

Q2BOOST Module

Advance Information

SNXH225B95H4Q2F2PG

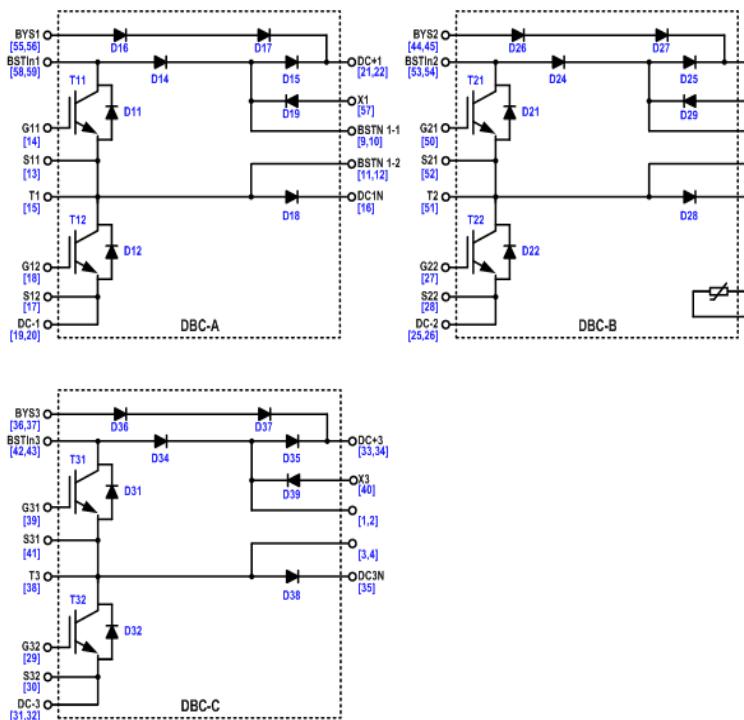
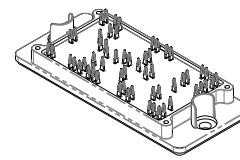
This high-density, integrated power module combines high-performance IGBTs with rugged anti-parallel diodes.

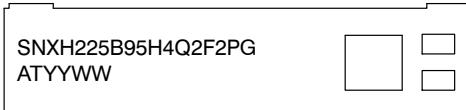
Features

- Extremely Efficient Trench with Field Stop Technology
- Low Switching Loss Reduces System Power Dissipation
- Module Design Offers High Power Density
- Low Inductive Layout
- Q2BOOST Package with Press-Fit Pins
- 1200 V SiC Diode

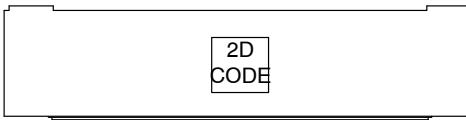
Typical Applications

- Solar Inverters
- UPS Systems

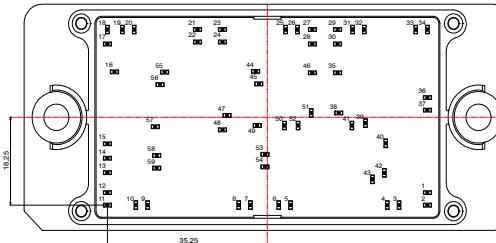

Figure 1. Schematic of Q2BOOST

This document contains information on a new product. Specifications and information herein are subject to change without notice.



Q2BOOST MODULE
CASE 180AV

MARKING DIAGRAM


FRONTSIDE MARKING

BACKSIDE MARKING

G = Pb-Free Package
 AT = Assembly & Test Site Code
 YYWW = Year and Work Week Code

PIN CONNECTIONS

ORDERING INFORMATION

Device	Package	Shipping [†]
SNXH225B95H4Q2F2PG	Q2BOOST (Pb-Free)	12 Units / Blister Tray

SNXH225B95H4Q2F2PG

ABSOLUTE MAXIMUM RATINGS

Rating	Symbol	Value	Unit
IGBT (T11, T21, T31, T12, T22, T32)			
Collector-emitter Voltage	V_{CES}	950	V
Collector Current @ $T_h = 80^\circ\text{C}$	I_C	65	A
Pulsed Collector Current, $T_{pulse} = 1 \text{ ms}$	I_{CM}	195	A
Power Dissipation per IGBT $T_J = T_{Jmax}, T_h = 80^\circ\text{C}$	P_{tot}	136	W
Gate-emitter Voltage Positive transient gate-emitter voltage ($T_{pulse} = 5 \mu\text{s}, D < 0.10$)	V_{GE}	± 20 30	V
Maximum Junction Temperature	T_J	150	$^\circ\text{C}$

IGBT INVERSE DIODE (D11, D12, D21, D22, D31, D32)

Peak Repetitive Reverse Voltage	V_{RRM}	1600	V
Forward Current, DC @ $T_h = 80^\circ\text{C}$	I_F	53	A
Repetitive Peak Forward Current, $T_{pulse} = 1 \text{ ms}$	I_{FSM}	450	A
Power Dissipation per Diode $T_J = T_{Jmax}, T_h = 80^\circ\text{C}$	P_{tot}	67	W
Maximum Junction Temperature	T_J	150	$^\circ\text{C}$

DIODE (D16 + D17, D26 + D27, D36 + D37)

Peak Repetitive Reverse Voltage	V_{RRM}	2000	V
Forward Current, DC @ $T_h = 80^\circ\text{C}$	I_F	49	A
Nonrepetitive Peak Surge Current, $T_p = 8.3 \text{ ms}, T_J = 25^\circ\text{C}$	I_{FSM}	480	A
Power Dissipation per Diode $T_J = T_{Jmax}, T_h = 80^\circ\text{C}$	P_{tot}	134	W
Maximum Junction Temperature	T_J	150	$^\circ\text{C}$

SILICON CARBIDE SCHOTTKY DIODE (D14, D15, D24, D25, D34, D45)

Peak Repetitive Reverse Voltage	V_{RRM}	1200	V
Forward Current, DC @ $T_h = 80^\circ\text{C}$	I_F	42	A
Repetitive Peak Forward Current, $T_{pulse} = 1 \text{ ms}$	I_{FRM}	126	A
Power Dissipation per Diode $T_J = T_{Jmax}, T_h = 80^\circ\text{C}$	P_{tot}	133.5	W
Maximum Junction Temperature	T_J	175	$^\circ\text{C}$

DIODE (D18, D19, D28, D29, D38, D39)

Peak Repetitive Reverse Voltage	V_{RRM}	1200	V
Forward Current, DC @ $T_h = 80^\circ\text{C}$	I_F	21	A
Repetitive Peak Forward Current, $T_{pulse} = 1 \text{ ms}$	I_{FRM}	63	A
Power Dissipation per Diode $T_J = T_{Jmax}, T_h = 80^\circ\text{C}$	P_{tot}	52	W
Maximum Junction Temperature	T_J	150	$^\circ\text{C}$

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

THERMAL PROPERTIES

Parameter	Symbol	Value	Unit
Operating Temperature under Switching Condition	$T_{VJ OP}$	-40 to $(T_{Jmax} - 25)$	$^\circ\text{C}$
Storage Temperature Range	T_{stg}	-40 to +125	$^\circ\text{C}$

SNXH225B95H4Q2F2PG

INSULATION PROPERTIES

Parameter	Symbol	Value	Unit
Isolation Test Voltage, $t = 1$ s, 50/60 Hz	V_{is}	3400	V_{RMS}
Creepage Distance		12.7	mm
Comparative tracking index	CTI	> 600	

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise noted)

Characteristic	Test Conditions	Symbol	Min	Typ	Max	Unit
IGBT (T11, T12, T21, T22, T31, T32)						
Collector-emitter Breakdown Voltage	$V_{GE} = 0$ V, $I_C = 1$ mA	$V_{(BR)CES}$	950	—	—	V
Collector-emitter Saturation Voltage	$V_{GE} = 15$ V, $I_C = 75$ A, $T_J = 25^\circ\text{C}$ $V_{GE} = 15$ V, $I_C = 75$ A, $T_J = 150^\circ\text{C}$	$V_{CE(\text{sat})}$	— —	1.80 2.10	2.3	V
Gate-emitter Threshold Voltage	$V_{GE} = V_{CE}$, $I_C = 75$ mA	$V_{GE(\text{TH})}$	4.1	4.65	5.7	V
Collector-emitter Cutoff Current	$V_{GE} = 0$ V, $V_{CE} = 950$ V	I_{CES}	—	—	300	μA
Gate Leakage Current	$V_{GE} = 20$ V, $V_{CE} = 0$ V	I_{GES}	—	—	400	nA
Turn-on Delay Time	$T_J = 25^\circ\text{C}$ $V_{CE} = 600$ V, $I_C = 35$ A $V_{GE} = +15$ V, -8 V; $R_G = 11 \Omega$	$t_{d(\text{on})}$	—	60	—	ns
Rise Time		t_r	—	13.6	—	
Turn-off Delay Time		$t_{d(\text{off})}$	—	208	—	
Fall Time		t_f	—	36	—	
Turn On Switching Loss		E_{on}	—	0.43	—	mJ
Turn Off Switching Loss		E_{off}	—	0.81	—	
Turn-on Delay Time	$T_J = 125^\circ\text{C}$ $V_{CE} = 600$ V, $I_C = 35$ A $V_{GE} = +15$ V, -8 V; $R_G = 11 \Omega$	$t_{d(\text{on})}$	—	56	—	ns
Rise Time		t_r	—	15.2	—	
Turn-off Delay Time		$t_{d(\text{off})}$	—	252.8	—	
Fall Time		t_f	—	40.8	—	
Turn On Switching Loss		E_{on}	—	0.51	—	mJ
Turn Off Switching Loss		E_{off}	—	1.08	—	
Input Capacitance	$V_{CE} = 20$ V, $V_{GE} = 0$ V, $f = 10$ kHz	C_{ies}	—	4773	—	pF
Output Capacitance		C_{oes}	—	121	—	
Reverse Transfer Capacitance		C_{res}	—	27	—	
Gate Charge Total	$V_{CE} = 600$ V, $I_C = 20$ A, $V_{GE} = 15$ V	Q_g	—	143	—	nC
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil $\pm 2\%$, $\lambda = 2.9$ W/mK	R_{thJH}	—	0.706	Ω	$^\circ\text{C/W}$

IGBT INVERSE DIODE (D11, D12, D21, D22, D31, D32)

Forward Voltage	$I_F = 30$ A, $T_J = 25^\circ\text{C}$ $I_F = 30$ A, $T_J = 150^\circ\text{C}$	V_F	— —	1.0 0.93	1.5 —	V
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil $\pm 2\%$, $\lambda = 2.9$ W/mK	R_{thJH}	Ω	1.038	Ω	$^\circ\text{C/W}$

DIODE (D16+D17, D26+D27, D36+D37)

Forward Voltage	$I_F = 45$ A, $T_J = 25^\circ\text{C}$ $I_F = 45$ A, $T_J = 150^\circ\text{C}$	V_F	— —	2.27 2.17	2.75 —	V
Reverse Leakage Current	$V_R = 2000$ V	I_r	—	—	100	μA
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil $\pm 2\%$, $\lambda = 2.9$ $\Omega/\mu\text{K}$	R_{thJH}	—	0.523	—	$^\circ\text{C/W}$

SNXH225B95H4Q2F2PG

ELECTRICAL CHARACTERISTICS ($T_J = 25^\circ\text{C}$ unless otherwise noted) (continued)

Characteristic	Test Conditions	Symbol	Min	Typ	Max	Unit
----------------	-----------------	--------	-----	-----	-----	------

SIC DIODE (D14, D15, D24, D25, D34, D35)

Forward Voltage	$I_F = 30 \text{ A}, T_J = 25^\circ\text{C}$ $I_F = 30 \text{ A}, T_J = 150^\circ\text{C}$	V_F	—	1.52 2.10	1.70 —	V
Reverse Leakage Current	$V_R = 1200 \text{ V}$	I_r	—	—	600	μA
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil $\pm 2\%$, $\lambda = 2.9 \text{ W/mK}$	R_{thJH}	—	1.070	—	$^\circ\text{C/W}$

DIODE (D18, D19, D28, D29, D38, D39)

Forward Voltage	$I_F = 30 \text{ A}, T_J = 25^\circ\text{C}$ $I_F = 30 \text{ A}, T_J = 150^\circ\text{C}$	V_F	— —	2.50 2.25	3.0 —	V
Reverse Leakage Current	$V_R = 1200 \text{ V}$	I_r	—	—	600	μA
Thermal Resistance – Chip-to-Heatsink	Thermal grease, Thickness = 2.1 Mil $\pm 2\%$, $\lambda = 2.9 \text{ W/mK}$	R_{thJH}	—	1.347	—	$^\circ\text{C/W}$

THERMISTOR CHARACTERISTICS

Nominal Resistance	$T = 25^\circ\text{C}$	R25	—	22	—	k Ω
Nominal Resistance	$T = 100^\circ\text{C}$	R100	—	1468	—	Ω
Deviation of R100		DR/R	—5	—	5	%
Power Dissipation		P_D	—	200	—	mW
Power Dissipation Constant			—	2	—	mW/ $^\circ\text{C}$
B-value	B(25/50), tol $\pm 3\%$		—	—	3950	$^\circ\text{C}$
B-value	B(25/100), tol $\pm 3\%$		—	—	3998	$^\circ\text{C}$
NTC Reference			—	—	B	

Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

TYPICAL CHARACTERISTICS (T11/D11, T12/D12, T21/D21, T22/D22, T31/D31, T32/D32)

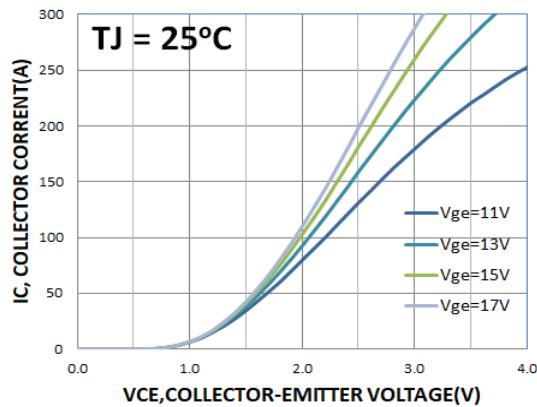


Figure 2. Typical Output Characteristics

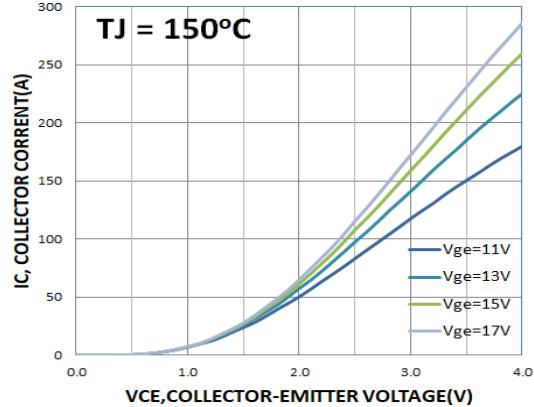


Figure 3. Typical Output Characteristics

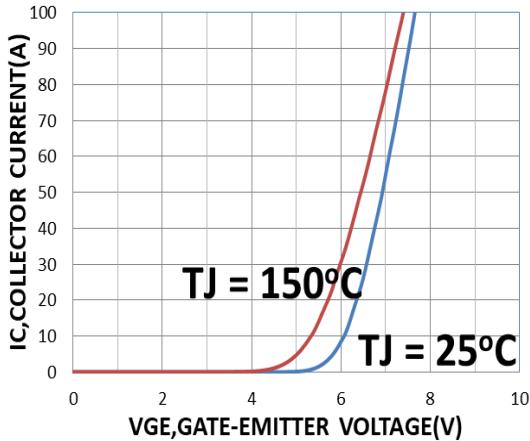


Figure 4. Typical Transfer Characteristics

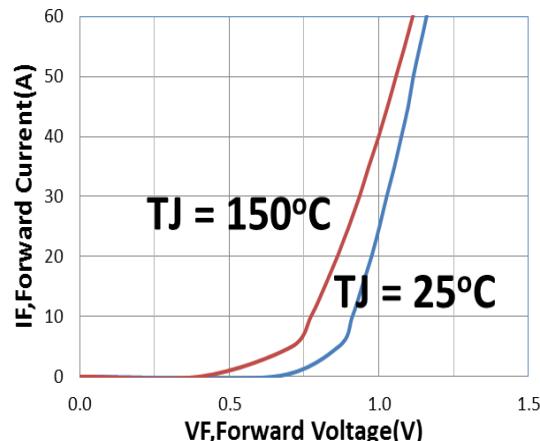


Figure 5. Diode Forward Characteristics

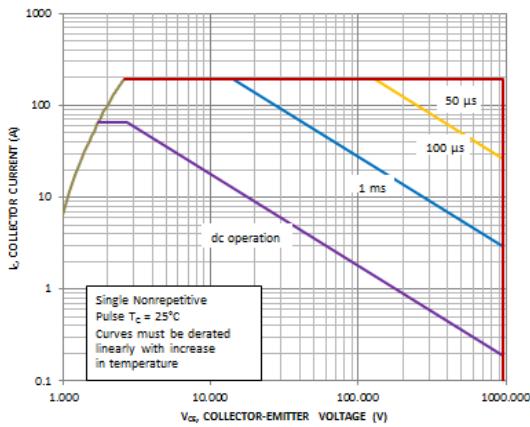
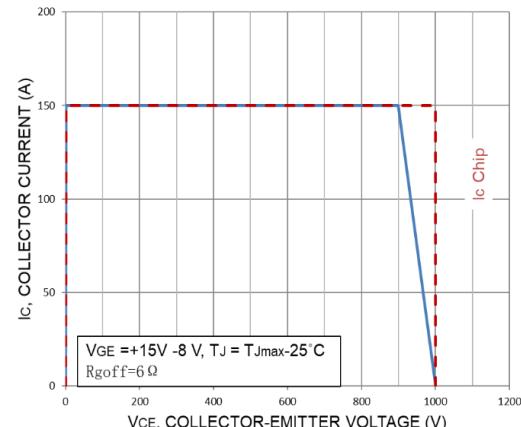
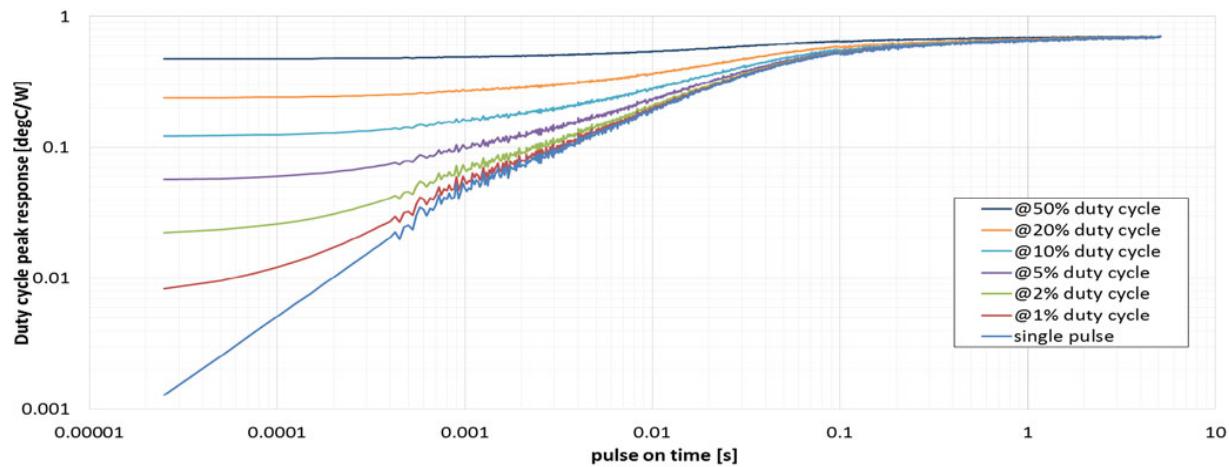
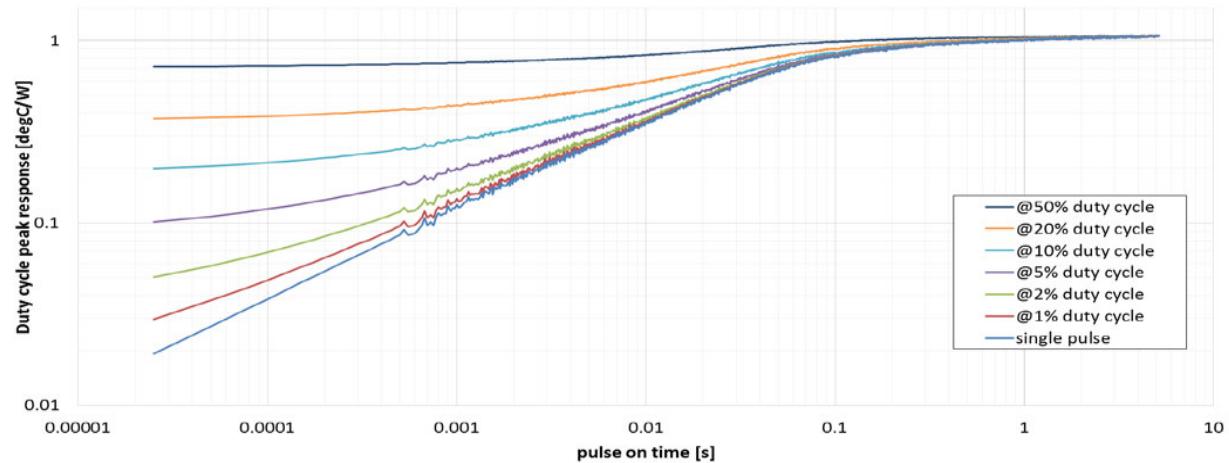
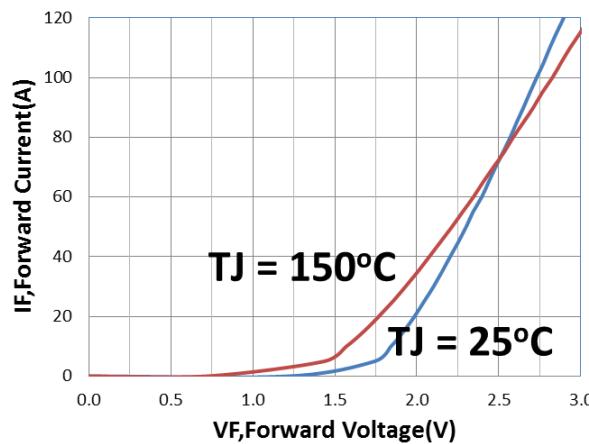
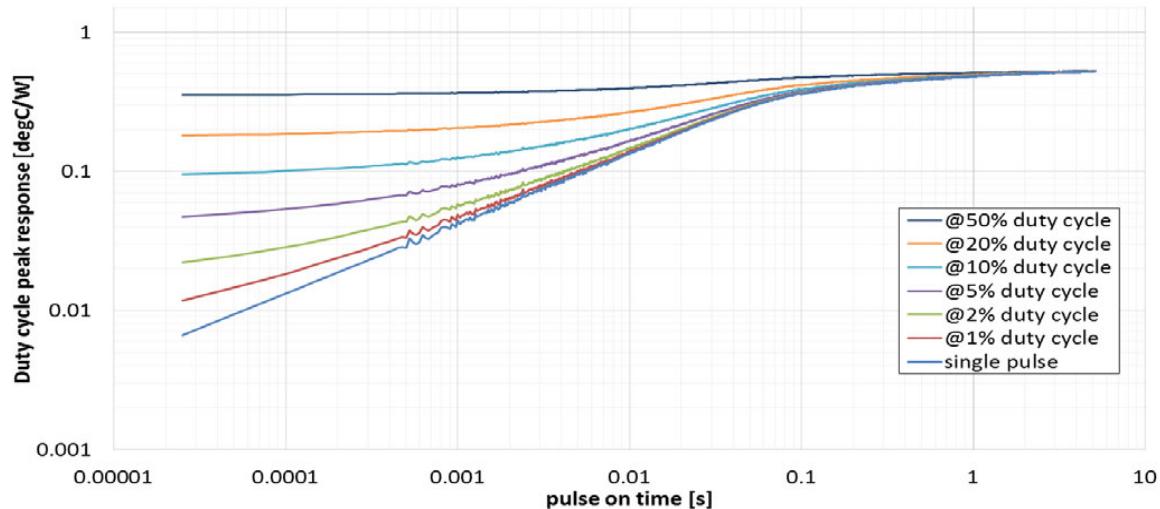


Figure 6. FBSOA


Figure 7. RBSOA

TYPICAL CHARACTERISTICS (CONTINUED)
(T11/D11, T12/D12, T21/D21, T22/D22, T31/D31, T32/D32)**Figure 8. Transient Thermal Impedance (T11, T12, T21, T22, T31, T32)****Figure 9. Transient Thermal Impedance (D11, D12, D21, D22, D31, D32)**

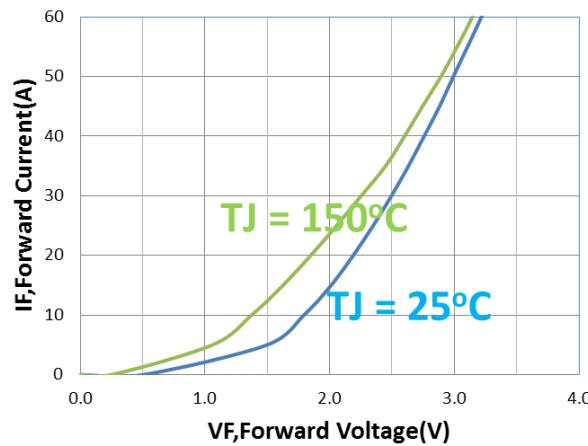
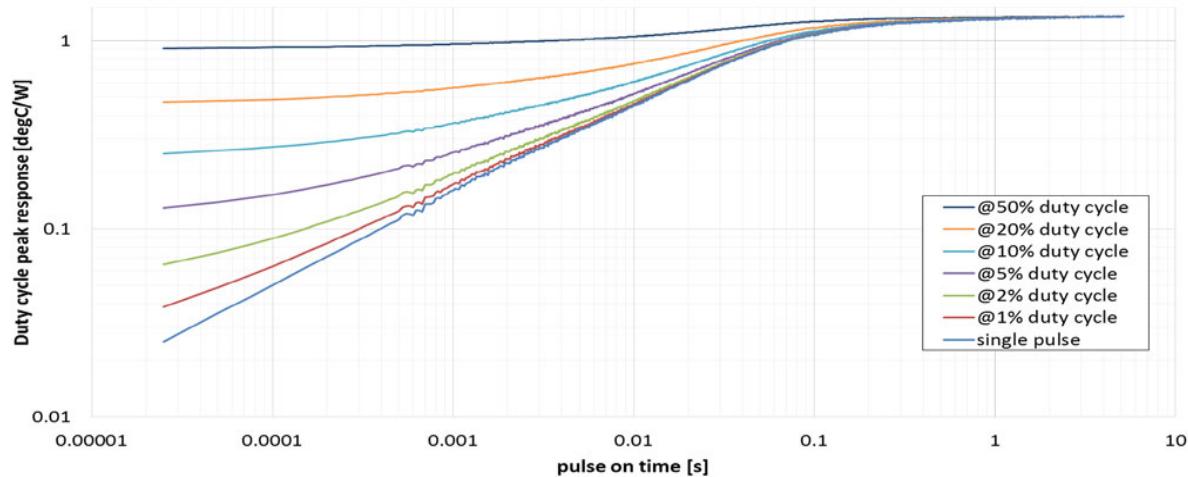


TYPICAL CHARACTERISTICS
(D16 + D17, D26 + D27, D36 + D37)

Figure 10. Diode Forward Characteristics

Figure 11. Transient Thermal Impedance

TYPICAL CHARACTERISTICS
(D18, D19, D28, D29, D38, D39)**Figure 12. Diode Forward Characteristics****Figure 13. Transient Thermal Impedance**

SNXH225B95H4Q2F2PG

TYPICAL CHARACTERISTICS (D14, D15, D24, D25, D34, D35)

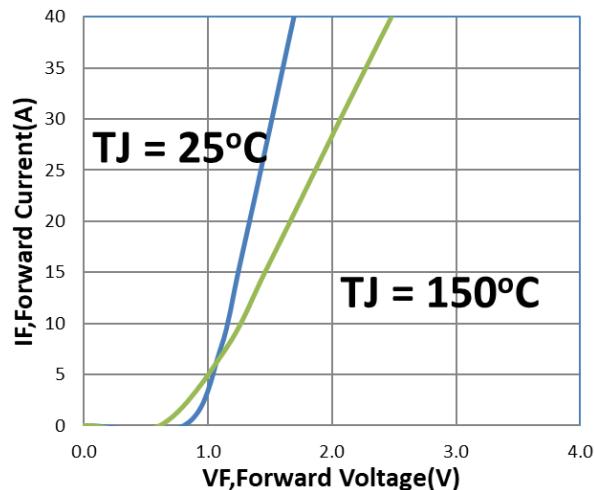


Figure 14. Diode Forward Characteristics

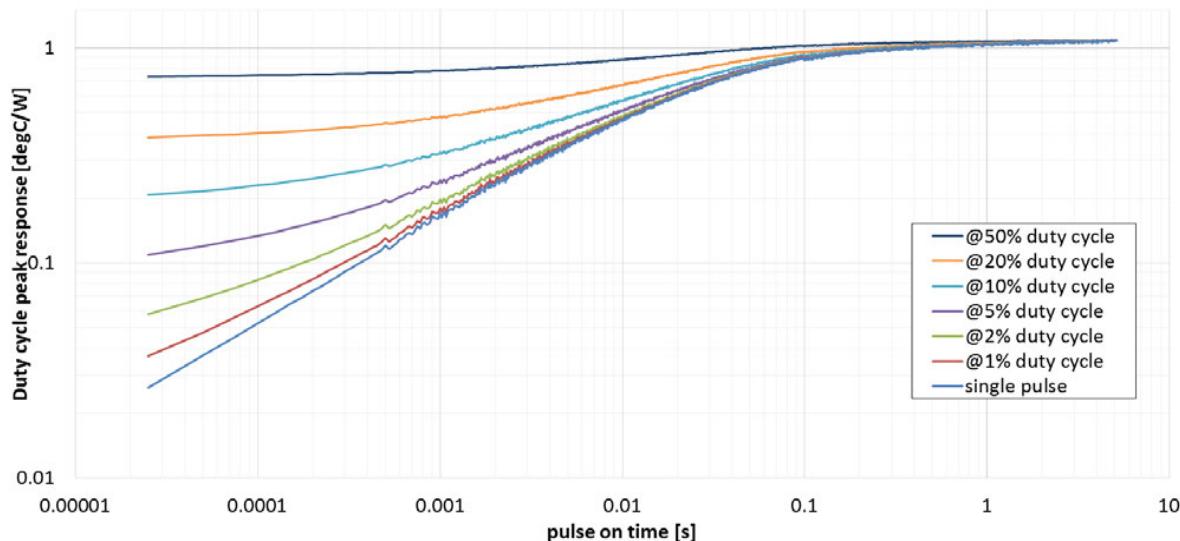
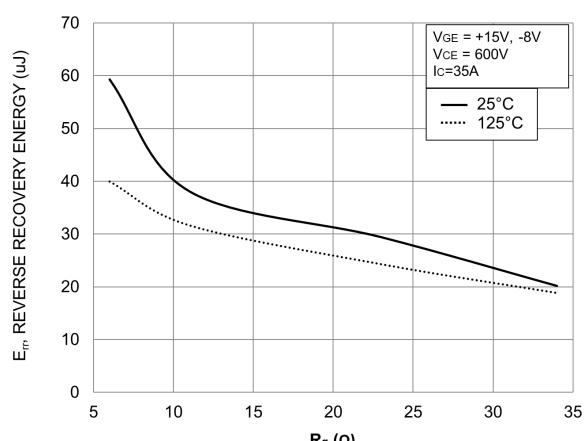
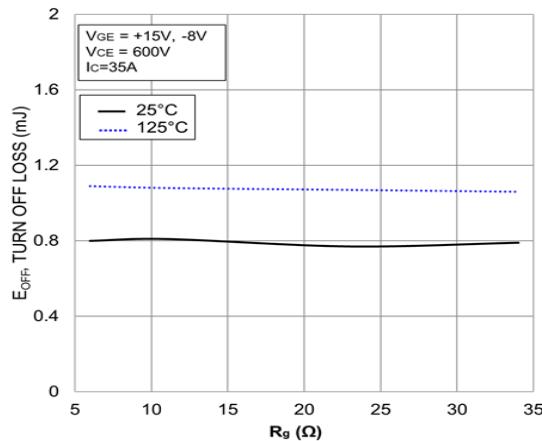
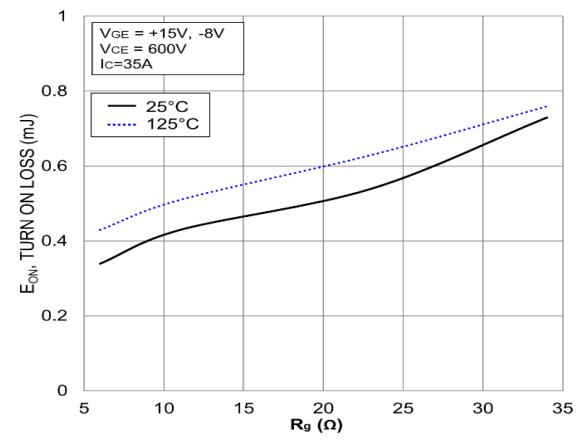
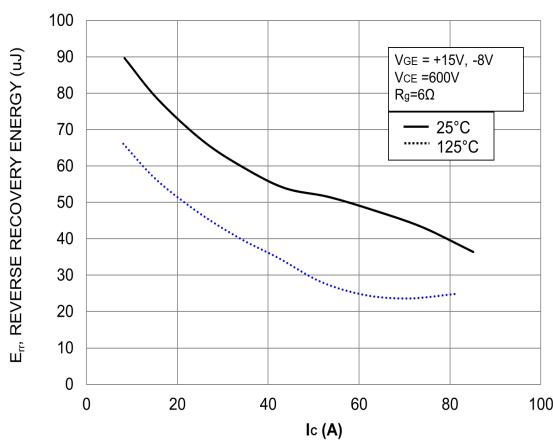
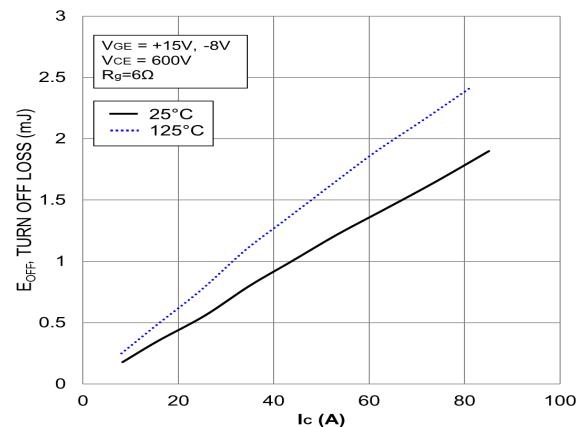
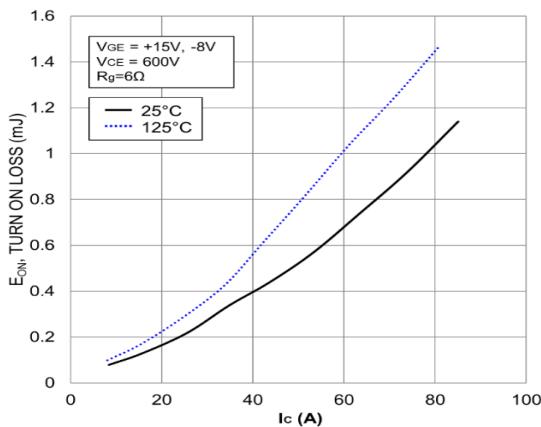








Figure 15. Transient Thermal Impedance

TYPICAL SWITCHING CHARACTERISTICS T11 & T12 IGBT COMUTATES D14 DIODE

SNXH225B95H4Q2F2PG

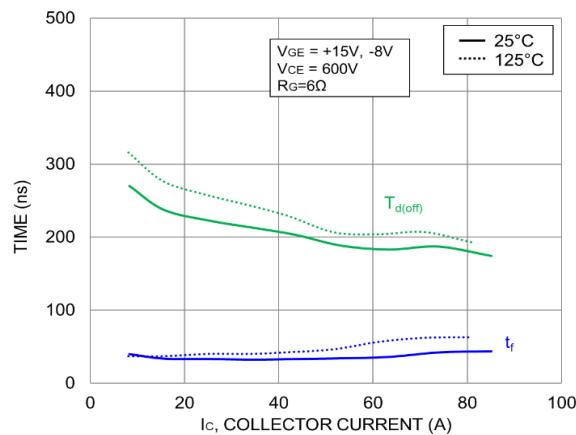


Figure 22. Typical Turn-Off Switching Time vs. IC

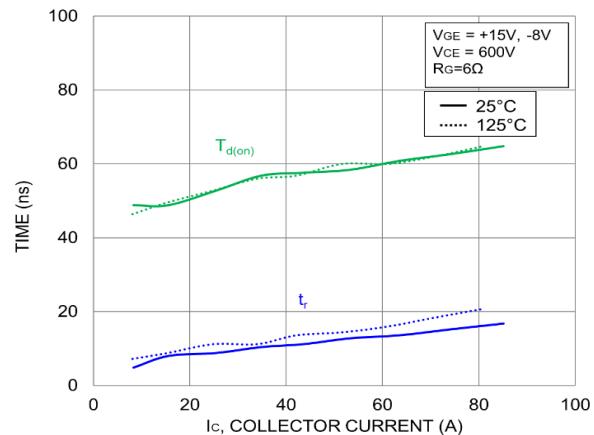


Figure 23. Typical Turn-On Switching Time vs. IC

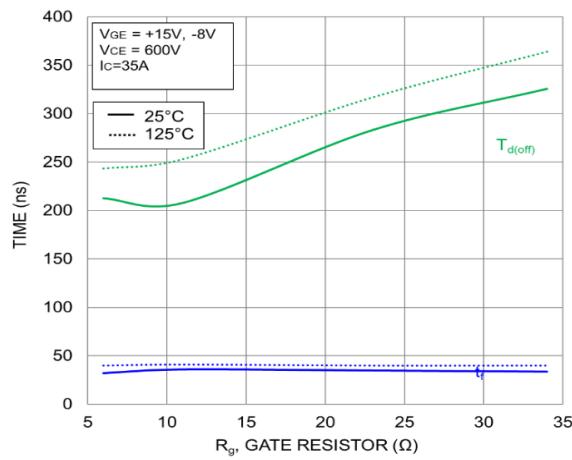


Figure 24. Typical Turn-Off Switching Time vs. RG

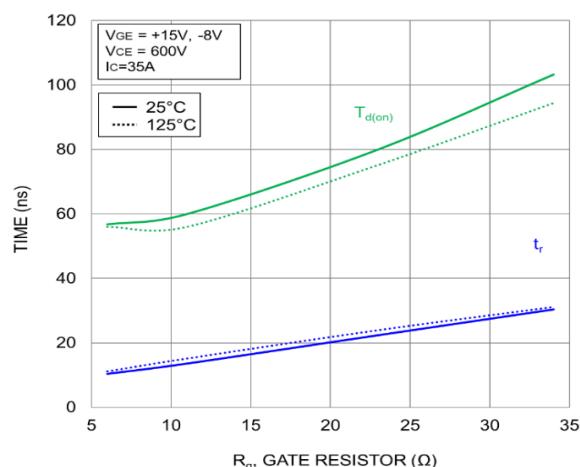


Figure 25. Typical Turn-On Switching Time vs. RG

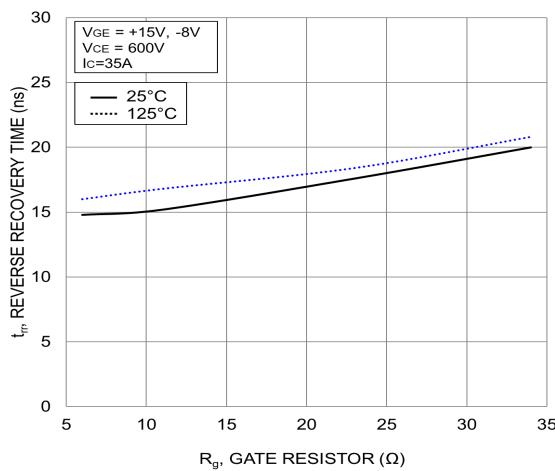


Figure 26. Typical Reverse Recovery Time vs. RG

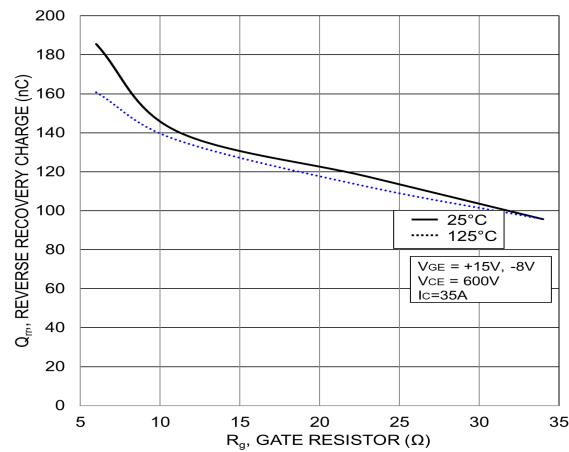
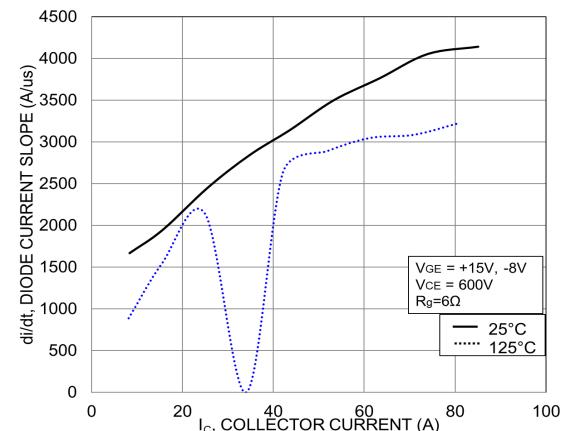
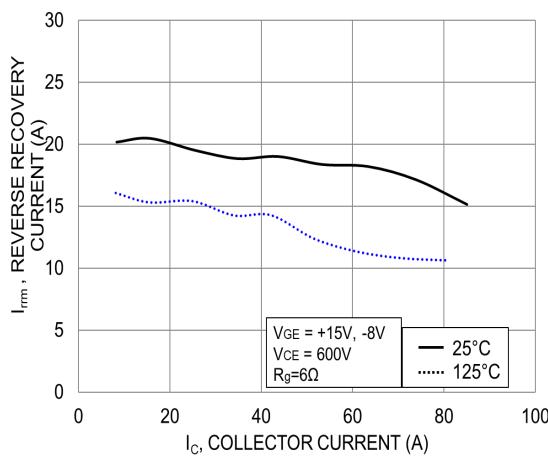
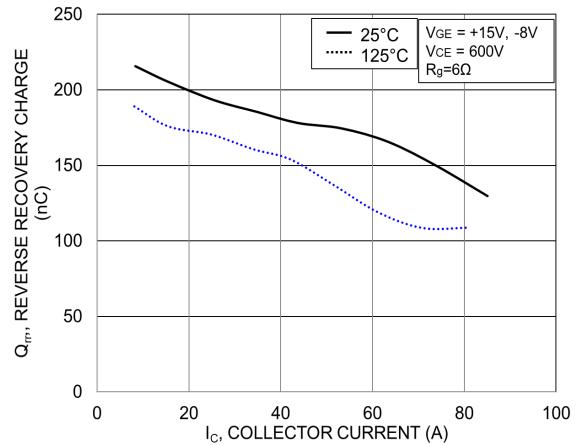
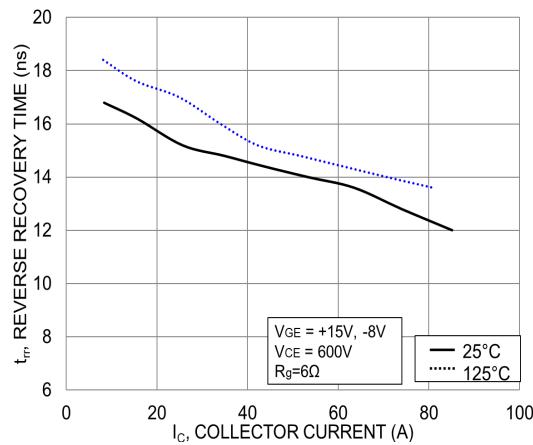
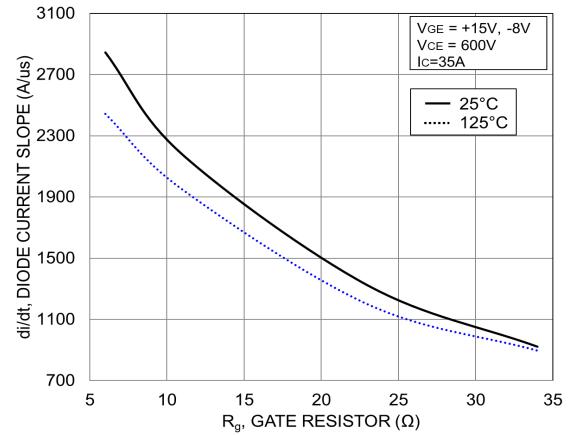
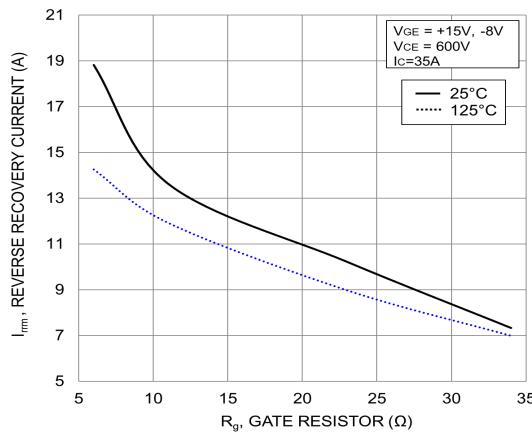
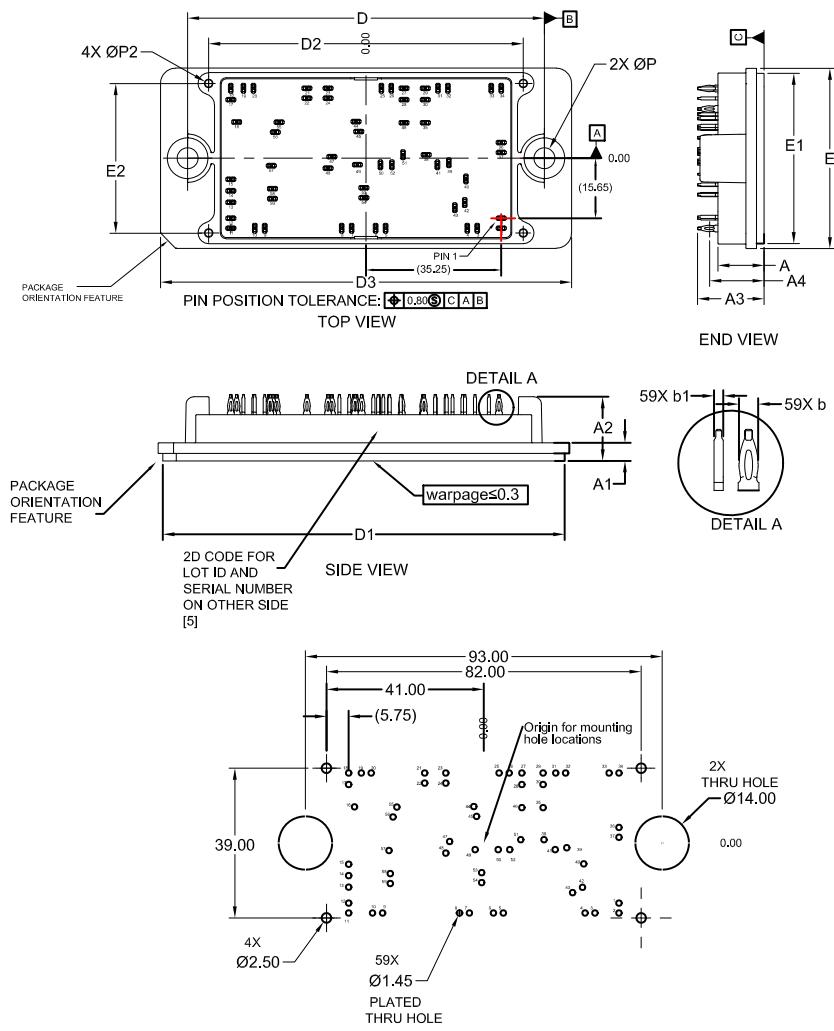








Figure 27. Typical Reverse Recovery Charge vs. RG

SNXH225B95H4Q2F2PG


SNXH225B95H4Q2F2PG

PACKAGE DIMENSIONS

PIM59 93.00x47.00x12.00

CASE 180AV

ISSUE D

* For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

DIM	MILLIMETERS		
	MIN.	NOM.	MAX.
A	11.70	12.00	12.30
A1	4.40	4.70	5.00
A2	16.40	16.70	17.00
A3	16.90	17.30	17.70
A4	13.97	14.18	14.39
A5	4.90	5.30	5.70
b	1.630	1.645	1.665
b1	0.75	0.80	0.85
D	92.90	93.00	93.10
D1	104.45	104.75	105.05
D2	81.80	82.00	82.20
D3	106.90	107.20	107.50
E	46.20	47.00	47.80
E1	44.10	44.40	44.70
E2	38.80	39.00	39.10
P	5.40	5.50	5.60
P1	5.05	5.35	5.65
P2	1.80	2.00	2.20

NOTE 4

PIN	MOUNTING HOLE POSITION		PIN	MOUNTING HOLE POSITION	
	X	Y		X	Y
1	35.25	-15.65	31	18.75	18.254
2	35.25	-18.25	32	21.35	18.25
3	29.0	-18.25	33	32.65	18.25
4	26.4	-18.25	34	35.25	18.25
5	5.10	-18.25	35	15.45	9.25
6	2.5	-18.25	36	35.25	4.10
7	-3.75	-18.25	37	35.25	1.50
8	-6.35	-18.25	38	15.70	0.90
9	-26.4	-18.25	39	21.60	-1.20
10	-29.0	-18.25	40	26.05	-5.40
11	-35.25	-18.25	41	18.60	-1.70
12	-35.25	-15.65	42	25.75	-11.55
13	-35.25	-11.50	43	23.15	-12.90
14	-35.25	-8.50	44	-2.60	9.55
15	-35.25	-5.50	45	-1.90	6.95
16	-33.70	9.45	46	9.90	9.25
17	-35.25	15.25	47	-8.90	0.40
18	-35.25	18.25	48	-9.90	-2.60
19	-31.95	18.25	49	-2.25	-1.70
20	-29.35	18.25	50	3.75	-1.70
21	-15.40	18.25	51	9.65	0.90
22	-15.40	15.65	52	6.75	-1.70
23	-9.90	18.25	53	-0.55	-7.70
24	-9.90	15.65	54	-0.55	-10.30
25	4.0	18.25	55	-22.65	9.40
26	6.60	18.25	56	-23.65	6.80
27	9.90	18.25	57	-24.70	-1.95
28	9.90	15.25	58	-24.40	-7.95
29	15.45	18.25	59	-24.40	-10.55
30	15.45	15.25			

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 2009.
2. CONTROLLING DIMENSION: MILLIMETERS
3. DIMENSIONS b AND b1 APPLY TO THE PLATED TERMINALS AND ARE MEASURED AT DIMENSION A4.
4. POSITION OF THE CENTER OF THE TERMINALS IS DETERMINED FROM DATUM B THE CENTER OF DIMENSION D, X DIRECTION, AND FROM DATUM A, Y DIRECTION. POSITIONAL TOLERANCE, AS NOTED IN DRAWING, APPLIES TO EACH TERMINAL IN BOTH DIRECTIONS.
5. PACKAGE MARKING IS LOCATED AS SHOWN ON THE SIDE OPPOSITE THE PACKAGE ORIENTATION FEATURES.
6. PRESS FIT PIN

onsemi, **ONSEMI**, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "**onsemi**" or its affiliates and/or subsidiaries in the United States and/or other countries. **onsemi** owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of **onsemi**'s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. **onsemi** reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and **onsemi** makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation
onsemi Website: www.onsemi.com

ONLINE SUPPORT: www.onsemi.com/support

For additional information, please contact your local Sales Representative at
www.onsemi.com/support/sales