
Product Description

Sirenza Microdevices' SNA-300 is a GaAs monolithic broadband amplifier (MMIC) in die form. At 1950 MHz, this amplifier provides 22dB of gain when biased at 35mA.

These unconditionally stable amplifiers are designed for use as general purpose 50 ohm gain blocks. Its small size (0.350mm x 0.345mm) and gold metallization make it an ideal choice for use in hybrid circuits. The SNA-300 is 100% DC tested and sample tested for RF performance.

External DC decoupling capacitors determine low frequency response. The use of an external resistor allows for bias flexibility and stability.

The SNA-300 is supplied in gel paks at 100 devices per pak. Also available in packaged form (SNA-376 & SNA-386)

SNA-300

DC-3 GHz, Cascadable GaAs HBT MMIC Amplifier

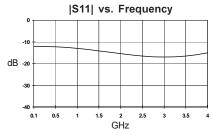
Product Features

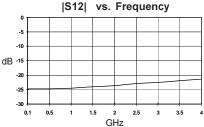
- Cascadable 50 Ohm Gain Block
- 22dB Gain, +10dBm P1dB
- 1.5:1 Input and Output VSWR
- Operates From Single Supply
- Through wafer via for ground

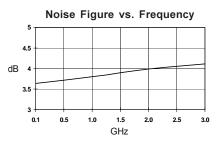
Applications

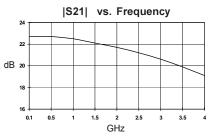
- Broadband Driver Amplifier
- IF Amplifier or gain stage for VSAT, LMDS, WLAN, and Cellular Systems

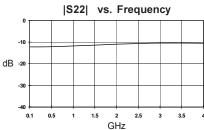
Symbol	Parameter	Units	Frequency	Min.	Тур.	Max.
Gp	Small Signal Power Gain [2]	dB dB dB	850 MHz 1950 MHz 2400 MHz	20.5	23.0 22.0 21.5	23.5 23.0
BW3dB	3dB Bandwidth	GHz			3.0	
P _{1dB}	Output Power at 1dB Compression [2]	dBm	1950 MHz	8.0	10.0	
OIP ₃	Output Third Order Intercept Point [2]	dBm	1950 MHz	20.0	23.0	
NF	Noise Figure	dB	1950 MHz		4.0	
RL	Input / Output Return Loss	dB	1950		11.7	
ISOL	Reverse Isolation	dB	0.1-3.0 GHz		20.0	
V _D	Device Operating Voltage [1]	V		3.3	3.7	4.1
I _D	Device Operating Current [1]	m A		30.0	35.0	40.0
dG/dT	Device Gain Temperature Coefficient	dB/°C			-0.003	
R _{TH} , j-b	Thermal Resistance (junction to backside) °C/W			260.0	

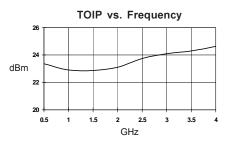

Test Conditions: $V_s = 8 \text{ V}$ $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$ OIP₃ Tone Spacing = 1 MHz, Pout per tone = 0 $I_D = 35 \text{ mA Typ.}$


The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patient rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. **proprior** proprior** provided in the support devices and/or systems. **proprior** provided in the support devices and/or systems. **provided in the support devices and/or systems.



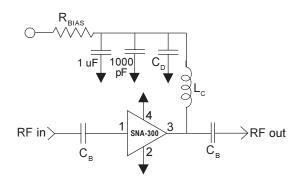

Typical Performance at 25 $^{\circ}$ C (Vds =3.7V, Ids = 35mA)

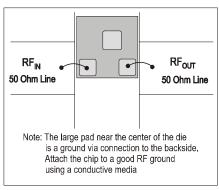

(data includes bond wires)



Absolute Maximum Ratings

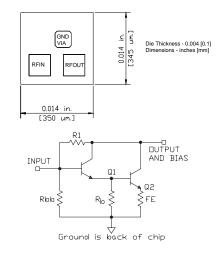
Parameter	Absolute Limit		
Max. Device Current (I _D)	75 mA		
Max. Device Voltage (V _D)	6 V		
Max. RF Input Power	+20 dBm		
Max. Junction Temp. (T _J)	+200°C		
Operating Temp. Range (T _L)	-40°C to +85°C		
Max. Storage Temp.	+150°C		


Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.


Bias Conditions should also satisfy the following expression: $I_{_D}V_{_D}<(T_{_J}-T_{_L})\ /\ R_{_{TH'}}\ j\text{-}I$

SNA-300 DC-3 GHz Cascadable MMIC Amplifier

Typical Application Circuit



Suggested Bonding Arrangement (above configuration used for S-parameter data)

Application Circuit Element Values

Reference	Frequency (Mhz)					
Designator	500	850	1950	2400	3500	
C _B	220 pF	100 pF	68 pF	56 pF	39 pF	
C _D	100 pF	68 pF	22 pF	22 pF	15 pF	
L _c	68 nH	33 nH	22 nH	18 nH	15 nH	

Recommended Bias Resistor Values for I_D =35mA R_{BIAS} =(V_S - V_D) / I_D				
Supply Voltage(V _s)	5 V	6 V	8 V	10 V
R _{BIAS} 36 Ω 68 Ω 120 Ω 180 Ω				
Note: R _{BIAS} provides DC bias stability over temperature.				

Simplified Schematic of MMIC

For recommended handling, die attach, and bonding methods, see the following application note at

www.sirenza.com.

AN-041 (PDF) Handling of Unpackaged Die

Caution: ESD sensitive
Appropriate precautions in handling, packaging and testing devices must be observed.

Part Number Ordering Information

Part Number	Gel Pack
SNA-300	100 pcs. per pack

303 South Technology Court Phone: (800) SMI-MMIC http://www.sirenza.com
Broomfield, CO 80021 3 EDS-102432 Rev B