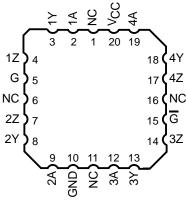

- Meets Standard EIA-485
- Designed for High-Speed Multipoint Transmission on Long Bus Lines in Noisy Environments
- Supports Data Rates up to and Exceeding Ten Million Transfers Per Second
- Common-Mode Output Voltage Range of –7 V to 12 V
- Positive- and Negative-Current Limiting
- Low Power Consumption . . . 1.5 mA Max (Output Disabled)


description

The SN55LBC172 is a monolithic quadruple differential line driver with 3-state outputs. This device is designed to meet the requirements of the Electronics Industry Association (EIA) standard RS-485. The SN55LBC172 is optimized for balanced multipoint bus transmission at data rates up to and exceeding 10 million bits per second. The driver features wide positive and negative common-mode output voltage ranges, current limiting, and thermal-shutdown circuitry, making it suitable for party-line applications in noisy environments. The device is designed using the LinBiCMOS™ process, facilitating ultralow power consumption and inherent robustness.

J OR W PACKAGE (TOP VIEW)

FK PACKAGE (TOP VIEW)

NC - No internal connection

The SN55LBC172 provides positive- and negative-current limiting and thermal shutdown for protection from line fault conditions on the transmission bus line. This device offers optimum performance when used with the SN55LBC173M quadruple line receiver.

ORDERING INFORMATION[‡]

TA	PACK	\GE§	ORDERABLE PART NUMBER	TOP-SIDE MARKING
	LCCC – FK	Tube	SNJ55LBC172FK	SNJ55LBC172FK
–55°C to 125°C	CDIP – J	Tube	SNJ55LBC172J	SNJ55LBC172J
	CFP – W	Tube	SNJ55LBC172W	SNJ55LBC172W

[‡]Package drawings, standard packing quantities, thermal data, symbolization, and PCB design guidelines are available at www.ti.com/sc/package.

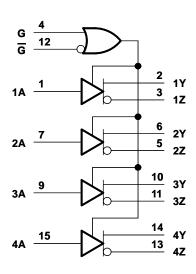
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

LinBiCMOS is a trademark of Texas Instruments Incorporated.

FUNCTION TABLE (each driver)

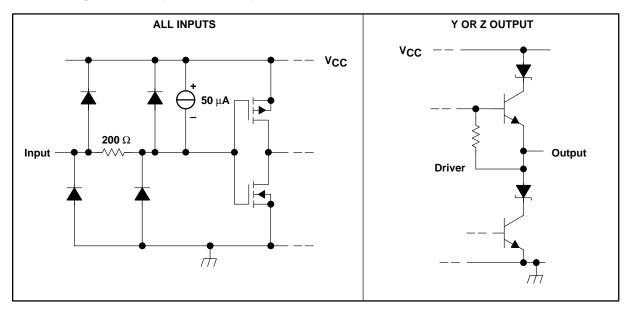
INPUT	ENA	BLES	OUTPUTS		
Α	G	G	Y	Z	
Н	Н	Х	Н	L	
L	Н	X	L	Н	
Н	Х	L	Н	L	
L	Х	L	L	Н	
Х	L	Н	Z	Z	

H = high level, L = low level, X = irrelevant,


Z = high impedance (off)

logic symbol†

ΕN 2 1Y 1Z ∇ 6 2Y 5 2Z 10 **3**Y 11 3Z 14 4A <u>15</u> 4Y 13 4Z


Pin numbers shown are for the J or W package.

logic diagram (positive logic)

[†] This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12.

schematic diagrams of inputs and outputs

SN55LBC172 QUADRUPLE LOW-POWER DIFFERENTIAL LINE DRIVER

SGLS084C - MARCH 1995 - REVISED JANUARY 2003

absolute maximum ratings over operating free-air temperature (unless otherwise noted)†

Supply voltage range, V _{CC} (see Note 1)	
Output voltage range, VO	
Input voltage range, V _I	0.3 V to 7 V
Continuous power dissipation	Internally limited [‡]
Operating free-air temperature range, T _A	
Storage temperature range, T _{stq}	
	-65°C to 150°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTE 1: All voltage values are with respect to GND.

DISSIPATION RATING TABLE

PACKAGE	$T_A \le 25^{\circ}C$ POWER RATING	DERATING FACTOR ABOVE T _A =125°C	T _A = 125°C POWER RATING
FK	1375 mW	11.0 mW/°C	275 mW
J	1375 mW	11.0 mW/°C	275 mW
W	1000 mW	8.0 mW/°C	200 mW

recommended operating conditions

		MIN	NOM	MAX	UNIT
Supply voltage, VCC		4.75	5	5.25	V
High-level input voltage, V _{IH}		2	-		V
Low-level input voltage, V _{IL}				0.8	V
Output voltage at any bus terminal (separately or common mode), VO	Y or Z			12	V
Output voltage at any bus terminal (separately of common mode), vo	1 01 2			-7	V
High-level output current, IOH	Y or Z			-60	mA
Low-level output current, IOL	Y or Z			60	mA
Continuous total power dissipation		See I	Dissipatio	n Rating	g Table
Operating free-air temperature, T _A	_	-55		125	°C

[‡] The maximum operating junction temperature is internally limited. Use the dissipation rating table to operate below this temperature.

SGLS084C - MARCH 1995 - REVISED JANUARY 2003

electrical characteristics over recommended ranges of supply voltage and operating free-air temperature (unless otherwise noted)

	PARAMETER	TEST	CONDITIONS	MIN	TYP [†]	MAX	UNIT
VIK	Input clamp voltage	$I_{I} = -18 \text{ mA}$				-1.5	V
IV.	Differential cutout valte as †	$R_L = 54 \Omega$,	See Figure 1	1.1	1.8	5	٧
IVODI	Differential output voltage‡	$R_L = 60 \Omega$,	See Figure 2	1.1	1.7	5	V
$\Delta V_{OD} $	Change in magnitude of differential output voltage§					±0.2	V
Voc	Common-mode output voltage	$R_L = 54 \Omega$,	See Figure 1			3 -1	٧
ΔIVOCI	Change in magnitude of common-mode output voltage§					±0.2	V
IO	Output current with power off	$V_{CC} = 0$,	$V_0 = -7 \text{ V to } 12 \text{ V}$			±100	μΑ
loz	High-impedance-state output current	$V_O = -7 \text{ V to}$	o 12 V			±100	μΑ
lн	High-level input current	V _I = 2.4 V				-100	μΑ
IլL	Low-level input current	V _I = 0.4 V				-100	μΑ
los	Short-circuit output current	$V_0 = -7 V tc$	12 V			±250	mA
loo	Supply current (all drivers)	No load	Outputs enabled			7	mA
ICC	Supply current (an univers)	INU IUdu	Outputs disabled			1.5	IIIA

 $[\]uparrow$ All typical values are at V_{CC} = 5 V and T_A = 25°C.

switching characteristics, $V_{CC} = 5 \text{ V}$

	PARAMETER	TEST CO	NDITIONS	TA	MIN	TYP	MAX	UNIT	
	Differential output delay time	$R_1 = 54 \Omega$	See Figure 3	25°C	2	11	20	ns	
td(OD)	Differential output delay time	KL = 54 12,	See Figure 3	−55°C to 125°C	2		40	115	
t. (0.7)	Differential output transition time	$R_1 = 54 \Omega$	C Fi 2	25°C	10	15	25		
t _t (OD)	Differential output transition time	N_ = 54 52,	See Figure 3	−55°C to 125°C	4		60	ns	
t	Output enable time to high level	$R_{I} = 110 \Omega$	See Figure 4	25°C			30	20	
^t PZH	Output enable time to high level	K_ = 110 52,	See Figure 4	−55°C to 125°C			40	ns	
t	Output enable time to low level	R _L = 110 Ω,	See Figure 5	25°C			30	ns	
tPZL	Output enable time to low level		See Figure 5	−55°C to 125°C			40	115	
t	Output disable time from high level	$R_1 = 110 \Omega$	See Figure 4	25°C			60	ns	
^t PHZ	Output disable time nom night level	K_ = 110 22,	See Figure 4	−55°C to 125°C			115	115	
to. 7	Output disable time from low level	$R_1 = 110 \Omega$	See Figure 5	25°C			30	ns	
^t PLZ	Output disable time nonnow level	INL = 110 52,	See i igule 5	-55°C to 125°C			55	115	

[‡] The minimum V_{OD} specification does not fully comply with EIA-485 at operating temperatures below 0°C. The lower output signal should be used to determine the maximum signal transmission distance.

^{§ ∆|}V_{OD}| and ∆|V_{OC}| are the changes in magnitude of V_{OD} and V_{OC}, respectively, that occur when the input is changed from a high level to a low level.

PARAMETER MEASUREMENT INFORMATION

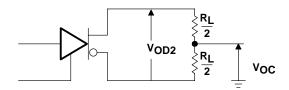


Figure 1. Differential and Common-Mode Output Voltages

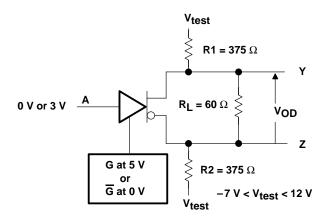
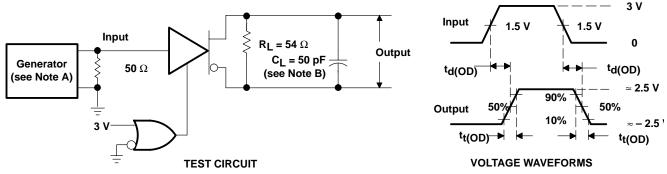
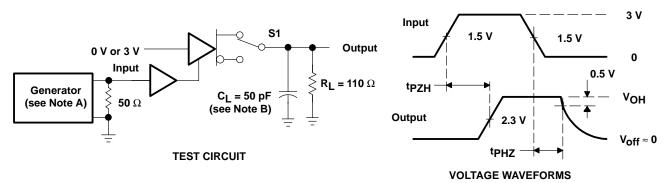
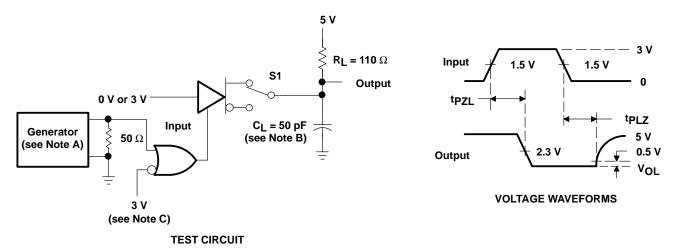



Figure 2. Driver V_{OD} Test Circuit


NOTES: A. The input pulses are supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, $t_f \leq$ 5 ns, $t_f \leq$ 5 ns,

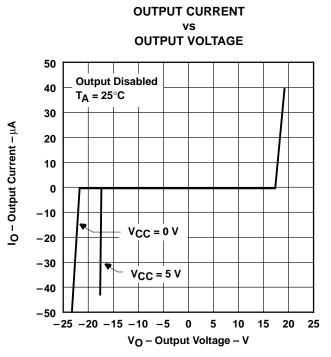
B. C_L includes probe and stray capacitance.

Figure 3. Driver Differential-Output Test Circuit and Delay and Transition-Time Waveforms



PARAMETER MEASUREMENT INFORMATION

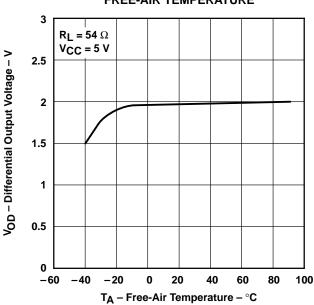
- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, $t_f \leq$ 5 ns, $t_f \leq$ 6 ns, $t_f \leq$ 7 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns,
 - B. C_L includes probe and stray capacitance.


Figure 4. tpzH and tpHZ Test Circuit and Voltage Waveforms

- NOTES: A. The input pulse is supplied by a generator having the following characteristics: PRR \leq 1 MHz, duty cycle \leq 50%, $t_f \leq$ 5 ns, $t_f \leq$ 6 ns, $t_f \leq$ 7 ns, $t_f \leq$ 7 ns, $t_f \leq$ 7 ns, $t_f \leq$ 8 ns, $t_f \leq$ 9 ns,
 - B. C_I includes probe and stray capacitance.
 - C. To test the active-low enable \overline{G} , ground G and apply an inverted waveform to \overline{G} .

Figure 5. tpzL and tpLZ Test Circuit and Waveforms

TYPICAL CHARACTERISTICS

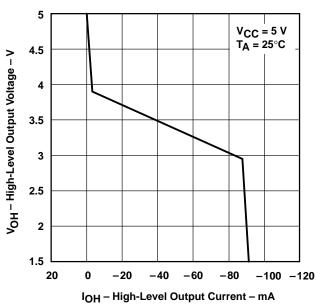

LOW-LEVEL OUTPUT CURRENT 5 V_{CC} = 5 V 4.5 T_A = 25°C VOL - Low-Level Output Voltage - V 4 3.5 3 2.5 2 1.5 1 0.5 0 -20 20 40 60 100 120 IOL - Low-Level Output Current - mA

LOW-LEVEL OUTPUT VOLTAGE

Figure 6

Figure 7

HIGH-LEVEL OUTPUT VOLTAGE vs HIGH-LEVEL OUTPUT CURRENT



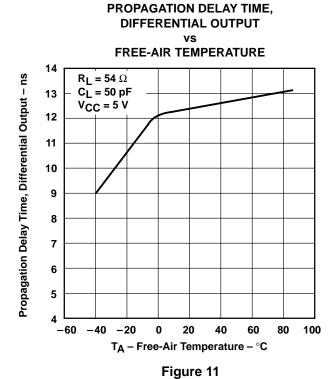

Figure 8

Figure 9

TYPICAL CHARACTERISTICS

www.ti.com 12-Oct-2021

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan	Lead finish/ Ball material	MSL Peak Temp	Op Temp (°C)	Device Marking (4/5)	Samples
5962-9076503Q2A	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9076503Q2A SNJ55 LBC172FK	Samples
5962-9076503QEA	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9076503QE A SNJ55LBC172J	Samples
5962-9076503QFA	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9076503QF A SNJ55LBC172W	Samples
SNJ55LBC172FK	ACTIVE	LCCC	FK	20	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962- 9076503Q2A SNJ55 LBC172FK	Samples
SNJ55LBC172J	ACTIVE	CDIP	J	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9076503QE A SNJ55LBC172J	Samples
SNJ55LBC172W	ACTIVE	CFP	W	16	1	Non-RoHS & Green	SNPB	N / A for Pkg Type	-55 to 125	5962-9076503QF A SNJ55LBC172W	Samples

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (Cl) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

⁽²⁾ RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

⁽³⁾ MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

PACKAGE OPTION ADDENDUM

www.ti.com 12-Oct-2021

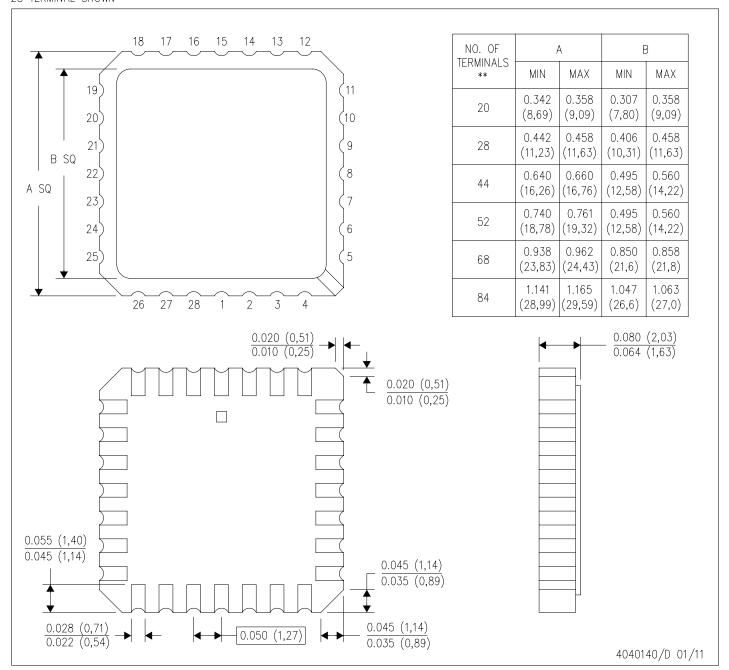
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead finish/Ball material Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF SN55LBC172:

Catalog: SN75LBC172

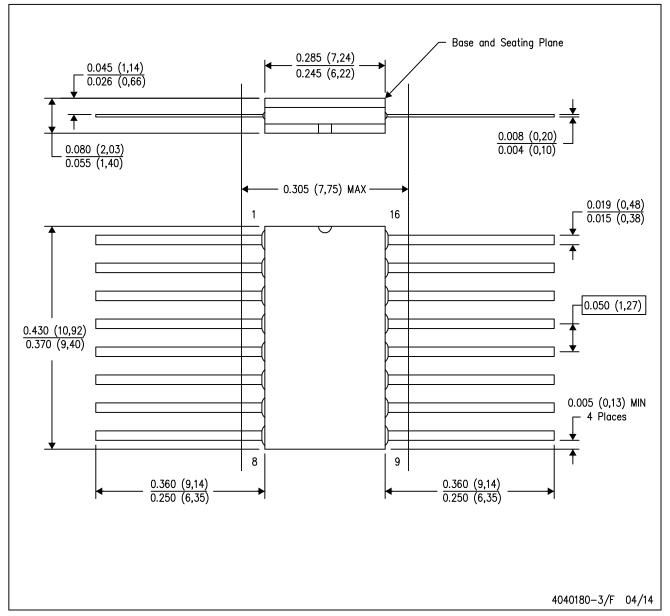

NOTE: Qualified Version Definitions:

Catalog - TI's standard catalog product

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

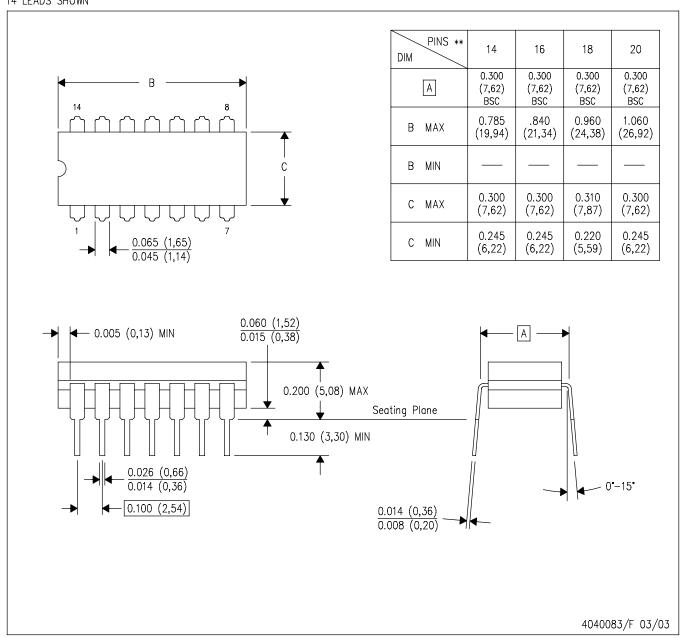
28 TERMINAL SHOWN


NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

W (R-GDFP-F16)

CERAMIC DUAL FLATPACK



NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only.
- E. Falls within MIL STD 1835 GDFP2-F16

14 LEADS SHOWN

NOTES:

- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2021, Texas Instruments Incorporated