SCES322A - FEBRUARY 2000 - REVISED APRIL 2000

- State-of-the-Art Advanced BiCMOS Technology (ABT) Widebus+™ Design for 2.5-V and 3.3-V Operation and Low Static-Power Dissipation
- Support Mixed-Mode Signal Operation (5-V Input and Output Voltages With 2.3-V to 3.6-V V_{CC})
- Typical V_{OLP} (Output Ground Bounce)
 <0.8 V at V_{CC} = 3.3 V, T_A = 25°C
- High Drive (-24/24 mA at 2.5-V and -32/64 mA at 3.3-V V_{CC})
- I_{off} and Power-Up 3-State Support Hot Insertion
- Use Bus Hold on Data Inputs in Place of External Pullup/Pulldown Resistors to Prevent the Bus From Floating

Auto3-State Eliminates Bus Current

- Loading When Output Exceeds V_{CC} + 0.5 V
 Flow-Through Architecture Facilitates
- Printed Circuit Board Layout
- Distributed V_{CC} and GND Pins Minimize High-Speed Switching Noise
- Latch-Up Performance Exceeds 100 mA Per JESD 78, Class II
- ESD Protection Exceeds JESD 22
 2000-V Human-Body Model (A114-A)
 - 200-V Machine Model (A115-A)
 - 1000-V Charged-Device Model (C101)
- Packaged in Plastic Fine-Pitch Ball Grid Array Package

NOTE: For tape and reel order entry: The GKER package is abbreviated to KR.

description

The 'ALVTH32373 devices are 32-bit transparent D-type latches with 3-state outputs designed for 2.5-V or 3.3-V V_{CC} operation, but with the capability to provide a TTL interface to a 5-V system environment. These devices are particularly suitable for implementing buffer registers, I/O ports, bidirectional bus drivers, and working registers.

These devices can be used as four 8-bit latches, two 16-bit latches, or one 32-bit latch. When the latch-enable (LE) input is high, the Q outputs follow the data (D) inputs. When LE is taken low, the Q outputs are latched at the levels set up at the D inputs.

A buffered output-enable (\overline{OE}) input can be used to place the eight outputs in either a normal logic state (high or low logic levels) or the high-impedance state. In the high-impedance state, the outputs neither load nor drive the bus lines significantly. The high-impedance state and increased drive provide the capability to drive bus lines without interface or pullup components.

OE does not affect internal operations of the latch. Old data can be retained or new data can be entered while the outputs are in the high-impedance state.

Inputs can be driven from either 3.3-V or 5-V devices. This feature allows the use of these devices as translators in a mixed 3.3-V/5-V system environment.

These devices are fully specified for hot-insertion applications using I_{off} and power-up 3-state. The I_{off} circuitry disables the outputs, preventing damaging current backflow through the devices when they are powered down. The power-up 3-state circuitry places the outputs in the high-impedance state during power up and power down, which prevents driver conflict.

When V_{CC} is between 0 and 1.2 V, the devices are in the high-impedance state during power up or power down. However, to ensure the high-impedance state above 1.2 V, \overline{OE} should be tied to V_{CC} through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Widebus+ is a trademark of Texas Instruments.

UNLESS OTHERWISE NOTED this document contains PRODUCTION DATA information current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.

Copyright © 2000, Texas Instruments Incorporated

SCES322A - FEBRUARY 2000 - REVISED APRIL 2000

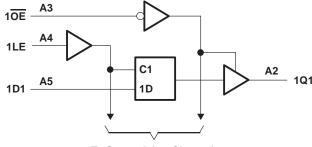
description (continued)

Active bus-hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

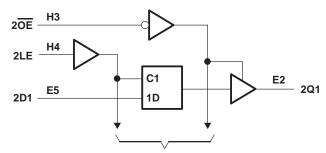
The SN54ALVTH32373 is characterized for operation over the full military temperature range of -55°C to 125°C. The SN74ALVTH32373 is characterized for operation from -40°C to 85°C.

	FUNCTION TABLE (each 8-bit latch)										
INPUTS OUTPUT											
OE	LE	Q									
L	Н	Н	Н								
L	н	L	L								
L	L	Q ₀									
н	Х	Х	Z								

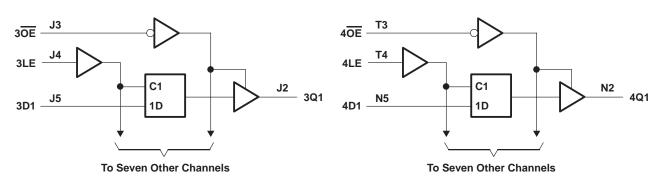
GKE PACKAGE (TOP VIEW) 1 2 3 4 5 6 000000 Α 000000 В С 000000 000000 D 000000 Е F 000000 000000 G 000000 Н 000000J 000000 κ 000000L 000000 Μ 000000 Ν 000000 Ρ 00000 R т 000000


terminal assignments

	1	2	3	4	5	6
Α	1Q2	1Q1	1OE	1LE	1D1	1D2
в	1Q4	1Q3	GND	GND	1D3	1D4
С	1Q6	1Q5	1V _{CC}	1V _{CC}	1D5	1D6
D	1Q8	1Q7	GND	GND	1D7	1D8
Е	2Q2	2Q1	GND	GND	2D1	2D2
F	2Q4	2Q3	1V _{CC}	1V _{CC}	2D3	2D4
G	2Q6	2Q5	GND	GND	2D5	2D6
н	2Q7	2Q8	2OE	2LE	2D8	2D7
J	3Q2	3Q1	3OE	3LE	3D1	3D2
κ	3Q4	3Q3	GND	GND	3D3	3D4
L	3Q6	3Q5	2VCC	2VCC	3D5	3D6
Μ	3Q8	3Q7	GND	GND	3D7	3D8
Ν	4Q2	4Q1	GND	GND	4D1	4D2
Ρ	4Q4	4Q3	2V _{CC}	2V _{CC}	4D3	4D4
R	4Q6	4Q5	GND	GND	4D5	4D6
т	4Q7	4Q8	4 <mark>0E</mark>	4LE	4D8	4D7


SCES322A - FEBRUARY 2000 - REVISED APRIL 2000

logic diagram (positive logic)



To Seven Other Channels

To Seven Other Channels

NOTE B: 2V_{CC} is associated with these channels.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage range, V $_{CC}$ Input voltage range, V $_{I}$ (see Note 1)	
Voltage range applied to any output in the high-impedance	
or power-off state, V _O (see Note 1)	
Voltage range applied to any output in the high state, V _O (see Note 1)	
Output current in the low state, I _O : SN54ALVTH32373	
SN74ALVTH32373	128 mA
Output current in the high state, I _O : SN54ALVTH32373	
SN74ALVTH32373	
Continuous current through V _{CC} or GND	
Input clamp current, I _{IK} (V _I < 0)	–50 mA
Output clamp current, I _{OK} (V _O < 0)	–50 mA
Package thermal impedance, θ_{JA} (see Note 2)	40°C/W
Storage temperature range, T _{stg}	

⁺ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

NOTES: 1. The input and output negative-voltage ratings may be exceeded if the input and output clamp-current ratings are observed.

2. The package thermal impedance is calculated in accordance with JESD 51.

SCES322A - FEBRUARY 2000 - REVISED APRIL 2000

recommended operating conditions, V_{CC} = 2.5 V \pm 0.2 V (see Note 3)

			SN54	ALVTH32	2373	SN74	ALVTH3	2373	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage	age				2.3		2.7	V
VIH	High-level input voltage	1.7			1.7			V	
VIL	Low-level input voltage		4	0.7			0.7	V	
VI	Input voltage	0	Vcc	5.5	0	VCC	5.5	V	
ЮН	High-level output current			2	-6			-8	mA
lai	Low-level output current			(C)	6			8	mA
IOL	Low-level output current; current duty cycle \leq	50%; f ≥ 1 kHz	40	2	18			24	ША
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	4	/	10			10	ns/V
$\Delta t/\Delta V_{CC}$	Power-up ramp rate		200			200			μs/V
Т _А	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

recommended operating conditions, V_{CC} = 3.3 V \pm 0.3 V (see Note 3)

			SN54	ALVTH32	2373	SN74	ALVTH3	2373	UNIT
			MIN	TYP	MAX	MIN	TYP	MAX	UNIT
VCC	Supply voltage	pply voltage				3		3.6	V
VIH	High-level input voltage	2			2			V	
VIL	Low-level input voltage		4	0.8			0.8	V	
VI	Input voltage	0	Vcc	5.5	0	VCC	5.5	V	
ЮН	High-level output current			Q	-24			-32	mA
	Low-level output current			(C)	24			32	mA
IOL	Low-level output current; current duty cycle \leq	50%; f ≥ 1 kHz	~0~	20	48			64	ША
$\Delta t/\Delta v$	Input transition rise or fall rate	Outputs enabled	22		10			10	ns/V
Δt/ΔV _{CC}	Power-up ramp rate	200			200			μs/V	
TA	Operating free-air temperature		-55		125	-40		85	°C

NOTE 3: All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004.

SCES322A - FEBRUARY 2000 - REVISED APRIL 2000

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted)

		TEST COL	IDITIONS	SN54A	LVTH32	373	SN74A	LVTH32	373	UNIT
F/	ARAMETER	TEST CO	NDITIONS	MIN	TYP [†]	MAX	MIN	TYP [†]	MAX	UNIT
VIK		V _{CC} = 2.3 V,	lj = -18 mA			-1.2			-1.2	V
		V_{CC} = 2.3 V to 2.7 V,	I _{OH} = -100 μA	V _{CC} -0.2			V _{CC} -0.2			
Vон			I _{OH} = -6 mA	1.8						V
		VCC = 2.3 V	I _{OH} = -8 mA				1.8			
		V_{CC} = 2.3 V to 2.7 V,	IOL = 100 μA			0.2			0.2	
			IOL = 6 mA			0.4				
VOL			IOL = 8 mA						0.4	V
	VOL Control inputs Data inputs Data inputs Data inputs BHL [‡] BHHS BHLO [¶] BHHO [#] EX OZ(PU/PD) [*] OZH	VCC = 2.3 V	IOL = 18 mA			0.5				
			I _{OL} = 24 mA				X MIN TYP† MAX MIX 2 -1.2 V VCC-0.2 V V 1.8 0.2 V 4 0.2 V 5 0.2 V 1.8 0.2 V 4 0.4 V 5 0.5 V 1 0.4 V 0 0.10 μ 1 0.5 -5 -10 μ -10 115 μ -10 300 μ -300 μ 5 125 μ 5 -5 μ 5 -5 μ 5 -5 μ 1 0.04 0.1 5 2.3 4.5 1 0.04 0.1			
	Control inpute	V _{CC} = 2.7 V,	$V_{I} = V_{CC} \text{ or } GND$			±1			±1	
	Control inputs	V _{CC} = 0 or 2.7 V,	V _I = 5.5 V			10			10	
II .	$ \begin{array}{ c c c c c c } & V_{CC} = 2.3 \ V \ 0.27 \ V, & I_{OH} = -100 \ \mu A & V_{CC} - 0.2 & V_{CC} - 0.2 \\ \hline V_{CC} = 2.3 \ V & I_{OH} = -6 \ m A & 1.8 & I.8 $	μΑ								
	Data inputs	V _{CC} = 2.7 V	$V_I = V_{CC}$		Ņ	1			1	
			$V_{I} = 0$		A.	-5			-5	
l _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$		5				±100	μΑ
IBHL [‡]	‡	V _{CC} = 2.3 V,	V _I = 0.7 V		115*			115		μΑ
IВНН	§	V _{CC} = 2.3 V,	V _I = 1.7 V	20 0	-10*			-10		μA
BHLO	⊃¶	V _{CC} = 2.7 V,	$V_{I} = 0$ to V_{CC}	300*			300			μΑ
IBHH	0 [#]	V _{CC} = 2.7 V,	$V_I = 0$ to V_{CC}	-300*			-300			μΑ
IEX		V _{CC} = 2.3 V,	Vo = 5.5 V			125			125	μΑ
IOZ(P	PU/PD) [☆]	$V_{CC} \le 1.2 \text{ V}, \text{ V}_{O} = \frac{0.5}{\text{OE}}$	V to V _{CC} , = don't care			±100			±100	μΑ
IOZH		V _{CC} = 2.7 V				5			5	μΑ
IOZL		V _{CC} = 2.7 V				-5			-5	μA
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.1								
ICC		$I_{O} = 0,$	Outputs low		2.3	4.5	V _{CC} -0.2 1.8 0.2 0.2 0.4 0.2 0.5 0.2 1.8 0.2 0.4 0.4 0.5 0.5 1 0.4 1.8 0.4 0.5 0.5 1 0.5 10 10 10 10 10 10 11 1 -5 -5 0 -10 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 115 1 1100 1	mA		
		$V_I = V_{CC}$ or GND	Outputs disabled		0.04	0.1		$\begin{array}{c c} \pm 1 \\ 10 \\ 10 \\ 10 \\ 10 \\ -10 \\ 115 \\ -10 \\ 300 \\ -300 \\ -300 \\ 125 \\ \pm 100 \\ 5 \\ 125 \\ 5 \\ -5 \\ 0.04 \\ 0.1 \\ 2.3 \\ 4.5 \\ 0.04 \\ 0.1 \\ 3.5 \\ \end{array}$		
Ci		V _{CC} = 2.5 V,	V _I = 2.5 V or 0		3.5			3.5		pF
Co		V _{CC} = 2.5 V,	V _O = 2.5 V or 0		6			6		pF

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at V_{CC} = 2.5 V, T_A = 25°C.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

§ The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

An external driver must sink at least I_{BHHO} to switch this node from high to low.

|| Current into an output in the high state when $V_O > V_{CC}$

*High-impedance state during power up or power down

SCES322A - FEBRUARY 2000 - REVISED APRIL 2000

electrical characteristics over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted)

D 4	DAMETED	TEOTO		SN54A	LVTH323	373	SN74A	LVTH32	373	1 16117	
PA	KAMEIEK	TESTC	UNDITIONS	MIN	түр†	MAX	MIN	түр†	MAX	UNIT	
VIK		V _{CC} = 3 V,	Ij = -18 mA			-1.2			P† MAX -1.2 -1.2 0.2 0.4 0.5 -1.2 0.4 -1.2 0.5 -1.2 0.5 -1.2 0.5 -1.2 0.5 -1.2 0.5 -1.2 10 10 10 10 10 1 -5 ±100 125 ±100 5 -5 .07 0.1 3.2 5	V	
		$V_{CC} = 3 V \text{ to } 3.6 V,$	I _{OH} = -100 μA	V _{CC} -0.2			V _{CC} -0.2				
^V ОН			I _{OH} = -24 mA	2						V	
		$v_{CC} = 3 v$	I _{OH} = -32 mA				2				
		$V_{CC} = 3 V \text{ to } 3.6 V,$	I _{OL} = 100 μA			0.2			0.2		
			I _{OL} = 16 mA						0.4		
			I _{OL} = 24 mA			0.5				V	
VOL		$V_{CC} = 3 V$	I _{OL} = 32 mA						0.5	v	
	[/] OH [/] OL Control inputs Data inputs off BHL [‡] BHL [¶] BHLO [¶] BHHO [#] EX OZ(PU/PD) [★] OZH		I _{OL} = 48 mA			0.55					
$ \begin{array}{c c c c c c } \hline \mbox{PARAMETER} & \mbox{TEST CONDITIONS} & \mbox{III} & \mbox{Typt} & \mbox{MAX} & \mbox{MIN} & \mbox{Typt} & \mbox{Typt} & \mbox{MIN} & \mbox{Typt} & \mbox{Typt} & \mbox{MIN} & \mbox{Typt} & \mbox{Typt} & \mbox{MIN} & \mbox{Typt} & \mbox{Typt} & $	0.55										
	Control inputo	V _{CC} = 3.6 V,	$V_{I} = V_{CC} \text{ or } GND$			±1			±1		
	Control inputs	$V_{CC} = 0 \text{ or } 3.6 \text{ V},$	V _I = 5.5 V			10			10		
VI = $5.5 V$ 10 Data inputs V _C = $3.6 V$ V _I = V_{CC} 1	10	μA									
	Data inputs	V _{CC} = 3.6 V	$V_I = V_{CC}$		N.	1			1		
			$V_{I} = 0$		4	-5			-5		
l _{off}		$V_{CC} = 0,$	$V_{I} \text{ or } V_{O} = 0 \text{ to } 4.5 \text{ V}$	(5				±100	μΑ	
I _{BHL} ‡	:	V _{CC} = 3 V,	V _I = 0.8 V	75*			75			μΑ	
I ^{BHH} §	3	$V_{CC} = 3 V,$	V _I = 2 V	-75			-75			μΑ	
		V _{CC} = 3.6 V,	$V_{I} = 0$ to V_{CC}	500*			500			μA	
Івнно	D [#]	V _{CC} = 3.6 V,	$V_{I} = 0$ to V_{CC}	-500*			-500			μΑ	
		V _{CC} = 3 V,	V _O = 5.5 V			125			125	μA	
IOZ(P	U/PD) [☆]	$V_{CC} \le 1.2 \text{ V}, \text{ V}_{O} = \frac{0}{1000}$ V _I = GND or V _{CC} , \overline{O}	.5 V to V _{CC} , E = don't care			±100			±100	μA	
Iozh		V _{CC} = 3.6 V				5			5	μA	
Iozl		V _{CC} = 3.6 V				-5			-5	μA	
		$V_{CC} = 3.6 V_{.}$	Outputs high		0.07	0.1		0.07	0.1		
ICC		$I_{O} = 0,$	Outputs low		3.2	5		3.2	5	5 mA	
		$V_{I} = V_{CC}$ or GND	Outputs disabled		0.07	0.1		0.07	0.1		
∆ICC□]					0.4			0.4	mA	
Ci		V _{CC} = 3.3 V,	V _I = 3.3 V or 0		3.5			3.5		pF	
Co		V _{CC} = 3.3 V,	V _O = 3.3 V or 0		6			6		pF	

* On products compliant to MIL-PRF-38535, this parameter is not production tested.

[†] All typical values are at $V_{CC} = 3.3 \text{ V}$, $T_A = 25^{\circ}\text{C}$.

[‡] The bus-hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_{IN} to GND and then raising it to V_{IL} max.

§ The bus-hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_{IN} to V_{CC} and then lowering it to V_{IH} min.

 \P An external driver must source at least I_{BHLO} to switch this node from low to high.

[#]An external driver must sink at least I_{BHHO} to switch this node from high to low.

|| Current into an output in the high state when V_O > V_{CC}

*High-impedance state during power up or power down

This is the increase in supply current for each input that is at the specified TTL voltage level rather than V_{CC} or GND.

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas Instruments reserves the right to change or discontinue these products without notice.

SN54ALVTH32373, SN74ALVTH32373 2.5-V/3.3-V 32-BIT TRANSPARENT D-TYPE LATCHES WITH 3-STATE OUTPUTS SCES322A - FEBRUARY 2000 - REVISED APRIL 2000

timing requirements over recommended operating free-air temperature range, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

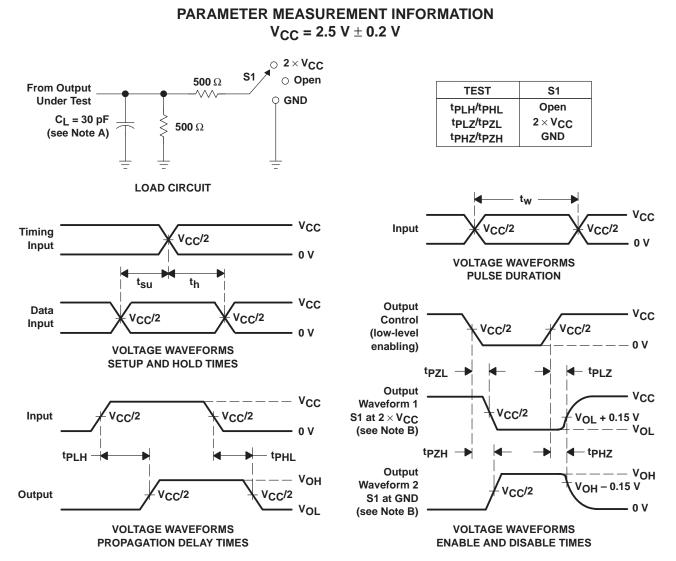
			SN54ALV	TH32373	SN74ALVT	H32373	UNIT
		MIN	MAX	MIN	MAX	UNIT	
tw	Pulse duration, LE high		1.5		1.5		ns
4		Data high			1		20
t _{su}	Setup time, data before LE \downarrow	Data low	1.6	IF.	1.5		ns
tı.	Hold time, data after LE↓	Data high	5, \$r		0.9		ns
th	Hold time, data alter LEV	Data low	1.6		1.5		115

timing requirements over recommended operating free-air temperature range, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

			SN54ALVT	H32373	SN74ALVT	H32373	UNIT
			MIN	MAX	MIN	MAX	UNIT
tw	Pulse duration, LE high	1.5		1.5		ns	
		Data high	1.5	S)	1.4		-
^t su	Setup time, data before LE \downarrow	Data low	19. j		0.9		ns
tı.	Hold time, data after LE↓	Data high	5, 6 K		0.9		ns
th		Data low	1.5		1.4		115

switching characteristics over recommended operating free-air temperature range, C_L = 30 pF, V_{CC} = 2.5 V \pm 0.2 V (unless otherwise noted) (see Figure 1)

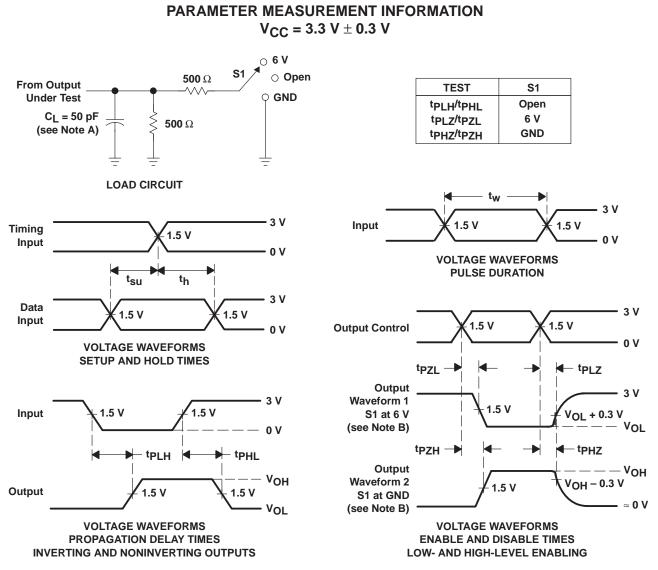
PARAMETER	FROM	то	SN54ALVTH32373	SN74ALVTH32373	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN MAX	MIN MAX		
^t PLH	D	Q	1 3.4	1 3.3	ns	
^t PHL	D	Q	1 4.3	1 4.2	115	
^t PLH	LE	Q	1.4 🐊 3.9	1.5 3.8	ns	
^t PHL	LL	Q	1.4 4.6	1.5 4.5	115	
^t PZH	OE	Q	1.7 4.4	1.8 4.3	ns	
^t PZL	UE	Q	1.4 4.1	1.5 4	115	
^t PHZ	ŌĒ	Q	1.4 4.7	1.5 4.6	ns	
^t PLZ	UE	Q	1 3.7	1 3.6	115	


switching characteristics over recommended operating free-air temperature range, C_L = 50 pF, V_{CC} = 3.3 V \pm 0.3 V (unless otherwise noted) (see Figure 2)

PARAMETER	FROM	то	SN54ALVTH32373	SN74ALVT	H32373	UNIT	
PARAMETER	(INPUT)	(OUTPUT)	MIN MAX	MIN	MAX	UNIT	
^t PLH	D	Q	1 3.2	1	3.1	ns	
^t PHL	D	Q	1 3.4	1	3.3	115	
^t PLH	LE	Q	1 🐊 3.4	1	3.3	ns	
^t PHL		Q	1 2 3.6	1	3.5	115	
^t PZH	OE	Q	1.3 4.1	1.4	4	ns	
^t PZL	UE	Q	3.5	1	3.4	115	
^t PHZ	OE	Q	21.4 5	1.5	4.9	00	
^t PLZ	UE	Q	1.4 4.6	1.5	4.5	ns	

PRODUCT PREVIEW information concerns products in the formative or design phase of development. Characteristic data and other specifications are design goals. Texas instruments reserves the right to change or discontinue these products without notice.

SCES322A - FEBRUARY 2000 - REVISED APRIL 2000


NOTES: A. CL includes probe and jig capacitance.

- B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 C. All input pulses are supplied by generators having the following characteristics: PRR ≤ 10 MHz, Z_Q = 50 Ω, t_f ≤ 2 ns, t_f ≤ 2 ns.
- D. The outputs are measured one at a time with one transition per measurement.

Figure 1. Load Circuit and Voltage Waveforms

SCES322A - FEBRUARY 2000 - REVISED APRIL 2000

- NOTES: A. CL includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low except when disabled by the output control.
 - Waveform 2 is for an output with internal conditions such that the output is high except when disabled by the output control.
 - C. All input pulses are supplied by generators having the following characteristics: PRR \leq 10 MHz, Z_O = 50 Ω , t_f \leq 2.5 ns, t_f \leq 2.5 ns.

D. The outputs are measured one at a time with one transition per measurement.

Figure 2. Load Circuit and Voltage Waveforms

11-Apr-2013

PACKAGING INFORMATION

Orderable Device	Status	Package Type	Package	Pins	Package	Eco Plan	Lead/Ball Finish	MSL Peak Temp	Op Temp (°C)	Top-Side Markings	Samples
	(1)		Drawing		Qty	(2)		(3)		(4)	
74ALVTH32373ZKER	ACTIVE	LFBGA	ZKE	96	1000	Green (RoHS & no Sb/Br)	SNAGCU	Level-3-260C-168 HR	-40 to 85	VL373	Samples
SN74ALVTH32373KR	NRND	LFBGA	GKE	96	1000	TBD	SNPB	Level-2-235C-1 YEAR	-40 to 85	VL373	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

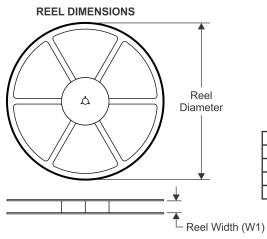
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. **Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

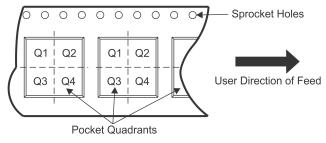
⁽⁴⁾ Multiple Top-Side Markings will be inside parentheses. Only one Top-Side Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Top-Side Marking for that device.

Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

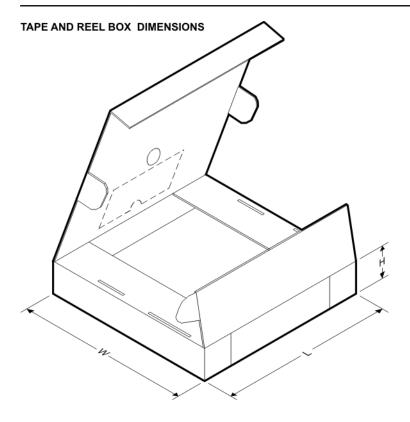
PACKAGE MATERIALS INFORMATION

www.ti.com


Texas Instruments

TAPE AND REEL INFORMATION

QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

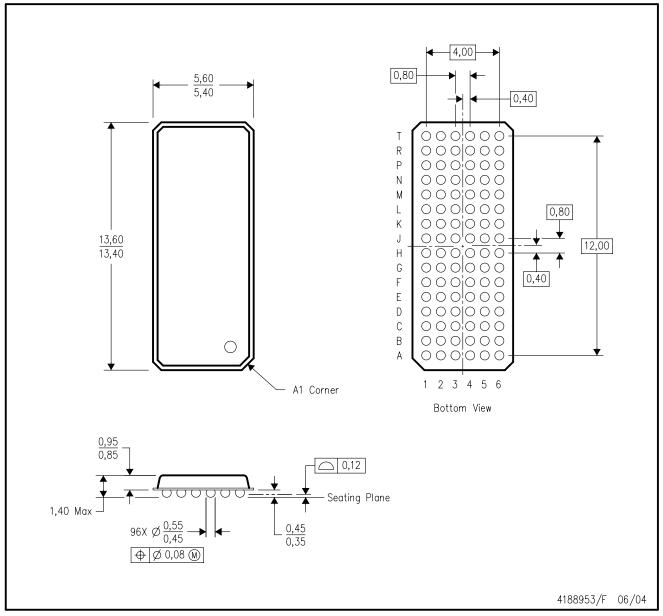

*All dimensions are nominal												
Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
74ALVTH32373ZKER	LFBGA	ZKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1
SN74ALVTH32373KR	LFBGA	GKE	96	1000	330.0	24.4	5.7	13.7	2.0	8.0	24.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

8-Feb-2017

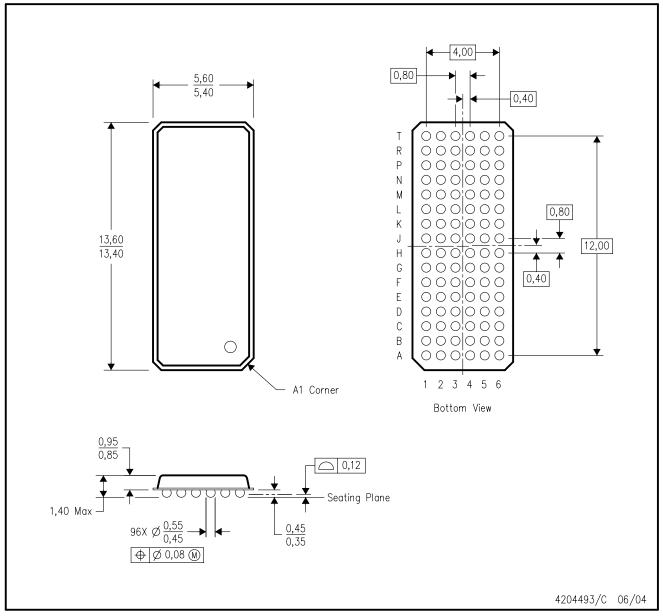


*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
74ALVTH32373ZKER	LFBGA	ZKE	96	1000	336.6	336.6	41.3
SN74ALVTH32373KR	LFBGA	GKE	96	1000	336.6	336.6	41.3

GKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY



- NOTES: A. All linear dimensions are in millimeters.
 - B. This drawing is subject to change without notice.
 - C. Falls within JEDEC MO-205 variation CC.
 - D. This package is tin-lead (SnPb). Refer to the 96 ZKE package (drawing 4204493) for lead-free.

ZKE (R-PBGA-N96)

PLASTIC BALL GRID ARRAY

NOTES: A. All linear dimensions are in millimeters.

B. This drawing is subject to change without notice.

C. Falls within JEDEC MO-205 variation CC.

D. This package is lead-free. Refer to the 96 GKE package (drawing 4188953) for tin-lead (SnPb).

IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's noncompliance with the terms and provisions of this Notice.

> Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2017, Texas Instruments Incorporated