008D0668 SDPSxoxn - 8E 008E1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	89	00891B08	SDPSnaoxn	-
8C 008C0E08 SDPnoa - 8D 008D0668 SDPSxoxn - 8E 008E1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	8A	008A0E06	DSPnoa	-
8D 008D0668 SDPSxoxn - 8E 008E1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	8B	008B0666	DSPDxoxn	-
8E 008E1D7C SSDxPDxax - 8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	8C	008C0E08	SDPnoa	-
8F 008F0CE5 PDSanan - 90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	8D	008D0668	SDPSxoxn	-
90 00900C45 PDSxna - 91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	8E	008E1D7C	SSDxPDxax	-
91 00911E08 SDPSnoaxn - 92 009217A9 DPSDPoaxx -	8F	008F0CE5	PDSanan	-
92 009217A9 DPSDPoaxx -	90	00900C45	PDSxna	-
	91	00911E08	SDPSnoaxn	-
93 009301C4 SPDaxn –	92	009217A9	DPSDPoaxx	-
	93	009301C4	SPDaxn	-

Table 17-8 Raster operation codes SMP8654

	(hexadecimal)	Boolean function in reverse Polish	Common name
94	009417AA	PSDPSoaxx	-
95	009501C9	DPSaxn	-
96	00960169	DPSxx	-
97	0097588A	PSDPSonoxx	-
98	00981888	SDPSonoxn	-
99	00990066	DSxn	-
9A	009A0709	DPSnax	-
9B	009B07A8	SDPSoaxn	-
9C	009C0704	SPDnax	-
9D	009D07A6	DSPDoaxn	-
9E	009E16E6	DSPDSaoxx	-
9F	009F0345	PDSxan	-
A0	00A000C9	DPa	-
A1	00A11B05	PDSPnaoxn	-
A2	00A20E09	DPSnoa	-
A3	00A30669	DPSDxoxn	-
A4	00A41885	PDSPonoxn	-
A5	00A50065	PDxn	-
A6	00A60706	DSPnax	-
A7	00A707A5	PDSPoaxn	-
A8	00A803A9	DPSoa	-
A9	00A90189	DPSoxn	-
AA	00AA0029	D	-
AB	00AB0889	DPSono	-
AC	00AC0744	SPDSxax	-
AD	00AD06E9	DPSDaoxn	-
AE	00AE0B06	DSPnao	-
AF	00AF0229	DPno	-
B0	00B00E05	PDSnoa	-
B1	00B10665	PDSPxoxn	-

Table 17-8 Raster operation codes SMP8654

B2 00B21974 SSPxDSxox - B3 00B30CE8 SDPanan - B4 00B4070A PSDnax - B5 00B507A9 DPSDoaxn - B6 00B616E9 DPSDPaoxx - B7 00B70348 SDPxan - B8 00B8074A PSDPxax - B9 00B906E6 DSPDaoxn - BA 00BA0B09 DPSnao - BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan - BE 00BE0269 DPSxo -	
B4 00B4070A PSDnax - B5 00B507A9 DPSDoaxn - B6 00B616E9 DPSDPaoxx - B7 00B70348 SDPxan - B8 00B8074A PSDPxax - B9 00B906E6 DSPDaoxn - BA 00BA0B09 DPSnao - BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
B5 00B507A9 DPSDoaxn - B6 00B616E9 DPSDPaoxx - B7 00B70348 SDPxan - B8 00B8074A PSDPxax - B9 00B906E6 DSPDaoxn - BA 00BA0B09 DPSnao - BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
B6 00B616E9 DPSDPaoxx - B7 00B70348 SDPxan - B8 00B8074A PSDPxax - B9 00B906E6 DSPDaoxn - BA 00BA0B09 DPSnao - BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
B7 00B70348 SDPxan - B8 00B8074A PSDPxax - B9 00B906E6 DSPDaoxn - BA 00BA0B09 DPSnao - BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
B8 00B8074A PSDPxax - B9 00B906E6 DSPDaoxn - BA 00BA0B09 DPSnao - BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
B9 00B906E6 DSPDaoxn - BA 00BA0B09 DPSnao - BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
BA 00BA0B09 DPSnao - BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
BB 00BB0226 DSno MERGEPAINT BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
BC 00BC1CE4 SPDSanax - BD 00BD0D7D SDxPDxan -	
BD 00BD0D7D SDxPDxan -	
BE 00BE0269 DPSxo -	
BF 00BF08C9 DPSano -	
CO 00C000CA PSa MERGECOPY	
C1 00C11B04 SPDSnaoxn -	
C2 00C21884 SPDSonoxn -	
C3 00C3006A PSxn -	
C4 00C40E04 SPDnoa –	
C5 00C50664 SPDSxoxn -	
C6 00C60708 SDPnax -	
C7 00C707AA PSDPoaxn –	
C8 00C803A8 SDPoa -	
C9 00C90184 SPDoxn -	
CA 00CA0749 DPSDxax -	
CB 00CB06E4 SPDSaoxn -	
CC 00CC0020 S SRCCOPY	
CD 00CD0888 SDPono -	
CE 00CE0B08 SDPnao -	
CF 00CF0224 SPno -	

Table 17-8 Raster operation codes SMP8654

Boolean function (hexadecimal)	Raster operation (hexadecimal)	Boolean function in reverse Polish	Common name
D0	00D00E0A	PSDnoa	-
D1	00D1066A	PSDPxoxn	-
D2	00D20705	PDSnax	-
D3	00D307A4	SPDSoaxn	-
D4	00D41D78	SSPxPDxax	-
D5	00D50CE9	DPSanan	-
D6	00D616EA	PSDPSaoxx	-
D7	00D70349	DPSxan	-
D8	00D80745	PDSPxax	-
D9	00D906E8	SDPSaoxn	-
DA	00DA1CE9	DPSDanax	-
DB	00DB0D75	SPxDSxan	-
DC	00DC0B04	SPDnao	-
DD	00DD0228	SDno	-
DE	00DE0268	SDPxo	-
DF	00DF08C8	SDPano	-
E0	00E003A5	PDSoa	-
E1	00E10185	PDSoxn	-
E2	00E20746	DSPDxax	-
E3	00E306EA	PSDPaoxn	-
E4	00E40748	SDPSxax	-
E5	00E506E5	PDSPaoxn	-
E6	00E61CE8	SDPSanax	-
E7	00E70D79	SPxPDxan	-
E8	00E81D74	SSPxDSxax	-
E9	00E95CE6	DSPDSanaxxn	-
EA	00EA02E9	DPSao	-
EB	00EB0849	DPSxno	-
EC	00EC02E8	SDPao	-
ED	00ED0848	SDPxno	-

Table 17-8 Raster operation codes SMP8654

Boolean function (hexadecimal)	Raster operation (hexadecimal)	Boolean function in reverse Polish	Common name
EE	00EE0086	DSo	SRCPAINT
EF	00EF0A08	SDPnoo	-
F0	00F00021	Р	PATCOPY
F1	00F10885	PDSono	-
F2	00F20B05	PDSnao	-
F3	00F3022A	PSno	-
F4	00F40B0A	PSDnao	-
F5	00F50225	PDno	-
F6	00F60265	PDSxo	-
F7	00F708C5	PDSano	-
F8	00F802E5	PDSao	-
F9	00F90845	PDSxno	-
FA	00FA0089	DPo	-
FB	00FB0A09	DPSnoo	PATPAINT
FC	00FC008A	PSo	-
FD	00FD0A0A	PSDnoo	-
FE	00FE02A9	DPSoo	-
FF	00FF0062	1	WHITENESS

List of Figures

1	Introduction	
	Figure 1-1 SMP8654 block diagram	7
	Figure 1-2 Application example - networked DVD player 1	5
	Figure 1-3 Application example - digital media adapter or IPTV set-top box	
_	Heat CRIL Block	
2	Host CPU Block	
	Figure 2-1 Block diagram of host CPU block	
	Figure 2-2 24Kf core block diagram	
	Figure 2-3 24Kf [™] core pipeline	
	Figure 2-4 FPU pipeline	
	Figure 2-5 24Kf core virtual address map	
	Figure 2-6 Address translation during a cache access	
	Figure 2-7 32-bit virtual address translation	
	Figure 2-8 TLB tag entry format	
	Figure 2-9 TLB data array entry format	
	Figure 2-10 EJTAG timing diagram4	
	Figure 2-11 Interrupt controller block diagram4	.3
	Figure 2-12 Cascaded interrupt structure4	
	Figure 2-13 Edge detector 4	
	Figure 2-14 Timer block diagram (system overview)	
	Figure 2-15 UART block diagram5	6
	Figure 2-16 UART data formats 5	8
	Figure 2-17 UART timing diagram6	3
	Figure 2-18 Smartcard interface block diagram6	4
	Figure 2-19 Smartcard interface state machine	6
3	Security Subsystem	
	Figure 3-1 Security subsystem block diagram	1
	Figure 3-1 Timer block diagram (system overview)	
	Figure 3-2 Interrupt controller block diagram 8	
	Figure 3-3 Cascaded interrupt structure	5
	Figure 3-4 Edge detector	6
1	IPU Subsystem	
4	•	_
	Figure 4-1 Interrupt processing subsystem9	3
5	DRAM Controllers	
	Figure 5-1 DRAM controller block diagram9	5
	Figure 5-2 Memory Connection diagram9	9

6	System Block	
	Figure 6-1 Block diagram of system block	113
	Figure 6-2 GPIO controller block diagram	116
	Figure 6-3 Behavior of GPIO pins during chip initialization	117
	Figure 6-4 FIP block diagram	122
	Figure 6-5 FIP timing diagram	125
	Figure 6-6 Infrared decoder block diagram	126
	Figure 6-7 I2C master block diagram	133
	Figure 6-8 I2C slave block diagram	133
	Figure 6-9 I2C master transfer timing diagram	140
	Figure 6-10 Watchdog block diagram	141
	Figure 6-11 Clock generator block diagram	144
7	Host Interface	
	Figure 7-1 Host interface block diagram	155
	Figure 7-2 PCI arbitration pin connection diagram (PCI device)	158
	Figure 7-3 PCI arbitration pin connection diagram (PCI host)	158
	Figure 7-4 PCI slave direct access (8MB default setting)	159
	Figure 7-5 PCI arbiter	161
	Figure 7-6 PCI CLK timing diagram	170
	Figure 7-7 PCI input timing diagram	171
	Figure 7-8 PCI output timing diagram	171
	Figure 7-9 Ethernet block diagram	177
	Figure 7-10 MII Interface timing diagram	182
	Figure 7-11 NAND flash timing diagram	187
	Figure 7-12 SATA interface block diagram	188
	Figure 7-13 SATA Host Controller	189
8	Video Decoder Subsystem	
	Figure 8-1 Video decoder subsystem block diagram	197
9	Video Processing Subsystem	
•	Figure 9-1 Video processing subsystem block diagram - 1	205
	Figure 9-2 Video processing subsystem block diagram - 2	
	Figure 9-3 De-interlacing type 1	
	Figure 9-4 De-interlacing type 2	
	Figure 9-5 Graphics accelerator block diagram	229
	Figure 9-6 CLEAR example	
	Figure 9-7 SRC example	
	Figure 9-8 DST_IN and SRC_IN examples	
	Figure 9-9 DST_OUT and SRC_OUT examples	243
	Figure 9-10 DST_OVER and SRC_OVER examples	
	Figure 9-11 Positioning blocks	
	Figure 9-12 Video output timing parameters	254
	Figure 9-13 Video waveform - 720p	
	Figure 9-14 Video waveform - 1080i	
	Figure 9-15 Video waveform - 480i	262
	Figure 9-16 Video waveform - 480p	262
	Figure 9-17 Video waveform - 576i	263

	Figure 9-18 Video waveform - 576p	263
	Figure 9-19 NTSC c for S-video	
	Figure 9-20 NTSC y for S-video	
	Figure 9-21 CVBS (NTSC)	268
	Figure 9-22 Digital video input timing diagram	
10	Audio Processing Subsystem	
	Figure 10-1 Audio processing subsystem block diagram	295
	Figure 10-2 S/PDIF data format	
	Figure 10-3 I2S audio input timing diagram	
	Figure 10-4 I2S audio output timing diagram	
11	Transport Demultiplexer	
	Figure 11-1 Transport demultiplexer block diagram	315
	Figure 11-2 Clock gating timings	
	Figure 11-3 Overview of DVB-CSA	
	Figure 11-4 Hardware section filter	
	Figure 11-5 TS input timing diagram	
	Figure 11-6 Clock, Data, Sync Protocol	
	Figure 11-7 Clock, Data, Valid Protocol	
	Figure 11-8 Clock, Data, Sync, Valid Protocol	
	Figure 11-9 Traditional TS Input Protocol	
	Figure 11-10 Parallel Input Protocol	
12	Pin Information	
	Figure 12-1 Overview of SMP8654 BGA (844 BGA)	345
	Figure 12-2 SMP8654 pin diagram (top left quadrant)	
	Figure 12-3 SMP8654 pin diagram (top right quadrant)	
	Figure 12-4 SMP8654 pin diagram (bottom left quadrant)	348
	Figure 12-5 SMP8654 pin diagram (bottom right quadrant)	349
13	System Specifications	
	Figure 13-1 Power supply sequencing	374
	Figure 13-2 Power reset specifications	375
	Figure 13-3 Package diagram - top view (844 BGA)	390
	Figure 13-4 Package diagram - bottom view (844 BGA)	391
14	DDR Implementation	
	Figure 14-1 Signal topology: Address/Command	393
	Figure 14-2 Signal topology: DQ/DM	
	Figure 14-3 Signal topology: Differential clock	394
	Figure 14-4 Signal topology: Differential	
17	Appendix	
	Figure 17-1 Frequency response	405
	Figure 17-2 Impulse response	406
	Figure 17-3 Scaling 16:9 content for a 4:3 display – "Crop" mode	408
	Figure 17-4 Scaling 16:9 content for a 4:3 display – "Letterbox" mode	
	Figure 17-5 Scaling 16:9 content for a 4:3 display – "Squeezed" mode	
	Figure 17-6 Scaling 4:3 content for a 16:9 display - "Pillar" mode	400

Figure 17-7 Scaling 4:3 content for a 16:9 display – "Wide" mode	. 410
Figure 17-8 Scaling 4:3 content for a 16:9 display – "Zoom" mode	. 410
Figure 17-9 Scaling 4:3 content for a 16:9 display – "Panorama" mode	. 411
Figure 17-10 SDTV Vs. SDTV Colorimetry Example	417

List of Tables

(Conventions
	Table 0-1 Acronyms and abbreviations
	Table 0-2 Units of measurement4
2	Host CPU Block
	Table 2-1 Remap registers
	Table 2-2 24Kf™ Core FPU latency and repeat rate
	Table 2-3 Coprocessor 1 registers in numerical order
	Table 2-4 24Kf [™] Core Integer multiply/divide unit latencies and repeat rates
	Table 2-5 Mask and page size values
	Table 2-6 TLB tag entry fields
	Table 2-7 TLB data array entry fields
	Table 2-8 24Kf [™] core instruction and data cache attributes
	Table 2-9 EJTAG registers
	Table 2-10 EJTAG pin descriptions
	Table 2-11 EJTAG AC characteristics
	Table 2-12 Control block registers45
	Table 2-13 Interrupt sources
	Table 2-14 Operating mode selection for interrupt lines
	Table 2-15 Edge detector registers49
	Table 2-16 Timer clock pre-scale53
	Table 2-17 Timer registers54
	Table 2-18 Register map - UARTs61
	Table 2-19 UART pin descriptions
	Table 2-20 UART AC characteristics
	Table 2-21 Register map - Smartcard interface
	Table 2-22 Smartcard interface pin descriptions
3	Security Subsystem
	Table 3-1 MIPS requirements for various functions performed by the XPU
	Table 3-2 Performance
	Table 3-3 Performance
	Table 3-2. Register map - Serial flash interface
	Table 3-1 Timer clock pre-scale83
	Table 3-2 Interrupt sources86
	Table 3-3 Operating mode selection for interrupt lines
	Table 3-4 Top level bus connections89
5	DRAM Controllers
_	Table 5-1 Typical memory configurations
	Table 5-2 Memory bandwidth requirements for video

	Table 5-3 Memory bandwidth requirements for audio	102
	Table 5-4 Typical memory bandwidth values	103
	Table 5-5 Video Decoding DRAM requirements (MB, includes all needed buffers, no dein ing or type 1 deinterlacing)	
	Table 5-6 Video Decoding DRAM requirements (MB, includes all needed buffers, type 2 terlacing used)	
	Table 5-7 Typical Firmware DRAM requirements (MB)	104
	Table 5-8 DRAM controller pin descriptions	105
6	System Block	
	Table 6-1 Additional GPIO pins	118
	Table 6-2 Register map - GPIO	119
	Table 6-3 GPIO pin description	120
	Table 6-4 FIP registers	124
	Table 6-5 FIP pin description	124
	Table 6-6 FIP AC characteristics	125
	Table 6-7 RC5 timing parameters	128
	Table 6-8 NEC timing parameters	129
	Table 6-9 Infrared decoder registers	130
	Table 6-10 Infrared decoder pin description	
	Table 6-11 Register map - I 2C master 0 and 1	138
	Table 6-12 I2C slave registers	
	Table 6-13 I2C master and slave interface pin descriptions	139
	Table 6-14 I2C master and slave interface AC characteristics	140
	Table 6-15 WDO pad values	
	Table 6-16 Register WATCHDOG_CONFIGURATION values	142
	Table 6-17 Watchdog registers	
	Table 6-18 Watchdog pin description	
	Table 6-19 Dividers ratio	
	Table 6-20 System clock frequencies	
	Table 6-21 Video clock muxing	
	Table 6-22 Audio clock and RCLK muxing	
	Table 6-23 Host interface clock muxing	
	Table 6-24 Counters	
	Table 6-25 Clock generation registers	
	Table 6-26 Clean dividers registers	
	Table 6-27 Clock counter registers	
	Table 6-28 Clock generator pin description	
	Table 6-29 System clock characteristics	154
7	Host Interface	
	Table 7-1 Default values for PCI register fields	
	Table 7-2 PCI slave direct access registers	
	Table 7-3 PCI slave time-out control registers	
	Table 7-4 PCI slave device configuration registers	
	Table 7-5 PCI master access registers	
	Table 7-6 PCI host registers	
	Table 7-7 System bus pin descriptions	
	Table 7-8 PCI interface DC characteristics	169

	Table 7-9 PCI timing parameters	170
	Table 7-10 USB 2.0 pin descriptions	173
	Table 7-11 USB 2.0 DC characteristics – FS operation	175
	Table 7-12 USB 2.0 DC characteristics – HS operation	175
	Table 7-13 Dynamic Characteristics – FS Operation	176
	Table 7-14 Dynamic Characteristics – HS Operation	176
	Table 7-15 MII interface pin descriptions	
	Table 7-16 MII interface AC characteristics	181
	Table 7-17 Supported NAND flash devices	. 184
	Table 7-18 Register map - NAND flash configuration	. 185
	Table 7-19 NAND flash pin descriptions	. 186
	Table 7-20 NAND flash interface AC characteristics	. 187
	Table 7-21 SATA interface pin descriptions	194
	Table 7-22 SATA PHY reference clock specifications	196
_		
8	Video Decoder Subsystem	
	Table 8-1 Number of programs that can be decoded simultaneously by SMP8654	
	Table 8-2 Resolutions supported by video decoder	
	Table 8-3 Supported MPEG-4.10 (H.264) SEI (Supplemental enhancement information) sages and VUI (video usability information)) mes- 202
	Table 8-4 JPEG decode performance measurements	204
q	Video Processing Subsystem	
,	Table 9-1 Memory planes and scaler usage for a typical application	211
	Table 9-2 Supported source and output frame rate combinations	
	Table 9-3 Combinations of supported output frame rates - OSD, subtitles and graphics	
	able on all outputs	
	Table 9-4 Combinations of supported output frame rates - no OSD, subtitles or graphics	
	analog component outputs	
	Table 9-5 Wide Screen Signaling and CGMS - register VO_MAIN_ANALOG_CGMS	. 252
	Table 9-6 Range of programmability for digital video output timing	255
	Table 9-7 Range of programmability for component, composite and S-video output timi 255	ing .
	Table 9-8 Supported audio output combinations	. 271
	Table 9-9 Range of programmability for digital video input timing	. 276
	Table 9-10 Range of programmability for VBI capture	276
	Table 9-11 Common video input formats	277
	Table 9-12 Register map - Multi-format scaler (MFS)	. 278
	Table 9-13 Main video scaling registers	. 279
	Table 9-14 OSD scaler registers	. 280
	Table 9-15 Hardware cursor registers	281
	Table 9-16 Register map - Main mixer	. 281
	Table 9-17 Register map - Graphic accelerator (bitmap mode)	. 282
	Table 9-18 Register map - Gradient fill generator	. 283
	Table 9-19 Graphic accelerator (vectorial mode) registers	283
	Table 9-20 Display routing register	284
	Table 9-21 Color bars generator registers	284
	Table 9-22 Color bars generator registers	284
	Table 9-23 Register map - Video input	285
	Table 9-24 Digital output registers	285

	Table 9-25	Register map - Main analog output	286
	Table 9-26	Digital video input pin descriptions	288
	Table 9-27	Composite and S-video pin descriptions	289
	Table 9-28	Component analog output pin descriptions	290
	Table 9-29	HDMI pin descriptions	291
	Table 9-30	HDMI DC electrical characteristics	292
	Table 9-31	Digital video input AC electrical characteristics	293
	Table 9-32	HDMI AC electrical characteristics	293
	Table 9-33	Analog video output electrical characteristics	294
10	Audio Processing Su	bsystem	
		MPEG audio decode support	297
		Dolby audio decode support	
		LPCM, WMA9 and ATRAC3 audio decode support	
		Supported audio output combinations	
		Audio output frequencies	
	Table 10-6	I2S data alignment in the 32-bit mode	306
	Table 10-7	Audio miscellaneous registers	309
	Table 10-8	Audio input interface registers	310
	Table 10-9	Audio output interface registers	311
	Table 10-10	Audio input interface pin descriptions	312
		Audio output interface pin descriptions	
	Table 10-12	I2S Input AC characteristics	313
	Table 10-13	I2S Output AC characteristics	313
44	Transport Dameritinia		
11	Transport Demultiple		
		Cipher RAM code word allocations	
		DES encryption/decryption performance	
		AES encryption/decryption performance	
		RC4 encryption/decryption performance	
		Performance index for various cases	
		SPI transport stream interface pin descriptions	
		Transport demultiplexer AC characteristics	
	Table 11-8	Transport demultiplexer AC characteristics	340
12	Pin Information		
	Table 12-1.	Pin listing by pin id	350
	Table 12-2.	Pin listing by pin name	360
	Table 12-1	Miscellaneous pin descriptions	370
13			
	System Specification	s	
	•		371
	Table 13-1	S Absolute maximum ratings	
	Table 13-1 Table 13-2	Absolute maximum ratings	371
	Table 13-1 Table 13-2 Table 13-3	Absolute maximum ratings	371 372
	Table 13-1 Table 13-2 Table 13-3 Table 13-4	Absolute maximum ratings Recommended operating conditions DC characteristics	371 372 373
	Table 13-1 Table 13-2 Table 13-3 Table 13-4 Table 13-5	Absolute maximum ratings Recommended operating conditions DC characteristics SMP8654 power consumption data	371 372 373 375
	Table 13-1 Table 13-2 Table 13-3 Table 13-4 Table 13-5 Table 13-6	Absolute maximum ratings Recommended operating conditions DC characteristics SMP8654 power consumption data SMP8654 ground pins	371 372 373 375 382
	Table 13-1 Table 13-2 Table 13-3 Table 13-4 Table 13-5 Table 13-6 Table 13-7	Absolute maximum ratings Recommended operating conditions DC characteristics SMP8654 power consumption data SMP8654 ground pins 1.05V power rail	371 372 373 375 382 385

Sales Offices

USA Headquarters Sigma Designs, Inc. 1778 McCarthy Blvd.

Milpitas, CA 95035 Tel: (408) 262-9003 Fax: (408) 957-9740 www.sigmadesigns.com sales@sdesigns.com

China

Sigma Designs China Office Unit 7C1, TianXiang Building Tian'An Cyber Zone, Futian District, Shenzhen, PRC Postcode 518048 Tel: +86 755-83435669

Fax: +86 755-83435629

Hong Kong

Sigma Designs (Asia) Ltd. Unit 4001B, Tower 2, Metroplaza 223 Hing Fong Road Kwai Fong, N.T. Hong Kong Tel: +852 2401-7388

Fax: +852 2610-2177

Europe

Sigma Designs, Inc. Tel: +32 474-501234 Fax: +32 234-72260

Japan

Sigma Designs Japan 4-16-8 Nakahara, Mitaka-shi, Tokyo 181-0005, Japan Tel: +81 422-79-3067 Fax: +81 422-79-3067

Taiwan

Sigma Designs Taiwan Far East World Center, C Tower 8F-8, No. 79, Sec 1 Hsin Tai Wu Road Hsichih, Taipei Hsien Taiwan

Tel: +886 2-2698-2066 Fax: +886 2-2698-2099

Distributors

Japan

MACNICA, Inc. Brilliant Technologies Company Macnica Bldg. No 1, 1-6-3 Shin-Yokohama Kohoku-Ku, Yokohama-City, 222-8561

Japan

Tei: +81 45-470-9831 Fax: +81 45-470-9832 www.btc.macnica.co.jp

Korea

Uniquest / Tekclips Uniquest Building 271-2 Seohyeon-dong, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea, 463-824 Tel: +82-31-776-9832

Fax: +82-31-708-6596 www.uniquest.co.kr

Indonesia, Malaysia, Singapore

Convergent Systems (S) Pte. Ltd. 60 Albert Street #11-01 Albert Complex Singapore 189969 Tel: +65 6337-0177 Fax: +65 6336-2247 www.convergent.com.sg

License Requirements

Dolby Digital, Dolby Surround Pro Logic II, Dolby Headphone and/or Dolby Virtual Speaker features require license from Dolby. HighMAT, WMA and/or WMT feature require license from Microsoft. MPEG video features require license(s) from MPEG-LA. MPEG audio features require license(s) from Via Licensing, Sisvel and/or Thomson. DVD-Audio feature requires that the customer be a 4C CPPM, Verance ARIS/SOLANA-4C and Dolby MLP Lossless licensee. Other DVD features require licenses from DVD CCA (for CSS), DVD FLLC (for logo and format) and Philips. Customer must be a Macrovision licensee. Sigma Designs Worldwide

Copyright Information

© 2009 by Sigma Designs Inc. All rights reserved. No part of this document may be copied or reproduced in any form or by any means without the prior written consent of Sigma Designs Inc. The information in this document is subject to change without notice. Sigma Designs, REALmagic and the REALmagic logo are either registered trademarks or trademarks of Sigma Designs, Inc. in the United States and/or other countries. Manufactured under license from Dolby Laboratories and Macrovision. Dolby, Pro Logic, and the double-D symbol are trademarks of Dolby Laboratories. All other trademarks or registered trademarks are the property of their respective owners.

Sigma Designs products are sold by description only. Sigma Designs reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Sigma Designs is believed to be accurate and reliable. However, no responsibility is assumed by Sigma Designs or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Sigma Designs or its subsidiaries.