

#### Semiconductor

http://www.auk.co.kr



**SOP-14** 



**DIP-14** 

#### ORDERING INFORMATION

| Product<br>Name. | Marking | Package<br>Name |
|------------------|---------|-----------------|
| SN339            | SN339   | SOP-14          |
| SN339P           | SN339P  | DIP-14          |

#### ▲ Marking Information



- 1 Device Code
- 2 Year & Week Code

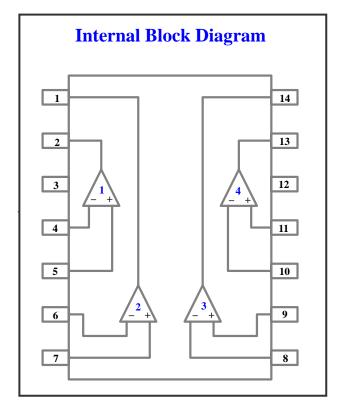
# Low Power Quad Comparator SN339/P

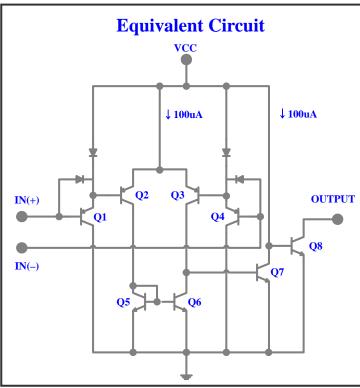
#### **Description**

The SN339 consists of four independent voltage comparators designed to operate from a single power supply over a wide voltage range.

Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage.

These comparators also have a unique characteristic in that the input common—mode voltage range includes ground, even though they are operated from a single power supply voltage.


#### **Application**


- ♠ A/D Converters
- ♦ Wide Range VCO
- MOS Clock Generator
- High Voltage Logic Gate
- Multi-Vibrators

#### **Features and Benefits**

- Wide single supply voltage range [ 2.0V to 36V ] or dual supplies [ $\pm 1.0V$  to  $\pm 18V$ ]
- ♦ Very low supply current drain [Typ. 0.8mA]
- ◆ Low input biasing current [Typ. 25nA]
- Low input offset current and offset voltage
- Differential input voltage range equal to the Vcc
- ♦ Low output 250mV at 4mA saturation voltage
- Output voltage compatible with TTL, DTL, ECL even CMOS Logic systems







### Pin Description

| No | Symbol   | I/O | Description                          |  |
|----|----------|-----|--------------------------------------|--|
| 1  | Output2  | О   | Comparator 2's Output                |  |
| 2  | Output1  | О   | Comparator 1's Output                |  |
| 3  | $V_{CC}$ | PWR | V <sub>CC</sub> for Quad Comparators |  |
| 4  | IN1(-)   | I   | Comparator 1's Inverting Input       |  |
| 5  | IN1(+)   | I   | Comparator 1's Non- Inverting Input  |  |
| 6  | IN2(-)   | I   | Comparator 2's Inverting Input       |  |
| 7  | IN2(+)   | I   | Comparator 2's Non- Inverting Input  |  |
| 8  | IN3(-)   | I   | Comparator 3's Inverting Input       |  |
| 9  | IN3(+)   | I   | Comparator 3's Non- Inverting Input  |  |
| 10 | IN3(-)   | I   | Comparator 4's Inverting Input       |  |
| 11 | IN3(+)   | I   | Comparator 4's Non- Inverting Input  |  |
| 12 | GND      | GND | Ground                               |  |
| 13 | Output4  | 0   | Comparator 4's Output                |  |
| 14 | Output3  | 0   | Comparator 3's Output                |  |



**Absolute maximum ratings** 

| Characteristic             | Symbol       |        | Ratings            | Unit  |           |   |
|----------------------------|--------------|--------|--------------------|-------|-----------|---|
| Supply voltage             | $V_{CC}$     |        | $V_{CC}$           |       | 36 or ±18 | V |
| Differential input voltage | $V_{IND}$    |        | 36                 | V     |           |   |
| Input voltage              | $V_{\rm IN}$ |        | <b>-</b> 0.3 ∼ +36 | V     |           |   |
| Power Dissipation          | $P_{D}$      | SOP-14 | 800                | mW    |           |   |
| 1 Ower Dissipation         |              | DIP-14 | 1300               | 111 ٧ |           |   |
| Junction Temperature       | Tj           |        | 150                | °C    |           |   |
| Operating temperature      | $T_{opr}$    |        | -40 ~ +85          | °C    |           |   |
| Storage temperature        | $T_{stg}$    |        | <b>-</b> 55 ∼ 150  | °C    |           |   |

### **Electrical Characteristics**

(Unless otherwise specified.  $V_{CC}$  = 5V,  $V_{EE}$  = GND and  $0 \, ^{\circ}\text{C} \leq \text{Ta} \leq +70 \, ^{\circ}\text{C}$ )

| Characteristic                     | Symbol            | Test Condition                                      | Min. | Typ. | Max.                 | Unit |
|------------------------------------|-------------------|-----------------------------------------------------|------|------|----------------------|------|
| Input Offset Voltage               | $ m V_{IOS}$      | $V_O = 1.4V$ , $R_S = 0\Omega$                      | ı    | ±2   | ±5                   | mV   |
| Input Offset Current               | $I_{IOS}$         | -                                                   | -    | ±5   | ±50                  | nA   |
| Input Bias Current                 | $I_{\mathrm{IB}}$ | -                                                   | -    | 25   | 250                  | nA   |
| Input Common Mode<br>Voltage Range | $V_{ICR}$         | -                                                   | 0    | -    | V <sub>CC</sub> -1.5 | V    |
| Supply Current                     | $I_{CC}$          | $V_{CC} = 5V$ , $R_L = \infty$ , All Channel        | ı    | 0.8  | 2                    | mA   |
| Large Signal Voltage Gain          | $A_{ m V}$        | $V_{CC} = 15V$ , $R_L = 15 \text{ K}\Omega$         | 1    | 200  | 1                    | V/mV |
| Output Voltage ('L' Level)         | $ m V_{SAT}$      | $V_{IN+}=0V, V_{IN-}=1V$ $I_{SINK} \le 4mA$         | 1    | 130  | 400                  | mV   |
| Response Time                      | $t_{ m RES}$      | $V_{RC} = 5V$ , $R_L = 5.1 \text{K}\Omega$          | 1    | 1.3  | -                    | uS   |
| Output Sink Current                | $I_{SINK}$        | $V_0 \le 1.5V$ ,<br>$V_{IN+} = 0V$ , $V_{IN-} = 1V$ | 6    | 16   | -                    | mA   |
| Output Leakage Current             | $I_{Leak}$        | $V_{O} = 5V$<br>$V_{IN+} = 1V, V_{IN-} = 0V$        | -    | 0.1  | -                    | nA   |



#### **Electrical Characteristic Curves**

Fig. 1  $V_{\text{CC}}\text{-}I_{\text{CC}}$ 

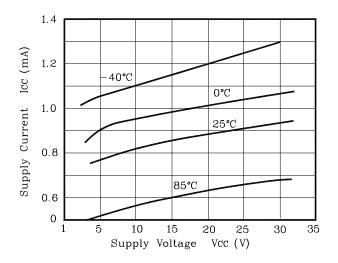



Fig. 3  $V_{OL}$ - $I_{SINK}$ 

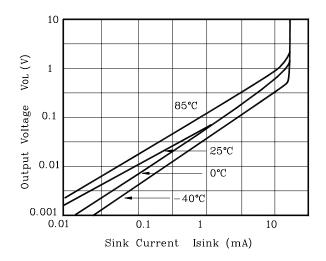



Fig. 5 V<sub>IN</sub>, V<sub>OUT</sub>-t<sub>rsp</sub>

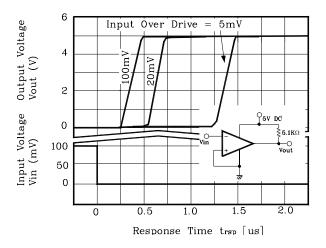



Fig. 2  $V_{\text{CC}}\text{-}I_{\text{IB}}$ 

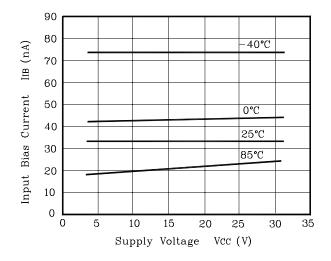
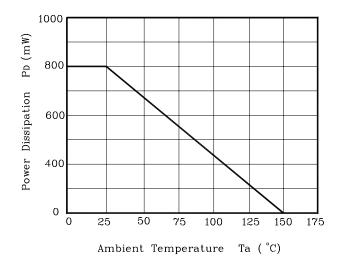
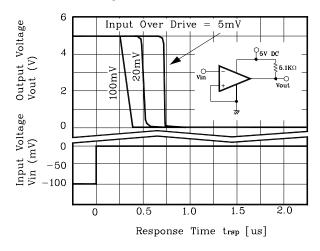
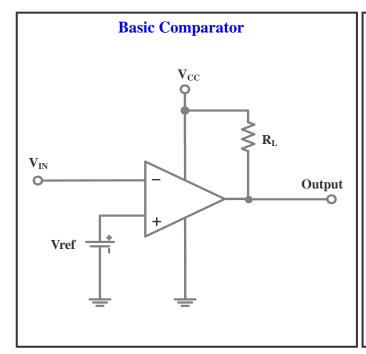
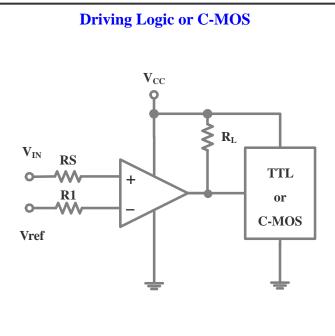
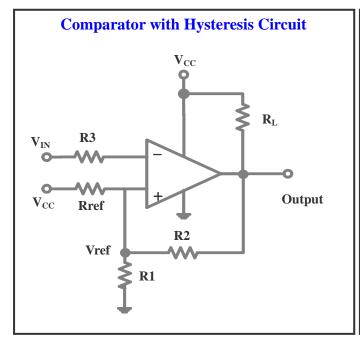
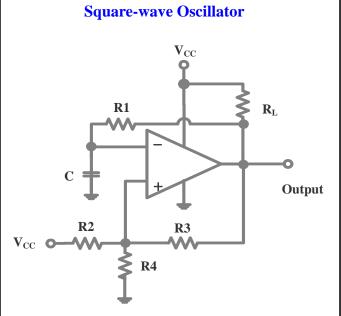



Fig. 4 P<sub>D</sub>-Ta



Fig. 6  $V_{IN}$ ,  $V_{OUT}$ - $t_{rsp}$ 

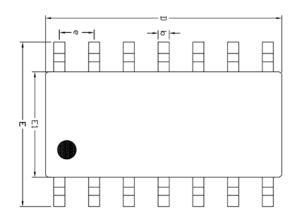


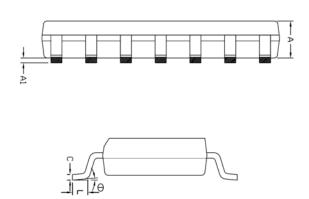




### **Typical Applications**



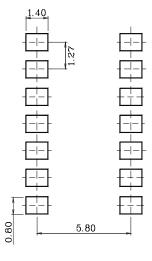




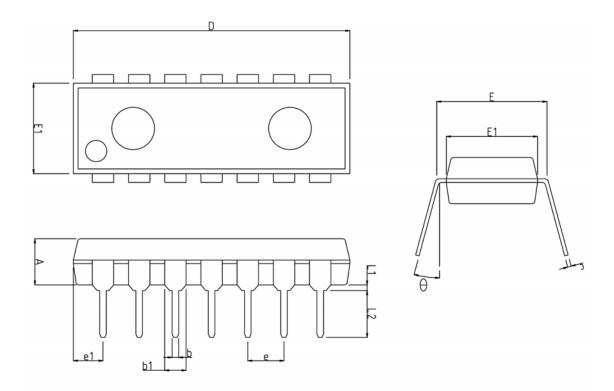






# Outline Dimension (Unit:mm)






| SYMBOL |         | NOTE    |         |      |
|--------|---------|---------|---------|------|
|        | MINIMUM | NDMINAL | MAXIMUM | NOIL |
| Α      | 1.245   | _       | 1.445   |      |
| A1     | 0.125   | 0.175   | 0.275   |      |
| b      | 0.320   | 0.420   | 0.520   |      |
| С      | 0.170   | 0.220   | 0.270   |      |
| D      | 8.536   | 8.636   | 8.736   |      |
| Ε      | 5.870   | 6.020   | 6.170   |      |
| E1     | 3.761   | 3.861   | 3.961   |      |
| е      |         |         |         |      |
| L      | 0.462   | 0.562   | 0.662   |      |
| θ      | 0 *     | _       | 8 °     |      |

### **\*\*** Recommend PCB solder land (Unit: mm)





# **Outline Dimension** (Unit: mm)



| SYMBOL  |         | NOTE    |         |      |
|---------|---------|---------|---------|------|
| STINDUL | MINIMUM | NOMINAL | MAXIMUM | NOTE |
| Α       | 3.05    | 3.25    | 3.45    |      |
| Ь       | 0.36    | 0.46    | 0.56    |      |
| ь1      | 1.40    | 1.50    | 1.60    |      |
| С       | 0.20    | 0.25    | 0.35    |      |
| D       | 19.20   | 19.40   | 19.60   |      |
| Е       | 7.37    | 7.62    | 7.87    |      |
| E1      | 6.20    | 6.40    | 6.60    |      |
| е       |         |         |         |      |
| e1      |         |         |         |      |
| L1      | 0.20    |         |         |      |
| L2      | 3.00    | 3.30    | 3.60    |      |
| θ       | 0°      | _       | 15°     |      |



The AUK Corp. products are intended for the use as components in general electronic equipment (Office and communication equipment, measuring equipment, home appliance, etc.).

Please make sure that you consult with us before you use these AUK Corp. products in equipments which require high quality and / or reliability, and in equipments which could have major impact to the welfare of human life(atomic energy control, airplane, spaceship, transportation, combustion control, all types of safety device, etc.). AUK Corp. cannot accept liability to any damage which may occur in case these AUK Corp. products were used in the mentioned equipments without prior consultation with AUK Corp..

Specifications mentioned in this publication are subject to change without notice.