Q2PACK Module

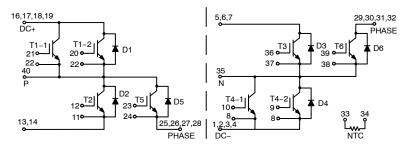
This high-density, integrated power module combines high-performance IGBTs with rugged anti-parallel diodes.

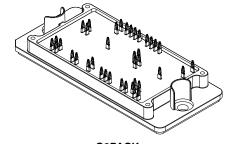
Features

- Extremely Efficient Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Module Design Offers High Power Density
- Low Inductive Layout
- Q2PACK Package with Press-Fit Pins
- This is a Pb-Free Device

Typical Applications

- Solar Inverters
- Uninterruptable Power Supplies Systems

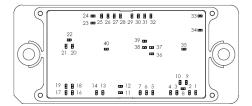



Figure 1. Schematic Diagram

ON Semiconductor®


www.onsemi.com

100 A, 650 V Inverter Module


Q2PACK CASE 180AG

DEVICE MARKING

G = Pb-Free Package
AT = Assembly & Test Site Code
YYWW = Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

See detailed ordering and shipping information on page 5 of this data sheet.

Table 1. MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IGBT (T1-1, T1-2, T4-1, T4-2)			
Collector-emitter voltage	V _{CES}	650	V
Collector current @ Th = 80°C	I _C	113	А
Pulsed Peak Collector Current @ Tpulse = 1 ms	I _{CM}	339	А
Power Dissipation (Tj = Tjmax Th = 80°C)	P _{tot}	226	W
Gate-emitter voltage	V_{GE}	±20	V
Positive transient gate–emitter voltage (Tpulse = 5 μ s, D < 0.10)		30	
Maximum Junction Temperature (Note 1)	T_{Jmax}	175	°C
GBT (T2, T3)			
Collector-emitter voltage	V _{CES}	650	V
Collector current @ Th = 80°C (per IGBT)	I _C	103	А
Pulsed Peak Collector Current @ Tpulse = 1 ms	I _{CM}	309	А
Power Dissipation (Tj = Tjmax Th = 80°C)	P _{tot}	206	W
Gate-emitter voltage	V_{GE}	±20	V
Positive transient gate–emitter voltage (Tpulse = 5 μ s, D < 0.10)		30	
Maximum Junction Temperature (Note 2)	T_{Jmax}	175	°C
GBT (T5, T6)			
Collector-emitter voltage	V _{CES}	650	V
Collector current @ Th = 80°C (per IGBT)	I _C	263	Α
Pulsed Peak Collector Current @ Tpulse = 1 ms	I _{CM}	789	Α
Power Dissipation (Tj = Tjmax Th = 80°C)	P _{tot}	339	W
Gate-emitter voltage	V_{GE}	±20	V
Positive transient gate-emitter voltage (Tpulse = 5 μ s, D < 0.10)		30	
Maximum Junction Temperature (Note 1)	T_{Jmax}	175	°C
INVERSE DIODE (D1, D4)			
Peak Repetitive Reverse Voltage	V_{RRM}	650	V
Forward Current, DC @ Th = 80°C	I _F	69	Α
Repetitive Peak Forward Current, Tpulse = 1 ms	I _{FRM}	207	А
Power Dissipation ($T_J = T_{JMAX} T_h = 80^{\circ}C$)	P _{tot}	130	W
Maximum Junction Temperature (Note 2)	TJ	175	°C
INVERSES DIODE (D2, D3, D5, D6)	•	•	-
Peak Repetitive Reverse Voltage	V_{RRM}	650	V
Forward Current, DC @ Th = 80°C	lF	88	Α
Repetitive Peak Forward Current, Tpulse = 1 ms	I _{FRM}	264	Α
Power Dissipation ($T_J = T_{JMAX} T_h = 80^{\circ}C$)	P _{tot}	156	W
Maximum Junction Temperature (Note 2)	TJ	175	°C
THERMAL PROPERTIES	•	•	_
Operating Temperature under switching condition	T _{VJ OP}	-40 to (T _{imax} -25)	°C
Storage Temperature range	T _{stg}	-40 to 125	°C
INSULATION PROPERTIES			
Isolation test voltage, t = 1 min, 50/60 Hz	V _{is}	2500	V_{RMS}
Creepage distance	19	12.7	mm

^{1.} Rated per discrete TO247 qualification

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

^{2.} Device characterization was confirmed in Tj 175°C and HTRB test passed at Tj 150°C condition

Table 2. ELECTRICAL CHARACTERISTICS (T, = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (T1-1, T1-2, T4-1, T4-2)						
Collector-emitter saturation voltage (pin-to-pin)	V _{GE} = 15 V, I _C = 225 A, T _J = 25°C V _{GE} = 15 V, I _C = 225 A, T _J = 150°C	V _{CE(sat)}	-	1.56 1.76	2.2 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 2.25$ mA	V _{GE(TH)}	3.1	4.05	5.2	V
Collector-emitter cutoff current	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	_	_	300	μΑ
Gate leakage current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	_	_	600	nA
Turn-on delay time	Tj = 25°C	t _{d(on)}	-	101	-	ns
Rise time	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}$	t _r	-	36	-	
Turn-off delay time	V_{GE} = -8 V to +15 V, $R_{G(on)}$ = 15 Ω , $R_{G(off)}$ = 30 Ω	t _{d(off)}	-	674	-	
Fall time	<u> </u>	t _f	-	63	-	
Turn on switching loss		E _{on}	-	3	_	mJ
Turn off switching loss		E _{off}	-	2.67	_	
Turn-on delay time	Tj = 125°C	t _{d(on)}	-	93	-	ns
Rise time	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}$	t _r	=	43	=	
Turn-off delay time	V_{GE} = -8 V to +15 V, $R_{G(on)}$ = 15 Ω , $R_{G(off)}$ = 30 Ω	t _{d(off)}	=	710	=	
Fall time	<u> </u>	t _f	=	58	=	
Turn on switching loss		E _{on}	=	4	=	mJ
Turn off switching loss		E _{off}	=	2.9	=	
Input capacitance	V _{CE} = 20 V, V _{GE} = 0 V. f = 10 kHz	C _{ies}	=	14630	=	pF
Output capacitance		C _{oes}	=	230	=	
Reverse transfer capacitance		C _{res}	=	64	=	
Gate charge total	V_{CE} = 480 V, I_{C} = 225 A, V_{GE} = ±15 V	Q_g	=	452	=	nC
Thermal Resistance – chip-to- heatsink	Thermal grease, Thickness = 2.1 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	-	0.42	١	°C/W
IGBT (T2, T3)						
Collector-emitter saturation voltage (pin-to-pin)	V _{GE} = 15 V, I _C = 150 A, T _J = 25°C V _{GE} = 15 V, I _C = 150 A, T _J = 150°C	V _{CE(sat)}	- -	1.65 1.9	2 -	V
Gate-emitter threshold voltage	$V_{GE} = V_{CE}$, $I_C = 2.4$ mA	V _{GE(TH)}	4.6	5.6	6.5	٧
Collector-emitter cutoff current	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}	_	_	400	μΑ
Gate leakage current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	-	_	800	nA
Turn-on delay time	Tj = 25°C	t _{d(on)}	-	68	-	ns
Rise time	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}$	t _r	-	26	-	
Turn-off delay time	V_{GE} = -8 V to +15 V, $R_{G(on)}$ = 5 Ω , $R_{G(off)}$ = 15 Ω	t _{d(off)}	_	552	-	
Fall time	<u> </u>	t _f	-	42	-	
Turn on switching loss		E _{on}	_	2.8	-	mJ
Turn off switching loss		E _{off}	=	2.4	=	
Turn-on delay time	Tj = 125°C	t _{d(on)}	_	63	-	ns
Rise time	$V_{CE} = 400 \text{ V, } I_{C} = 100 \text{ A}$	t _r	=	28	=	
Turn-off delay time	V_{GE} = -8 V to +15 V, $R_{G(on)}$ = 5 Ω , $R_{G(off)}$ = 15 Ω	t _{d(off)}	_	585	-	
Fall time		t _f	=	55	=	
Turn on switching loss		E _{on}	_	4	-	mJ
Turn off switching loss		E _{off}	_	3	-	1
Input capacitance	V _{CE} = 20 V. V _{GE} = 0 V, f = 10 kHz	C _{ies}	_	18784	-	pF
Output capacitance		C _{oes}	_	679	-	
Reverse transfer capacitance	1	C _{res}	-	581	_	

Table 2. ELECTRICAL CHARACTERISTICS (T_{.J} = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT (T2, T3)		•				
Gate charge total	V_{CE} = 480 V, I_{C} = 150 A, V_{GE} = ±15 V	Q_g	=	1560	_	nC
Thermal Resistance – chip-to- heatsink	Thermal grease, Thickness = 2.1 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	-	0.34	-	°C/W
IGBT (T5, T6)						
Collector-emitter saturation voltage (pin-to-pin)	V_{GE} = 15 V, I_{C} = 300 A, T_{J} = 25°C V_{GE} = 15 V, I_{C} = 300 A, T_{J} = 150°C	V _{CE(sat)}	_ _	1.15 1.14	1.35 —	V
Gate-emitter threshold voltage	V _{GE} = V _{CE} , I _C = 4 mA	V _{GE(TH)}	3.1	4.56	5.2	V
Collector-emitter cutoff current	V _{GE} = 0 V, V _{CE} = 650 V	I _{CES}		-	160	μА
Gate leakage current	V _{GE} = 20 V, V _{CE} = 0 V	I _{GES}	=	_	2	μА
Turn-on delay time	Tj = 25°C	t _{d(on)}	=	359	=	ns
Rise time	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}$	t _r	_	51	_	
Turn-off delay time	V_{GE} = -8 V to +15 V, R_{G} = 20 Ω	t _{d(off)}	=	3337	=	
Fall time	1	t _f	_	173	_	
Turn on switching loss	1	E _{on}	=	4.27	=	mJ
Turn off switching loss	1	E _{off}	_	5.1	_	
Turn-on delay time	Tj = 125°C	t _{d(on)}	_	300	_	ns
Rise time	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}$	t _r	=	57	=	
Turn-off delay time	V_{GE} = -8 V to +15 V, R_{G} = 20 Ω	t _{d(off)}	=	3575	=	
Fall time	1	t _f	=	205	=	
Turn on switching loss	1	E _{on}	_	5	_	mJ
Turn off switching loss	1	E _{off}	_	5.8	_	
Input capacitance	V _{CE} = 20 V. V _{GE} = 0 V. f = 10 kHz	C _{ies}	_	67524	_	pF
Output capacitance]	C _{oes}	_	428	_	
Reverse transfer capacitance]	C _{res}	-	375	-	1
Gate charge total	V_{CE} = 480 V, I_{C} = 300 A, V_{GE} = ±15 V	Q_g	-	3319	-	nC
Thermal Resistance – chip-to- heatsink	Thermal grease, Thickness = 2.1 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	-	0.28	-	°C/W
IGBT INVERSE DIODE (D1, D4)		•				
Forward voltage (pin-to-pin)	IF = 150 A, Tj = 25°C IF = 150 A, Tj = 150°C	V _F	- -	1.76 1.78	2.3 _	V
Reverse recovery time	T _i = 25°C	T _{rr}	=	96	-	ns
Reverse recovery charge	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}, V_{GE} = -8 \text{ V to}$	Q _{rr}	=	1.32	-	μС
Peak reverse recovery current	$+15 \text{ V}, \text{ R}_{\text{G}} = 5 \Omega$	I _{rrm}		45	-	Α
Reverse Peak rate of fall of re- covery current		di/dt	_	2313	=	A/μs
Reverse recovery energy	1	Err	=	0.21	_	mJ
Reverse recovery time	T _j = 125°C	T _{rr}	=	113	_	ns
Reverse recovery charge	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}, V_{GE} = -8 \text{ V to}$	Q _{rr}		3.03	_	μС
Peak reverse recovery current	+15 V, $R_G = 5\Omega$	I _{rrm}	=	60	_	Α
Reverse Peak rate of fall of re- covery current		di/dt	_	1104	=	A/μs
Reverse recovery energy	1	Err	_	0.47	_	mJ
Thermal Resistance - chip-to- heatsink	Thermal grease, Thickness = 2.1 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	-	0.54	-	°C/W

Table 2. ELECTRICAL CHARACTERISTICS (T_J = 25°C unless otherwise specified)

Parameter	Test Conditions	Symbol	Min	Тур	Max	Unit
IGBT INVERSE DIODE (D2, D3, D	5, D6)					
Forward voltage (pin-to-pin)	IF = 225 A, Tj = 25°C	V_{F}	_	1.76	2.3	V
	IF = 225 A, T _j = 150°C		-	1.78	-	
Reverse recovery time	T _j = 25°C	T _{rr}	_	44	_	ns
Reverse recovery charge	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}, V_{GE} = -8 \text{ V to}$ +15 V, R _G = 15 Ω	Q _{rr}	=	1.03	=	μС
Peak reverse recovery current	110 V, HG = 10 32	I _{rrm}	=	48	-	Α
Reverse Peak rate of fall of re- covery current		di/dt	=	2971	-	A/μs
Reverse recovery energy	1	Err	_	0.18	_	mJ
Reverse recovery time	T _j = 125°C	T _{rr}	_	82	_	ns
Reverse recovery charge	$V_{CE} = 400 \text{ V}, I_{C} = 100 \text{ A}, V_{GE} = -8 \text{ V to}$ +15 V, $R_{G} = 15 \Omega$	Q _{rr}	_	3.33	_	μС
Peak reverse recovery current	+10 V, HG = 10 sz	I _{rrm}	-	71	-	Α
Reverse Peak rate of fall of re- covery current		di/dt	_	2971	-	A/μs
Reverse recovery energy	1	Err	-	0.52	-	mJ
Thermal Resistance – chip-to- heatsink	Thermal grease, Thickness = 2.1 Mil \pm 2%, λ = 2.9 W/mK	R _{thJH}	_	0.45	-	°C/W
THERMISTOR CHARACTERISTIC	es					
Nominal resistance	T = 25°C	R ₂₅	_	22	_	kΩ
Nominal resistance	T = 100°C	R ₁₀₀	_	1468	_	Ω
Deviation of R25		DR/R	-5	_	5	%
Power dissipation		P_{D}	_	200	_	mW
Power dissipation constant			_	2	_	mW/°C
B-value	B(25/50), tol ±3%		-	-	3950	°C
B-value	B(25/100), tol ±3%		-	-	3998	°C
NTC reference			-	-	В	

ORDERING INFORMATION

Orderable Part Number	Marking	Package	Shipping
SNXH100M65L3Q2F2PG (GenIII – Q2PACK, Press–fit Pin)	SNXH100M65L3Q2F2PG	Q2PACK (Pb-Free)	12 Units / Blister Tray
SNXH100M65L4Q2F2P2G-N1 (GenIII - Q2PACK, Press-fit Pin)	SNXH100M65L4Q2F2P2G-N1	Q2PACK (Pb-Free)	12 Units / Blister Tray

TYPICAL CHARACTERISTICS - IGBT T1-1, T1-2, T4-1, T4-2 AND DIODE D1, D4

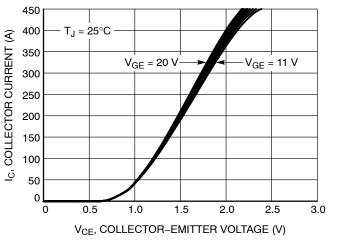
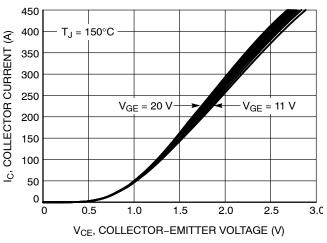



Figure 1. Typical Output Characteristics

Figure 2. Typical Output Characteristics

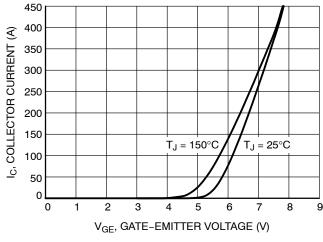


Figure 3. Typical Transfer Characteristics

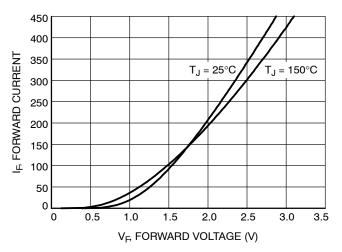


Figure 4. Typical Transfer Characteristics

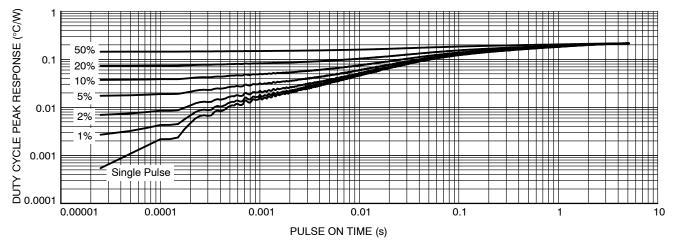


Figure 5. Transient Thermal Impedance (T1, T4)

TYPICAL CHARACTERISTICS - IGBT T1-1, T1-2, T4-1, T4-2 AND DIODE D1, D4

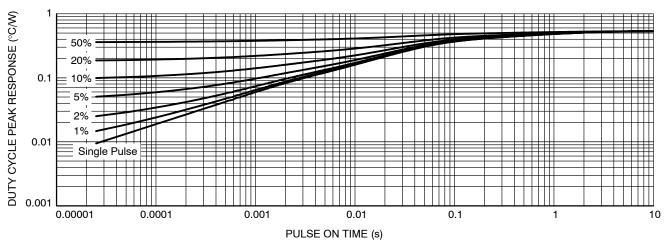


Figure 6. Transient Thermal Impedance (D1, D4)

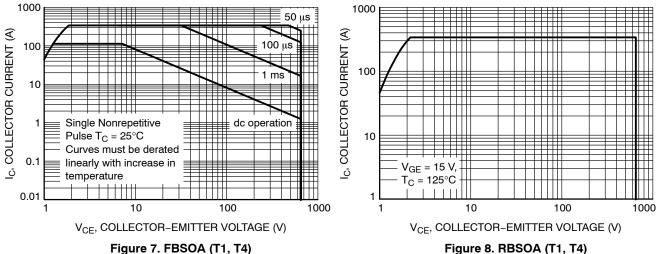


Figure 7. FBSOA (T1, T4)

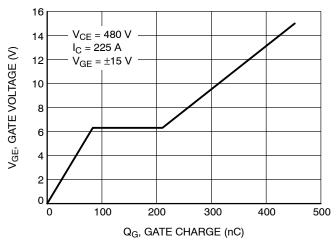


Figure 9. Gate Voltage vs. Gate Charge

TYPICAL CHARACTERISTICS - IGBT T2, T3 AND DIODE D2, D3

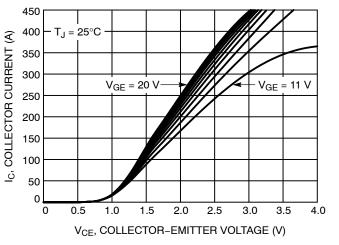


Figure 10. Typical Output Characteristics

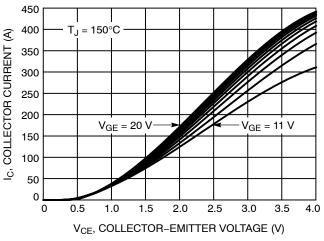


Figure 11. Typical Output Characteristics

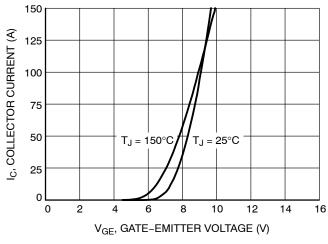


Figure 12. Typical Transfer Characteristics

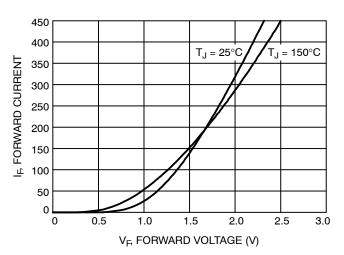


Figure 13. Diode Forward Characteristics

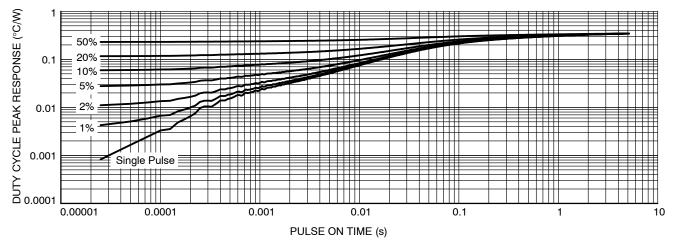


Figure 14. Transient Thermal Impedance (T2, T3)

TYPICAL CHARACTERISTICS - IGBT T2, T3 AND DIODE D2, D3

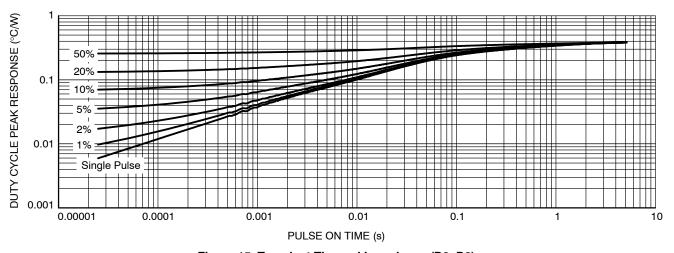


Figure 15. Transient Thermal Impedance (D2, D3)

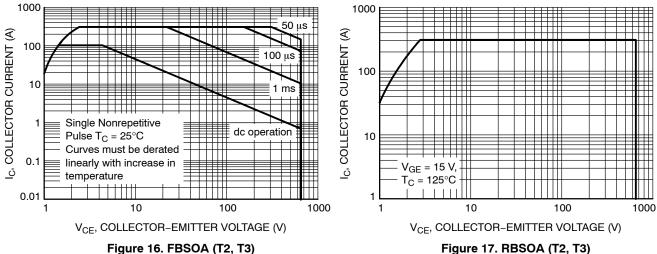


Figure 16. FBSOA (T2, T3)

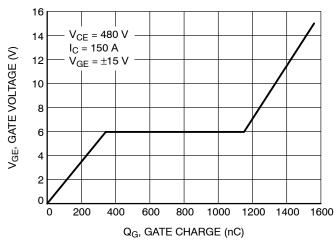


Figure 18. Gate Voltage vs. Gate Charge

TYPICAL CHARACTERISTICS - IGBT T5, T6 AND DIODE D5, D6

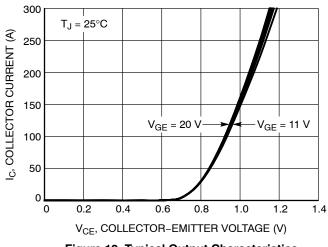


Figure 19. Typical Output Characteristics

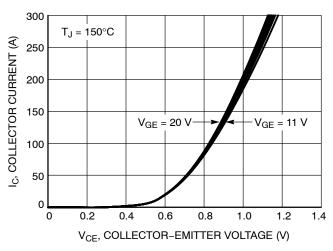


Figure 20. Typical Output Characteristics

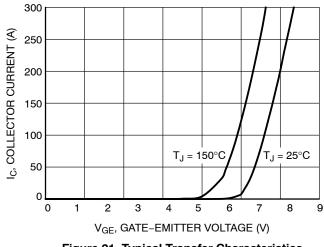


Figure 21. Typical Transfer Characteristics

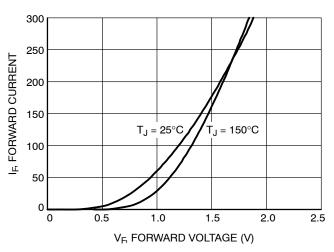


Figure 22. Diode Forward Characteristics

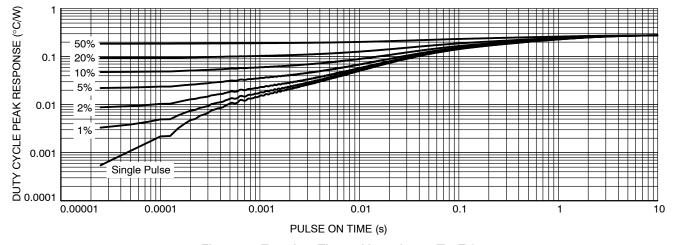


Figure 23. Transient Thermal Impedance (T5, T6)

TYPICAL CHARACTERISTICS - IGBT T5, T6 AND DIODE D5, D6

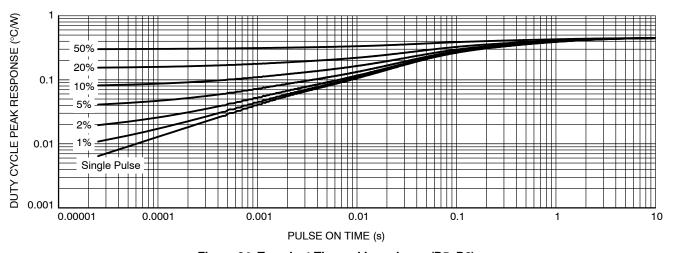


Figure 24. Transient Thermal Impedance (D5, D6)

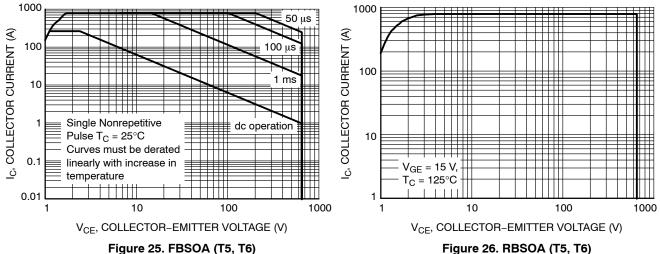
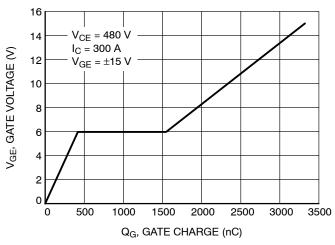
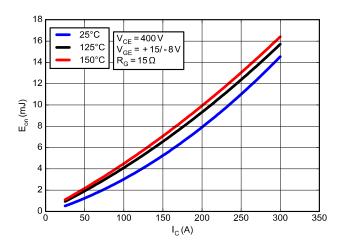
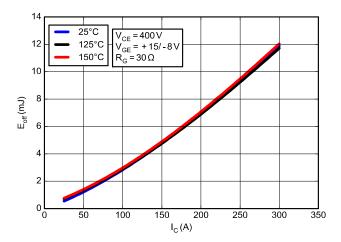


Figure 25. FBSOA (T5, T6)


Figure 27. Gate Voltage vs. Gate Charge

7.0 6.5 6.0 5.5 5.0 ய 5 4.5 4.0 3.5 25°C I_C = 100 A V_{CE} = 400 V 125°C 3.0 150°C V_{GE} = +15/-8V 2.5 L 10 30 15 40 20 25 $R_G(\Omega)$

Figure 28. Typical Switching Loss Eon vs. IC

Figure 29. Typical Switching Loss Eon vs. R_G

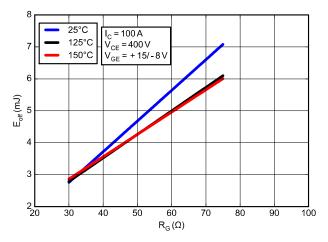
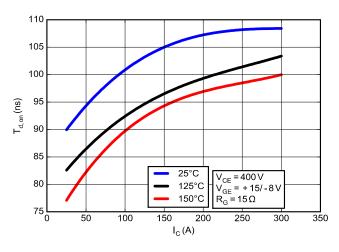



Figure 30. Typical Switching Loss Eoff vs. IC

Figure 31. Typical Switching Loss Eoff vs. $R_{\mbox{\scriptsize G}}$

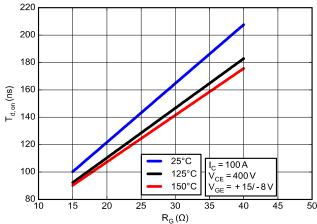
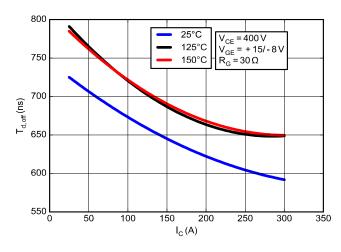



Figure 32. Typical Switching Time Tdon vs. IC

Figure 33. Typical Switching Time Tdon vs. R_G

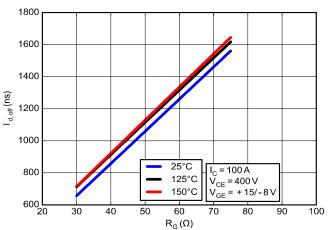
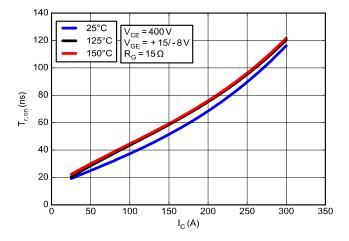



Figure 34. Typical Switching Time Tdoff vs. IC

Figure 35. Typical Switching Time Tdoff vs. $R_{\mbox{\scriptsize G}}$

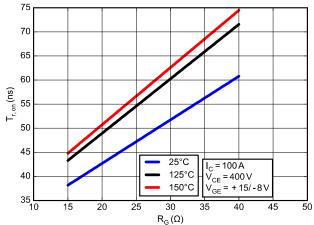
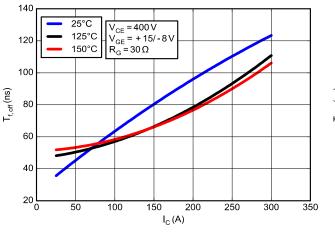
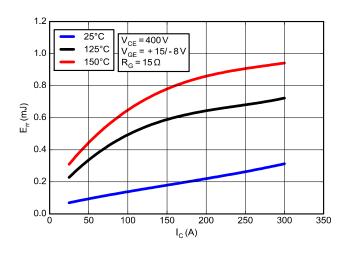



Figure 36. Typical Switching Time Tron vs. IC


Figure 37. Typical Switching Time Tron vs. R_G

130 120 110 100 90 80 70 25°C I_C = 100 A 125°C 60 $V_{CE} = 400 \text{ V}$ V_{GE} = +15/-8V 150°C 50 L 20 60 50 30 40 80 $R_{G}(\Omega)$

Figure 38. Typical Switching Time Tf vs. IC

Figure 39. Typical Switching Time Tf vs. R_G

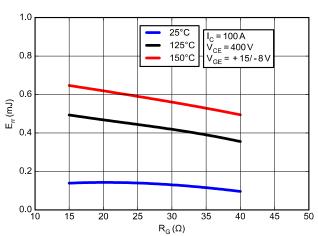
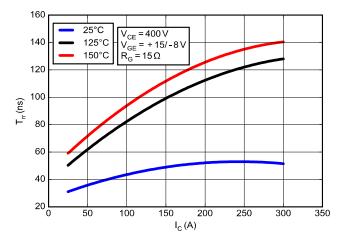



Figure 40. Typical Reverse Recovery Energy vs. IC

Figure 41. Typical Reverse Recovery Energy vs. R_G

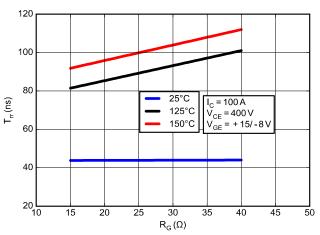


Figure 42. Typical Reverse Recovery Time vs. IC

Figure 43. Typical Reverse Recovery Time vs. $$\rm R_{\rm G}$$

TYPICAL CHARACTERISTICS - T1/T4 IGBT COMUTATES D2/D3 DIODE

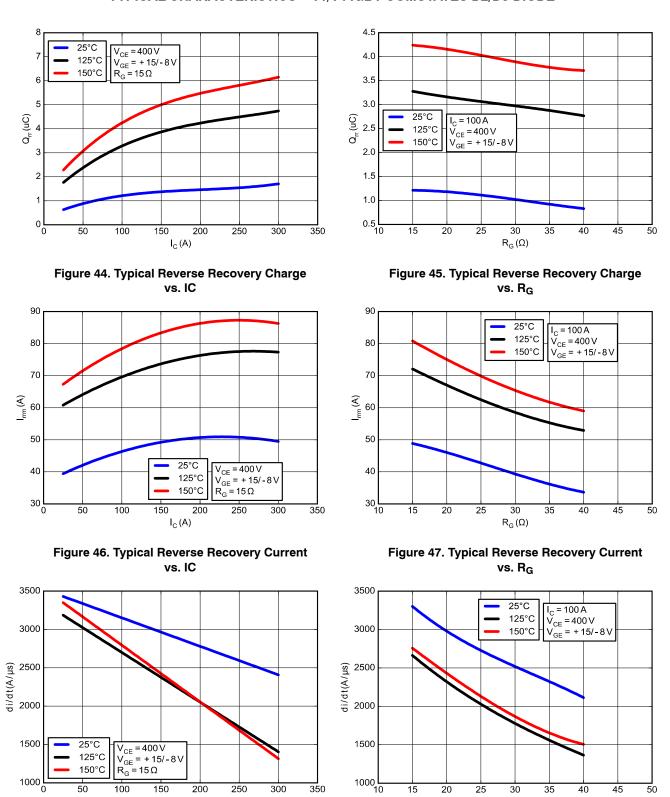
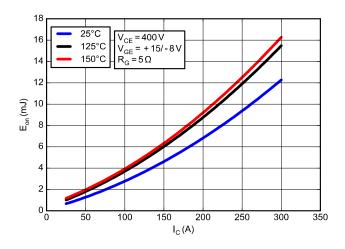
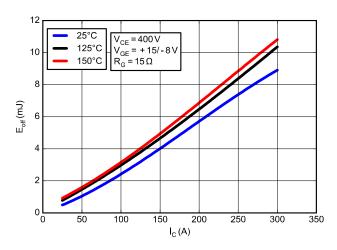



Figure 48. Typical di/dt vs. IC

 $I_{C}(A)$

Figure 49. Typical di/dt vs. R_G


 $R_G(\Omega)$

25°C I_C = 100 A 125°C $V_{CE} = 400 \text{ V}$ 150°C $V_{GE}^{--} = +15/-8V$ 14 12 E_{on} (mJ) 10 8 30 40 10 20 $\mathsf{R}_{\mathsf{G}}\left(\Omega\right)$

Figure 50. Typical Switching Energy Eon vs. IC

Figure 51. Typical Switching Energy Eon vs. $$\rm R_{\rm G}$$

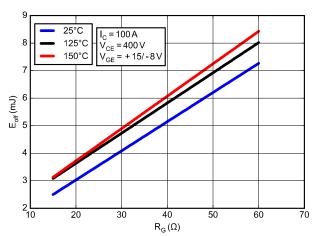
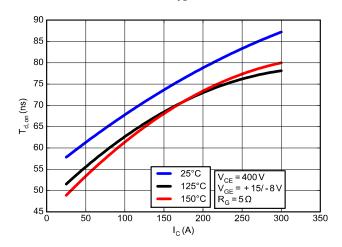



Figure 52. Typical Switching Energy Eoff vs. IC

Figure 53. Typical Switching Energy Eoff vs. $\rm R_{\rm G}$

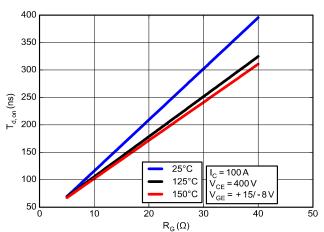


Figure 54. Typical Switching Time Tdon vs. IC

Figure 55. Typical Switching Time Tdon vs. R_G

TYPICAL CHARACTERISTICS - T2/T3 IGBT COMUTATES D1/D4 DIODE

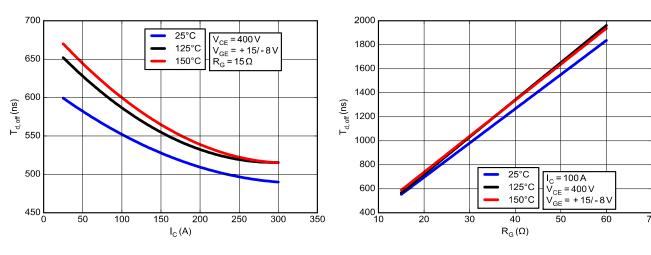


Figure 56. Typical Switching Time Tdoff vs. IC

Figure 57. Typical Switching Time Tdoff vs. R_G

50

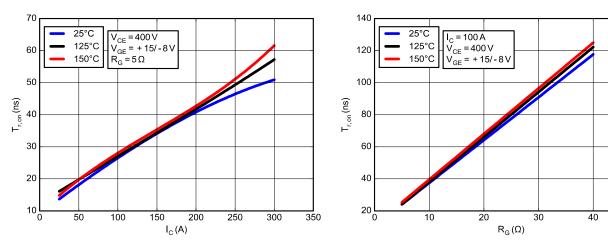


Figure 58. Typical Switching Time Tr vs. IC

70

65

60 55

50

45 40

35

30

25 L

50

100

 $T_{f,\,\text{off}}(ns)$

160 140 120 $T_{f,\,\text{off}}(ns)$ 100 80 25°C I_C = 100 A 60 125°C $V_{CE} = 400 \text{ V}$ 150°C $V_{GE} = +15/-8V$ 40 **∟** 10 30 40 60 $R_G(\Omega)$

 $I_{C}(A)$ Figure 60. Typical Switching Time Tf vs. IC

150

25°C

125°C

150°C

200

 $V_{CE} = 400 V$

 $R_G = 15\Omega$

 $V_{GE} = +15/-8V$

300

Figure 59. Typical Switching Time Tr vs. R_G

Figure 61. Typical Switching Time Tf vs. R_G

TYPICAL CHARACTERISTICS - T2/T3 IGBT COMUTATES D1/D4 DIODE

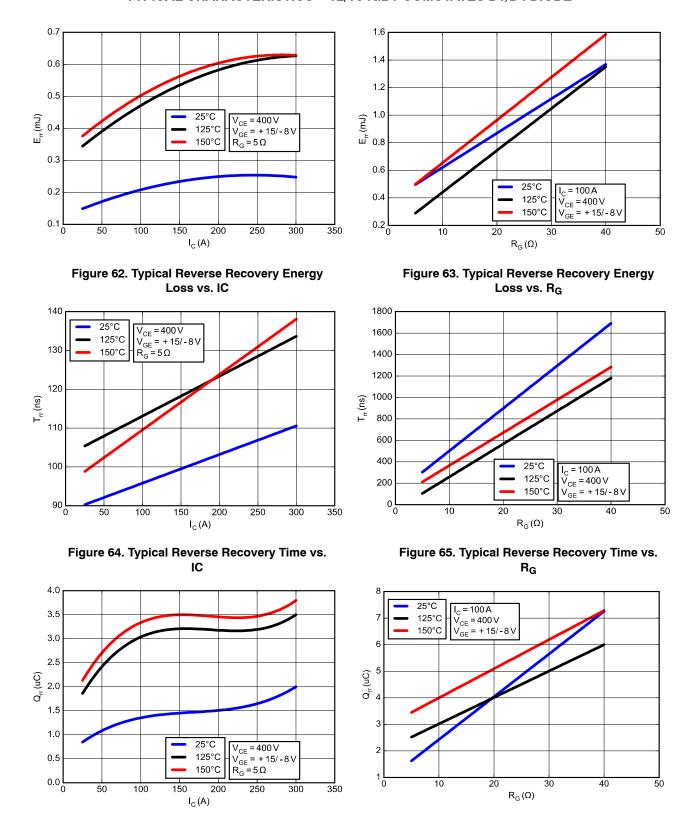
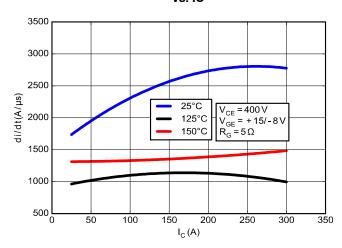



Figure 67. Typical Reverse Recovery Charge vs. $R_{\mbox{\scriptsize G}}$

Figure 66. Typical Reverse Recovery Charge


vs. IC

I_C = 100 A V_{CE} = 400 V 25°C 55 125°C 150°C 50 $V_{GE} = +15/-8V$ 45 € 40 _ ₹ 35 30 25 20 15 L 10 20 30 40 $\mathsf{R}_{\mathsf{G}}\left(\Omega\right)$

Figure 68. Typical Reverse Recovery Current vs. IC

Figure 69. Typical Reverse Recovery Current vs. $R_{\mbox{\scriptsize G}}$

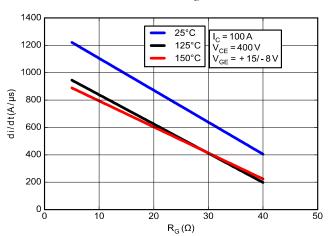
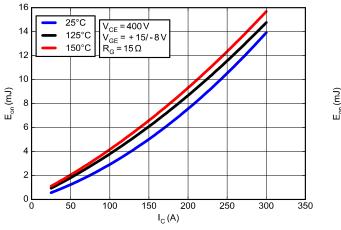
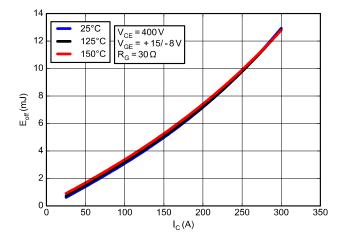



Figure 70. Typical di/dt vs. IC


Figure 71. Typical di/dt vs. R_G

6.5 6.0 5.5 5.0 (m) 4.5 4.0 3.5 25°C 125°C 3.0 $V_{CE} = 400 \text{ V}$ 150°C $V_{GE} = +15/-8V$ 2.5 30 40 15 20 25 $R_G(\Omega)$

Figure 72. Typical Switching Energy Eon vs. IC

Figure 73. Typical Switching Energy Eon vs. 7.0 6.5

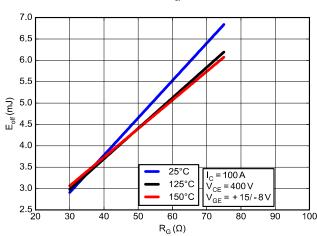
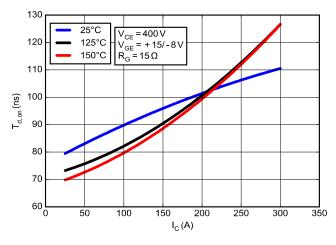



Figure 74. Typical Switching Energy Eoff vs.

Figure 75. Typical Switching Energy Eoff vs.

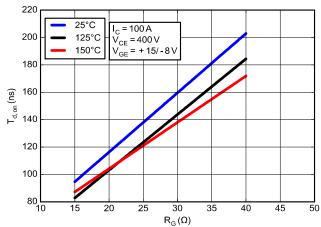


Figure 76. Typical Switching Time Tdon vs. IC

Figure 77. Typical Switching Time Tdon vs. R_G

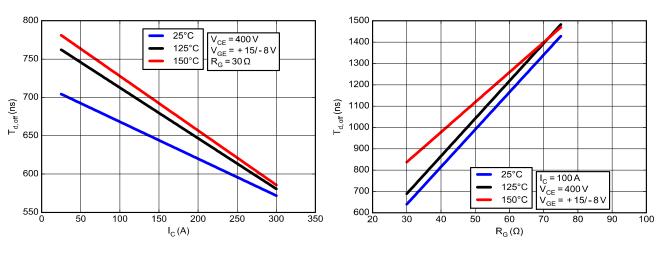


Figure 78. Typical Switching Time Tdoff vs. IC

Figure 79. Typical Switching Time Tdoff vs. R_G

Figure 80. Typical Switching Time Tr vs. IC

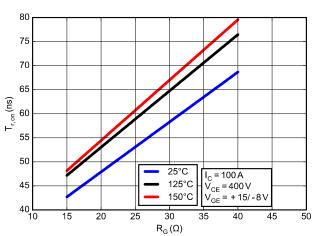


Figure 81. Typical Switching Time Tr vs. R_G

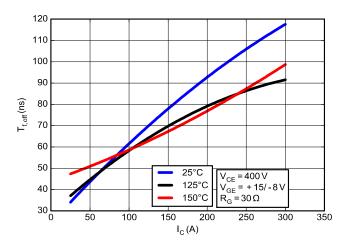
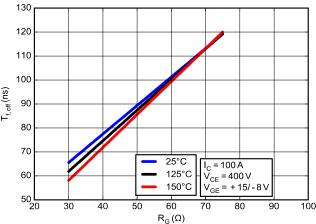
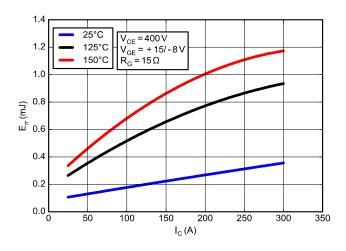
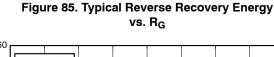
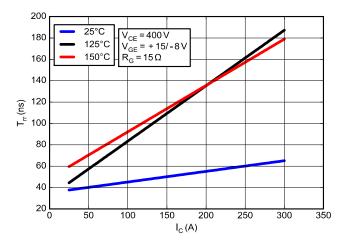


Figure 82. Typical Switching Time Tf vs. IC


Figure 83. Typical Switching Time Tf vs. R_G

8.0 0.7 0.6 0.5 25°C 0.4 E 0.4 I_C = 100 A 125°C $\tilde{V}_{CE} = 400 \text{ V}$ 150°C V_{GE} = +15/-8V 0.3 0.1 0.0 L 10 15 20 25 30 35 40 45 $R_G(\Omega)$

Figure 84. Typical Reverse Recovery Energy vs. IC

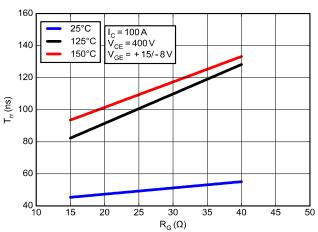
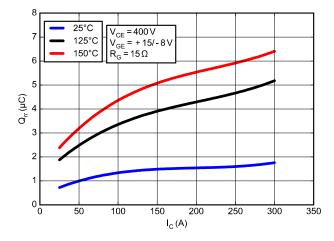



Figure 86. Typical Reverse Recovery Time vs.

Figure 87. Typical Reverse Recovery Time vs. $$\rm R_{\rm G}$$

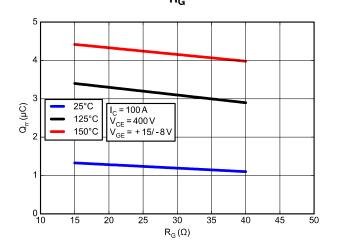
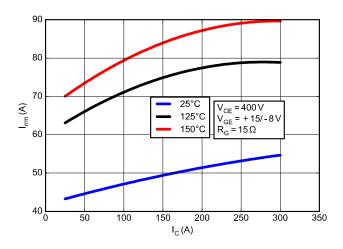
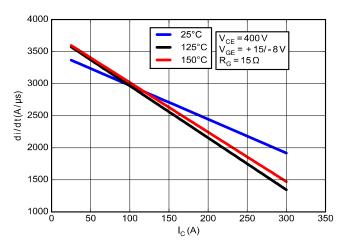



Figure 88. Typical Reverse Recovery Charge vs. IC


Figure 89. Typical Reverse Recovery Charge vs. R_G

90 I_C = 100 A V_{CE} = 400 V 25°C 125°C 80 150°C $V_{GE} = +15/-8V$ 70 € 60 50 40 30 L 10 15 35 45 20 25 30 40 $R_G(\Omega)$

Figure 90. Typical Reverse Recovery Current vs. IC

Figure 91. Typical Reverse Recovery Current vs. $R_{\mbox{\scriptsize G}}$

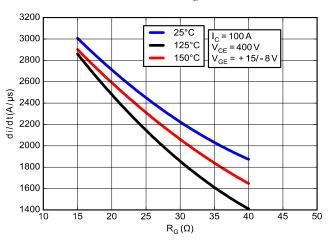
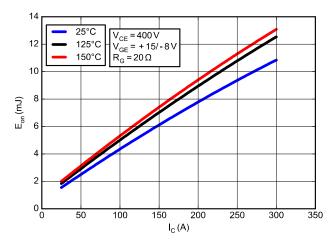



Figure 92. Typical di/dt vs. IC

Figure 93. Typical di/dt vs. R_G

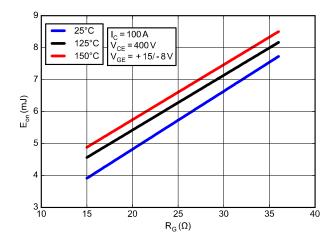
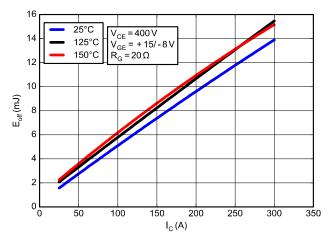



Figure 94. Typical Switching Energy Eon vs. IC

Figure 95. Typical Switching Energy Eon vs.

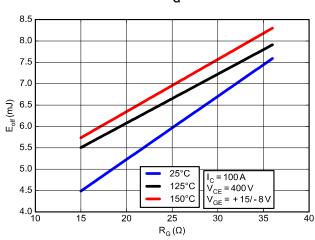
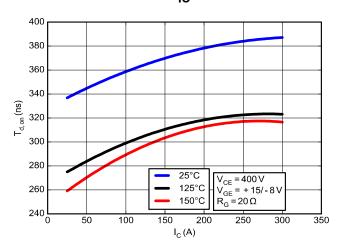



Figure 96. Typical Switching Energy Eoff vs.

Figure 97. Typical Switching Energy Eoff vs. $$\rm R_{\rm G}$$

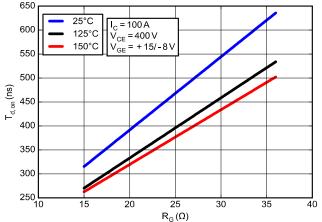


Figure 98. Typical Switching Time Tdon vs. IC

Figure 99. Typical Switching Time Tdon vs. R_G

TYPICAL CHARACTERISTICS - T5/T6 IGBT COMUTATES D1/D4 DIODE

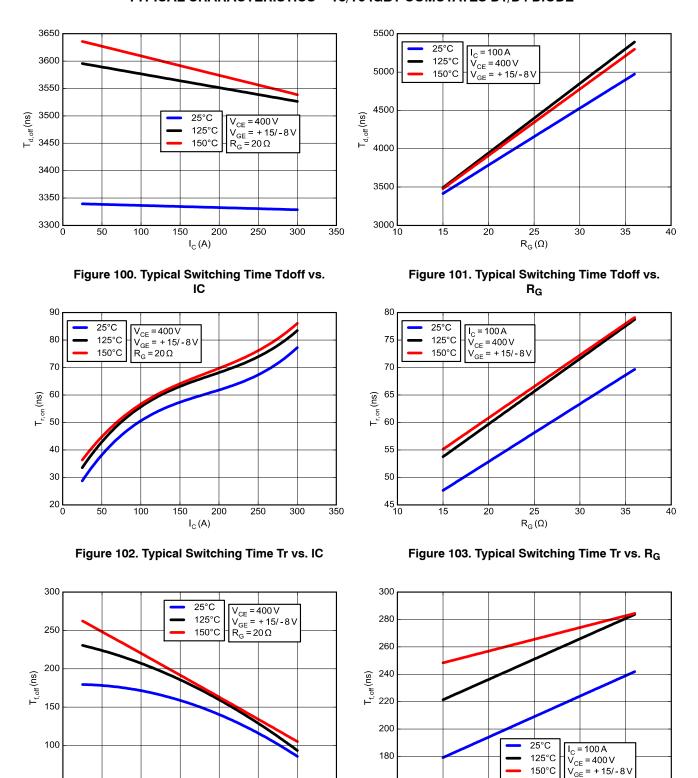


Figure 104. Typical Switching Time Tf vs. IC

 $I_{C}(A)$

150

200

250

300

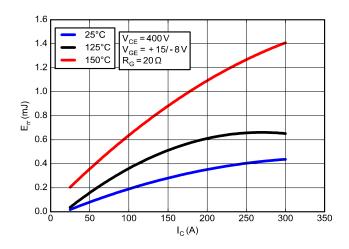
100

50

50 L

Figure 105. Typical Switching Time Tf vs. R_G

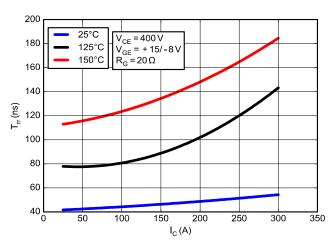
25


 $R_G(\Omega)$

35

160 L 10

15


20

1.0 25°C I_C = 100 A V_{CE} = 400 V 125°C 8.0 150°C $V_{GE} = +15/-8V$ 0.6 0.4 0.2 0.0 L 10 15 20 30 25 35 $R_G(\Omega)$

Figure 106. Typical Reverse Recovery Energy vs. IC

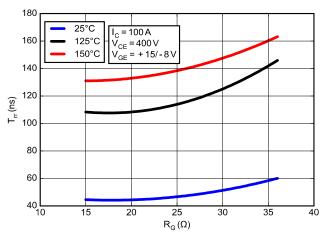
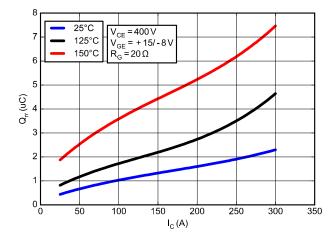



Figure 108. Typical Reverse Recovery Time vs.

Figure 109. Typical Reverse Recovery Energy vs. R_G

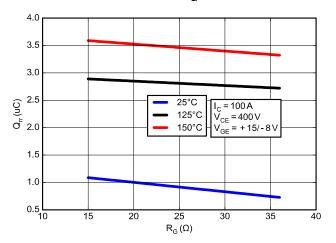
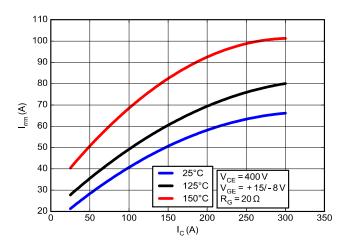



Figure 110. Typical Reverse Recovery Charge vs. IC

Figure 111. Typical Reverse Recovery Charge vs. R_G

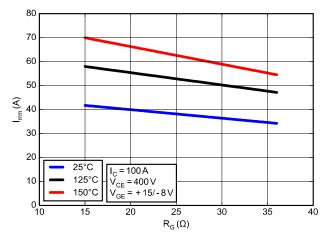
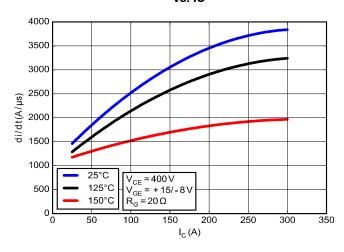



Figure 112. Typical Reverse Recovery Current vs. IC

Figure 113. Typical Reverse Recovery Current vs. R_G

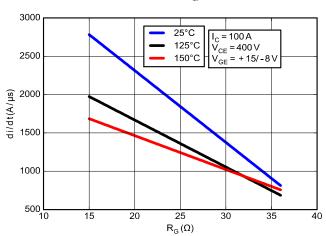
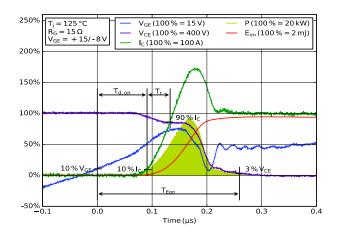



Figure 114. Typical di/dt vs. IC

Figure 115. Typical di/dt vs. R_G

TYPICAL SWITCHING DEFINITION - T1/T4 IGBT COMUTATES D2/D3 DIODE

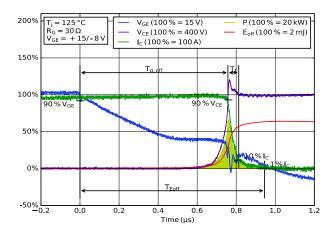


Figure 116. Turn-On Switching Definition Waveform

Figure 117. Turn-Off Switching Definition Waveform

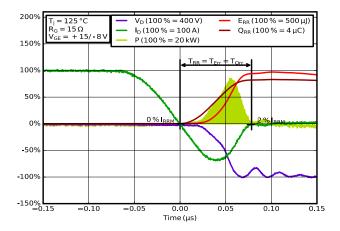
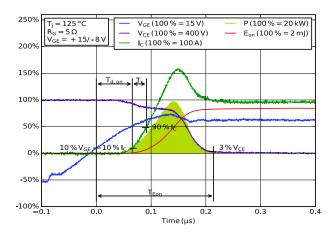



Figure 118. Reverse Recovery Switching Definition Waveform

TYPICAL SWITCHING DEFINITION - T2/T3 IGBT COMUTATES D1/D4 DIODE

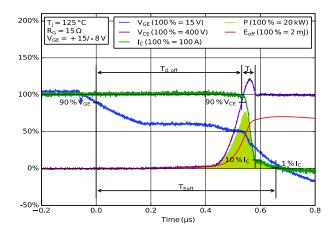


Figure 119. Turn-On Switching Definition Waveform

Figure 120. Turn-Off Switching Definition
Waveform

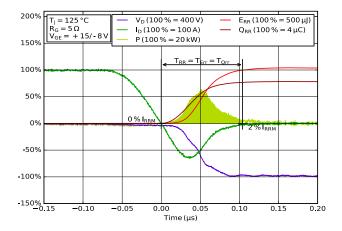
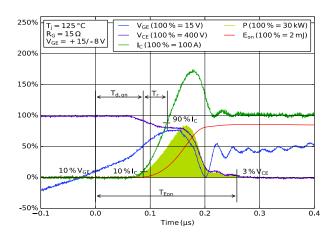



Figure 121. Reverse Recovery Switching Definition Waveform

TYPICAL SWITCHING DEFINITION - T1/T4 IGBT COMUTATES D5/D6 DIODE

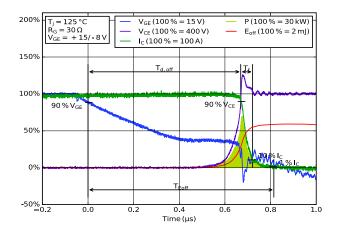


Figure 122. Turn-On Switching Definition Waveform

Figure 123. Turn-Off Switching Definition
Waveform

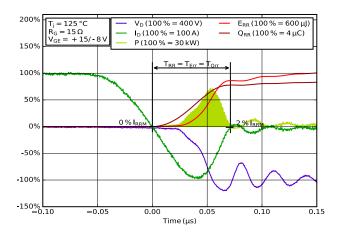
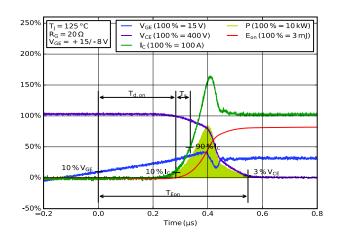



Figure 124. Reverse Recovery Switching Definition Waveform

TYPICAL SWITCHING DEFINITION - T5/T6 IGBT COMUTATES D1/D4 DIODE

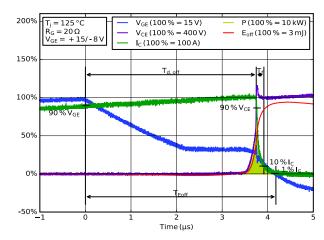


Figure 125. Turn-On Switching Definition Waveform

Figure 126. Turn-Off Switching Definition Waveform

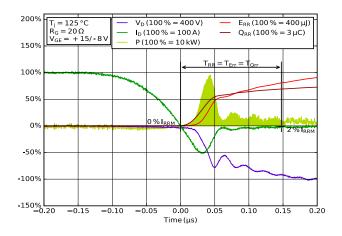
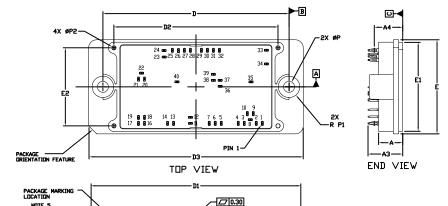
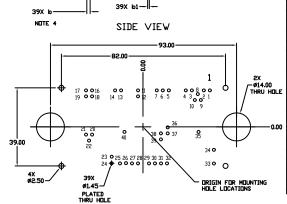



Figure 127. Reverse Recovery Switching Definition Waveform


PACKAGE DIMENSIONS

PIM40, 93x47 (PRESS FIT)

CASE 180AG ISSUE D

	MI	LLIMETE	RS	
DIM	MIN.	NDM.	MAX.	
Α	11.60	12.00	12.40	
A1	4.40	4.70	5.00	
A2	16.30	16.70	17.10	
АЗ	16.90	17.30	17.70	
A4	13.97	14.18	14.39	
b	1.61	1.66	1.71	
b1	0.75	0.80	0.85	
D	92.90	93.00	93.10	
D1	104.45	104.75	105.05	
D2	81.80	82.00	82.20	
DЗ	106.90	107.20	107.50	
E	46.70	47.00	47.30	
E1	44.10	44.40	44.70	
E2	38.80	39.00	39.20	
Р	5.40	5.50	5.60	
P1	5.15	5.35	5.55	
P2	2.00	2.20	2.40	

Į

NOTE 4											
	PIN P	NDITIZE		PIN PI	PIN POSITION MOUNTING HOLE POSITION			MOUNTIN	IG HOLE P	NOITIZO	
PIN	х	Υ	PIN	х	Y	PIN	X	Y	PIN	X	Y
1	33.15	-18.25	22	-27.20	6.85	1	33.15	18.25	55	-27.20	-6.85
2	30.15	-18.25	23	-15.85	14.90	2	30.15	18.25	23	-15.85	-14.90
3	24.15	-18.25	24	-15.85	18.25	3	24.15	18.25	24	-15.85	-18.25
4	21.15	-18.25	25	-11.75	18.25	4	21.15	18.25	25	-11.75	-18.25
5	12.65	-18.25	26	-8.75	18.25	5	12.65	18.25	26	-8.75	-18.25
6	9.65	-18.25	27	-5.75	18.25	6	9.65	18.25	27	-5.75	-18.25
7	6.65	-18.25	28	-2.75	18.25	7	6.65	18.25	28	-2.75	-18.25
8	27.15	-16.40	29	2.75	18.25	8	27.15	16.40	29	2.75	-18.25
9	28.65	-13.40	30	5.75	18.25	9	28.65	13.40	30	5.75	-18.25
10	25.65	-13.40	31	8.75	18.25	10	25.65	13.40	31	8.75	-18.25
11	-2.75	-18.25	32	11.75	18.25	11	-2.75	18.25	32	11.75	-18.25
12	-2.75	-15.25	33	35.20	18.30	12	-2.75	15.25	33	35.20	-18.30
13	-11.20	-18.25	34	35.20	11.45	13	-11.20	18.25	34	35.20	-11.45
14	-14.20	-18.25	35	27.50	2.50	14	-14.20	18.25	35	27.50	-2.50
16	-25.70	-18.25	36	12.10	0.25	16	-25.70	18.25	36	12.10	-0.25
17	-28.70	-18.25	37	12.10	3.25	17	-28.70	18.25	37	12.10	-3.25
18	-25.70	-15.25	38	8.70	3.25	18	-25.70	15.25	38	8.70	-3.25
19	-28.70	-15.25	39	8.70	6.25	19	-28.70	15.25	39	8.70	-6.25
20	-25.70	3.85	40	-9.50	2.50	20	-25.70	-3.85	40	-9.50	-2.50
21	-28.70	3.85	TOLE	RANCE +	/- 0.40	21	-28.70	-3.85			

RECOMMENDED MOUNTING PATTERN

NOTES

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
- 2. CONTROLLING DIMENSION: MILLIMETERS
- 3. DIMENSIONS 6 AND 61 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A4.
- 4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION.
- 5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.
- 6. PIN IDENTIFIER 15 IS SKIPPED. TOTAL NUMBER OF PINS IS 39.

ON Semiconductor and ware trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold O

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada

Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

♦ SNXH100M65L3Q2F2/D