

Sept 2013 Rev. 1.0.0

### GENERAL DESCRIPTION

The SP335 is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards. Integrated cable termination and multiple configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. Full operation requires only four external charge pump capacitors.

The RS-485/RS-232 mode pin selects RS-485 mode when high, and RS-232 mode when low. In RS-485 mode, the TERM pin enables the differential  $120\Omega$  termination, and the HALF/FULL pin configures the transceiver as either half or full duplex.

The high speed drivers operate up to 20Mbps in RS-485/422 modes, and up to 1Mbps in RS-232 mode. All drivers can be slew limited to 250kbps in any mode to minimize electromagnetic interference (EMI) by setting the dedicated SLEW pin low.

All transmitter outputs and receiver inputs feature robust electrostatic discharge (ESD) protection to ±15kV IEC 61000-4-2 Airgap, ±15kV Human Body Model (HBM) and ±8kV IEC 61000-4-2 Contact. Each receiver output has full fail-safe protection to avoid system lockup, oscillation, or indeterminate states by defaulting to logic-high output level when the inputs are open, shorted, or terminated but undriven. No external biasing resistors are required.

The RS-232 receiver inputs include a  $5k\Omega$  pull-down to ground when in RS-232 mode. The RS-485/422 receiver inputs are high impedance (>96k $\Omega$  when termination is disabled), allowing up to 256 devices on a single communication bus (1/8th unit load).

The SP335 operates from a single power supply, either 3.3V or 5V, with low idle current. The shutdown mode consumes less than  $1\mu A$  in low power standby operation with RS-232 receivers enabled.

#### **FEATURES**

- Pin-Selectable Cable Termination
- No External Resistors Required for RS-485/422 Termination or Biasing
- Robust ESD Protection:
  - ±15kV IEC 61000-4-2 Air Gap Discharge
  - ±8kV IEC 61000-4-2 Contact Discharge
  - ±15kV Human Body Model (HBM)
- 20Mbps RS-485 and 1Mbps RS-232 Data Rates
- Pin-Selectable 250kbps Slew Limiting
- Single Supply Operation from +3V to +5.5V
- 1.65V to 5.5V Logic Interface V<sub>I</sub> pin
- 2 Drivers, 2 Receivers RS-232/V.28
- 1 Driver, 1 Receiver RS-485/422
  - Full or Half Duplex Configuration
  - 1/8th Unit Load, up to 256 receivers on bus
- RS-485/422 Enhanced Receiver Fail-safe for open, shorted, or terminated but idle inputs
- 10nA Shutdown Supply Current (typical)
- Small 32 QFN package (5mm x 5mm)

### TYPICAL APPLICATIONS

- Software Programmable Serial Ports (RS-232, RS-422, RS-485)
- Industrial and Single Board Computers
- Industrial and Process Control Equipment
- Point-Of-Sale Equipment
- HVAC Controls and Networking Equipment
- Building Security and Automation

#### ORDERING INFORMATION

| PART NUMBER | PACKAGE    | OPERATING TEMPERATURE RANGE | DEVICE STATUS |
|-------------|------------|-----------------------------|---------------|
| SP335EER1-L | 32-pin QFN | -40°C to +85°C              | In Production |
| SP335ECR1-L | 32-pin QFN | 0°C to +70°C                | In Production |

**Note:** Tape and Reel part numbers are SP335ExR1-L/TR, -L = Green / RoHS Compliant

### **ABSOLUTE MAXIMUM RATINGS**

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections to the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability and cause permanent damage to the device.

| Supply Voltage V <sub>CC</sub>                                  | -0.3V to +6.0V   |
|-----------------------------------------------------------------|------------------|
| Logic Interface Voltage V <sub>L</sub>                          | $V_L \le V_{CC}$ |
| Voltage at TTL Input Pins                                       | -0.3V to +6.0V   |
| Receiver Input Voltage (from Ground)                            | ±18V             |
| Driver Output Voltage (from Ground)                             | ±18V             |
| Short Circuit Duration, TX out to Ground                        | Continuous       |
| Storage Temperature Range                                       | -65°C to +150°C  |
| Lead Temperature (soldering, 10s)                               | +300°C           |
| Power Dissipation 32-pin 5x5 QFN (derate 26.0mW/°C above +70°C) | 1400mW           |

### CAUTION:

ESD (ElectroStatic Discharge) sensitive device. Permanent damage may occur on unconnected devices subject to high energy electrostatic fields. Unused devices must be stored in conductive foam or shunts. Personnel should be properly grounded prior to handling this device. The protective foam should be discharged to the destination socket before devices are removed.

### **ESD PROTECTION**

|                           | MIN. | TYP. | Max. | Units |                        |
|---------------------------|------|------|------|-------|------------------------|
|                           |      | ±15  |      | kV    | IEC 61000-4-2 Airgap   |
| TX Output & RX Input Pins |      | ± 8  |      | kV    | IEC 61000-4-2 Contact  |
|                           |      | ±15  |      | kV    | Human Body Model (HBM) |
| All Other Pins            |      | ± 3  |      | kV    | Human Body Model (HBM) |



### **ELECTRICAL CHARACTERISTICS**

### **U**NLESS OTHERWISE NOTED:

 $V_{CC}$  = +3.0V to +5.5V, C1-C4 = 0.1µF;  $T_A$  =  $T_{MIN}$  to  $T_{MAX}$ . Typical values are at  $V_L$  =  $V_{CC}$  = 3.3V,  $T_A$  = +25°C.

| SYMBOL            | PARAMETERS                                           | MIN.                 | TYP.  | Max.             | Units | CONDITIONS                                                           |  |  |  |
|-------------------|------------------------------------------------------|----------------------|-------|------------------|-------|----------------------------------------------------------------------|--|--|--|
| DC CHARAC         | DC CHARACTERISTICS                                   |                      |       |                  |       |                                                                      |  |  |  |
| I <sub>CC</sub>   | Supply Current (RS-232)                              |                      | 1     | 2.5              | mA    | No load, Idle inputs,<br>RS-485/RS-232 = 0V                          |  |  |  |
| I <sub>CC</sub>   | Supply Current (RS-485/422)                          |                      | 1.8   | 4.5              | mA    | No load, Idle inputs,<br>RS-485/ <del>RS-232</del> = V <sub>CC</sub> |  |  |  |
| I <sub>CC</sub>   | Vcc Shutdown Current                                 |                      | 0.01  | 1                | μΑ    | SHDN = 0V, Receiver inputs open or grounded                          |  |  |  |
| TRANSMITT         | FRANSMITTER and LOGIC INPUTS (PINS 10 - 15, 20 - 22) |                      |       |                  |       |                                                                      |  |  |  |
| V <sub>IL</sub>   | Logic Input Voltage Low                              |                      |       | V <sub>L</sub> 3 | ٧     |                                                                      |  |  |  |
| V <sub>IH</sub>   | Logic Input Voltage High                             | 2V <sub>L</sub><br>3 |       |                  | ٧     |                                                                      |  |  |  |
| I <sub>INL</sub>  | Logic Input Leakage Current                          |                      | ±0.01 | ±1               | μA    |                                                                      |  |  |  |
| I <sub>INPD</sub> | Logic Input Pulldown Current                         |                      | 10    | 50               | μΑ    | RE, TERM, & FD_TX_TERM  V <sub>IN</sub> = V <sub>L</sub>             |  |  |  |
| V <sub>HYS</sub>  | Logic Input Hysteresis                               |                      | 200   |                  | mV    |                                                                      |  |  |  |
| RS-232 and        | RS-232 and RS-485/422 RECEIVER OUTPUTS (PINS 6 & 7)  |                      |       |                  |       |                                                                      |  |  |  |
| V <sub>OL</sub>   | Receiver Output Voltage Low                          |                      |       | 0.4              | V     | I <sub>OUT</sub> = 1.5mA                                             |  |  |  |
| V <sub>OH</sub>   | Receiver Output Voltage High                         | V <sub>L</sub> -0.6  |       |                  | V     | I <sub>OUT</sub> = -1.5mA                                            |  |  |  |
| I <sub>OSS</sub>  | Receiver Output Short Circuit Current                |                      | ±20   | ±85              | mA    | $0 \le V_O \le V_L$                                                  |  |  |  |
| I <sub>OZ</sub>   | Receiver Output Leakage Current                      |                      | ±0.05 | ±1               | μA    | $0 \le V_O \le V_{L_s}$<br>Receivers disabled                        |  |  |  |



# ELECTRICAL CHARACTERISTICS (Continued)

### **U**NLESS OTHERWISE NOTED:

 $V_{CC}$  = +3.0V to +5.5V, C1-C4 = 0.1µF;  $T_A$  =  $T_{MIN}$  to  $T_{MAX}$ . Typical values are at  $V_{CC}$  = 3.3V,  $T_A$  = +25°C.

| SYMBOL                                             | PARAMETERS                   | Min.       | TYP. | Max. | Units | CONDITIONS                                                               |  |  |
|----------------------------------------------------|------------------------------|------------|------|------|-------|--------------------------------------------------------------------------|--|--|
| RS-232 SINGLE-ENDED RECEIVER INPUTS (PINS 18 & 19) |                              |            |      |      |       |                                                                          |  |  |
| V <sub>IN</sub>                                    | Input Voltage Range          | -15        |      | +15  | V     |                                                                          |  |  |
| V <sub>IL</sub>                                    | Input Threshold Low          | 0.6        | 1.2  |      | V     | V <sub>CC</sub> = 3.3V                                                   |  |  |
| ۷IL                                                | input Tilleshold Low         | 0.8        | 1.5  |      | V     | V <sub>CC</sub> = 5.0V                                                   |  |  |
| V <sub>IH</sub>                                    | Input Threshold High         |            | 1.5  | 2.0  | V     | V <sub>CC</sub> = 3.3V                                                   |  |  |
| VIН                                                | input triresnoid riigit      |            | 1.8  | 2.4  | V     | V <sub>CC</sub> = 5.0V                                                   |  |  |
| V <sub>HYS</sub>                                   | Input Hysteresis             |            | 0.5  |      | V     |                                                                          |  |  |
| R <sub>IN</sub>                                    | Input Resistance             | 3          | 5    | 7    | kΩ    | $-15V \le V_{IN} \le +15V$                                               |  |  |
| RS-232 SINC                                        | GLE-ENDED TRANSMITTER OUTPUT | rs (PINS 3 | & 4) |      |       |                                                                          |  |  |
| V <sub>OUT</sub>                                   | Output Voltage Swing         | ±5.0       | ±5.5 |      | V     | Outputs loaded with $3k\Omega$ to Gnd                                    |  |  |
| R <sub>OFF</sub>                                   | Output Power Off Impedance   | 300        | 10M  |      | Ω     | $V_{CC} = 0V$ , $V_{OUT} = \pm 2V$                                       |  |  |
| I <sub>SC</sub>                                    | Output Short Circuit Current |            | ±30  | ±60  | mA    | V <sub>OUT</sub> = 0V                                                    |  |  |
| I <sub>O</sub>                                     | Output Leakage Current       |            |      | ±125 | μA    | $\overline{SHDN} = 0V, V_{OUT} = \pm 9V,$ $V_{CC} = 0V \text{ or } 5.5V$ |  |  |



## **ELECTRICAL CHARACTERISTICS (Continued)**

UNLESS OTHERWISE NOTED:  $V_{CC} = +3.0V \ to \ +5.5V, \ C1-C4 = 0.1 \mu F; \ T_A = T_{MIN} \ to \ T_{MAX}. \ Typical \ values \ are \ at \ V_{CC} = 3.3V, \ T_A = +25^{\circ}C.$ 

| SYMBOL                                        | PARAMETERS                                            | Min. | TYP. | Max.            | Units | Conditions                                                                                                            |  |  |
|-----------------------------------------------|-------------------------------------------------------|------|------|-----------------|-------|-----------------------------------------------------------------------------------------------------------------------|--|--|
| RS-485/422 DIFFERENTIAL RECEIVER INPUTS (A,B) |                                                       |      |      |                 |       |                                                                                                                       |  |  |
| R <sub>IN</sub>                               | Receiver Input Resistance                             | 96   |      |                 | kΩ    | Termination disabled, $-7V \le V_{CM} \le +12V$                                                                       |  |  |
| I <sub>IN</sub>                               | Receiver Input Current                                |      |      | 125             | μΑ    | V <sub>IN</sub> = +12V                                                                                                |  |  |
| ·IIN                                          | neceiver input durient                                |      |      | -100            | μΑ    | V <sub>IN</sub> = -7V                                                                                                 |  |  |
| V <sub>TH</sub>                               | Receiver Differential Threshold Voltage               | -200 | -125 | -50             | mV    | -7V ≤ V <sub>CM</sub> ≤ +12V                                                                                          |  |  |
| $\Delta V_{TH}$                               | Receiver Input Hysteresis                             |      | 25   |                 | mV    |                                                                                                                       |  |  |
| R <sub>TERM</sub>                             | Termination Resistance                                | 100  | 120  | 155             | Ω     | Termination enabled, Figure 4 $-7V \le V_{CM} \le +12V$                                                               |  |  |
| R <sub>TERM</sub>                             | Termination Resistance                                | 100  | 120  | 140             | Ω     | Termination enabled, Figure 4 V <sub>CM</sub> = 0V                                                                    |  |  |
| RS-485/422                                    | DIFFERENTIAL DRIVER OUTPUTS (Y,                       | Z)   |      |                 |       |                                                                                                                       |  |  |
|                                               |                                                       | 1.5  |      | V <sub>CC</sub> | V     | $R_L = 54\Omega$ (RS-485), Figure 5                                                                                   |  |  |
| $V_{OD}$                                      | Differential Driver Output                            | 1.5  |      | V <sub>CC</sub> | V     | $-7V \le V_{CM} \le +12V$ , Figure 6                                                                                  |  |  |
|                                               |                                                       | 2    |      | V <sub>CC</sub> | V     | $R_L = 100\Omega$ (RS-422), Figure 5                                                                                  |  |  |
| $ \Delta V_{OD} $                             | Change In Magnitude of<br>Differential Output Voltage |      |      | 0.2             | ٧     | $R_L = 54\Omega$ or $100\Omega$ , Figure 5                                                                            |  |  |
| V <sub>CM</sub>                               | Driver Common Mode Output Voltage                     |      |      | 3               | V     | $R_L = 54\Omega$ or $100\Omega$ , Figure 5                                                                            |  |  |
| $ \Delta V_{CM} $                             | Change In Magnitude of<br>Common Mode Output Voltage  |      |      | 0.2             | ٧     | $R_L = 54\Omega$ or $100\Omega$ , Figure 5                                                                            |  |  |
| I <sub>OSD</sub>                              | Driver Output Short Circuit Current                   |      |      | ±250            | mA    | $-7V \le V_Y \text{ or } V_Z \le +12V, \text{ Figure 7}$                                                              |  |  |
| I <sub>O</sub>                                | Driver Output Leakage Current                         |      |      | ±125            | μA    | DE = 0V or $\overline{SHDN}$ = 0V,<br>V <sub>Y</sub> or V <sub>Z</sub> = -7V or +12V,<br>V <sub>CC</sub> = 0V or 5.5V |  |  |



## **TIMING CHARACTERISTICS**

### **U**NLESS OTHERWISE NOTED:

 $V_{CC} = +3.0V \ to \ +5.5V, \ C1-C4 = 0.1 \mu F; \ T_A = T_{MIN} \ to \ T_{MAX}. \ Typical \ values \ are \ at \ V_{CC} = 3.3V, \ T_A = +25 ^{\circ}C.$ 

| SYMBOL                              | PARAMETERS                                                         | MIN.   | TYP.     | Max.   | UNITS | CONDITIONS                                                                                                                                                      |  |  |  |
|-------------------------------------|--------------------------------------------------------------------|--------|----------|--------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| ALL MODES                           |                                                                    |        |          |        |       |                                                                                                                                                                 |  |  |  |
| t <sub>ENABLE</sub>                 | Enable from Shutdown                                               |        | 1000     |        | ns    |                                                                                                                                                                 |  |  |  |
| t <sub>SHUTDOWN</sub>               | Enable to Shutdown                                                 |        | 1000     |        | ns    |                                                                                                                                                                 |  |  |  |
| RS-232, DAT                         | RS-232, DATA RATE = 250kbps (SLEW = 0V), ONE TRANSMITTER SWITCHING |        |          |        |       |                                                                                                                                                                 |  |  |  |
|                                     | Maximum Data Rate                                                  | 250    |          |        | kbps  | $R_L = 3k\Omega$ , $C_L = 1000pF$                                                                                                                               |  |  |  |
| t <sub>RHL</sub> , t <sub>RLH</sub> | Receiver Propagation Delay                                         |        | 100      |        | ns    | C <sub>I</sub> = 150pF, Figure 8                                                                                                                                |  |  |  |
| t <sub>RHL</sub> -t <sub>RLH</sub>  | Receiver Propagation Delay Skew                                    |        |          | 100    | ns    | Ο <u>Γ</u> = 130pr , riguic σ                                                                                                                                   |  |  |  |
| t <sub>DHL</sub> , t <sub>DLH</sub> | Driver Propagation Delay                                           |        | 1400     |        | ns    | $R_L = 3k\Omega, C_L = 2500pF,$                                                                                                                                 |  |  |  |
| t <sub>DHL</sub> -t <sub>DLH</sub>  | Driver Propagation Delay Skew                                      |        |          | 600    | ns    | Figure 9                                                                                                                                                        |  |  |  |
|                                     |                                                                    |        |          |        |       |                                                                                                                                                                 |  |  |  |
| t <sub>SHL,</sub> t <sub>SLH</sub>  | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V  | 6      |          | 30     | V/µs  | $V_{CC}$ = +3.3V, $R_L$ = 3k $\Omega$ to 7k $\Omega$ , $C_L$ = 150pF to 2500pF, $T_A$ = 25°C, Figure 9                                                          |  |  |  |
| t <sub>SHL,</sub> t <sub>SLH</sub>  | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V  | 4      |          | 30     | V/µs  | $V_{CC}$ = +3.3V, $R_L$ = 3k $\Omega$ to 7k $\Omega$ , $C_L$ = 150pF to 2500pF, Figure 9                                                                        |  |  |  |
| RS-232, DAT                         | A RATE = 1Mbps ( <del>SLEW</del> = V <sub>CC</sub> ), ONE          | TRANSI | WITTER : | SWITCH | ING   |                                                                                                                                                                 |  |  |  |
|                                     | Maximum Data Rate                                                  | 1      |          |        | Mbps  | $R_L = 3k\Omega$ , $C_L = 250pF$                                                                                                                                |  |  |  |
| t <sub>RHL</sub> , t <sub>RLH</sub> | Receiver Propagation Delay                                         |        | 100      |        | ns    | C <sub>1</sub> = 150pF, Figure 8                                                                                                                                |  |  |  |
| t <sub>RHL</sub> -t <sub>RLH</sub>  | Receiver Propagation Delay Skew                                    |        |          | 100    | ns    | OL = 130pi , rigule o                                                                                                                                           |  |  |  |
| t <sub>DHL</sub> , t <sub>DLH</sub> | Driver Propagation Delay                                           |        | 300      |        | ns    | $R_L = 3k\Omega$ , $C_L = 1000pF$ ,                                                                                                                             |  |  |  |
| t <sub>DHL</sub> -t <sub>DLH</sub>  | Driver Propagation Delay Skew                                      |        |          | 150    | ns    | Figure 9                                                                                                                                                        |  |  |  |
|                                     |                                                                    |        |          | l      |       |                                                                                                                                                                 |  |  |  |
| t <sub>SHL,</sub> t <sub>SLH</sub>  | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V  | 13     |          | 150    | V/µs  | $V_{CC} = +3.3 \text{V}, \ \text{R}_{\text{L}} = 3 \text{k} \Omega \ \text{to } 7 \text{k} \Omega,$ $C_{\text{L}} = 150 \text{pF to } 1000 \text{pF},$ Figure 9 |  |  |  |
| <sup>t</sup> shL, <sup>t</sup> sLH  | Transition Region Slew Rate from +3.0V to -3.0V or -3.0V to +3.0V  | 24     |          | 150    | V/µs  | $V_{CC}$ = +3.3V, $R_L$ = 3k $\Omega$ to 7k $\Omega$ ,<br>$C_L$ = 150pF to 1000pF,<br>$T_A$ = 25°C, Figure 9                                                    |  |  |  |



## **TIMING CHARACTERISTICS (Continued)**

UNLESS OTHERWISE NOTED:  $V_{CC} = +3.0V \ to \ +5.5V, \ C1-C4 = 0.1 \mu F; \ T_A = T_{MIN} \ to \ T_{MAX}. \ Typical \ values \ are \ at \ V_{CC} = 3.3V, \ T_A = +25^{\circ}C.$ 

| SYMBOL                                | PARAMETERS                                                | Min.    | TYP.   | Max.     | Units          | CONDITIONS                                                   |
|---------------------------------------|-----------------------------------------------------------|---------|--------|----------|----------------|--------------------------------------------------------------|
| RS-485/RS-42                          | 2, DATA RATE = 250kbps ( <del>SLEW</del> = 0              | V), ONE | TRANSM | NITTER S | SWITCH         | ING                                                          |
|                                       | Maximum Data Rate                                         | 250     |        |          | kbps           | $R_L = 54\Omega$ , $C_L = 50pF$                              |
| t <sub>RPHL</sub> , t <sub>RPLH</sub> | Receiver Propagation Delay                                |         | 50     | 150      | ns             | C <sub>1</sub> = 15pF, Figure 10                             |
| t <sub>RPHL</sub> -t <sub>RPLH</sub>  | Receiver Propagation Delay Skew                           |         |        | 10       | ns             | G <sub>L</sub> = 15pF, Figure 10                             |
| t <sub>DPHL</sub> , t <sub>DPLH</sub> | Driver Propagation Delay                                  |         | 500    | 1000     | ns             |                                                              |
| t <sub>DPHL</sub> -t <sub>DPLH</sub>  | Driver Propagation Delay Skew                             |         |        | 100      | ns             | $R_L = 54\Omega$ , $C_L = 50pF$ ,<br>Figure 11               |
| $t_{DR,} t_{DF}$                      | Driver Rise and Fall Time                                 | 300     | 650    | 1200     | ns             | Tigure 11                                                    |
|                                       | 1                                                         | •       |        | •        | •              |                                                              |
| t <sub>RZH</sub> , t <sub>RZL</sub>   | Receiver Output Enable Time                               |         |        | 200      | ns             | $C_1 = 15pF$ , Figure 12                                     |
| t <sub>RHZ</sub> , t <sub>RLZ</sub>   | Receiver Output Disable Time                              |         |        | 200      | ns             |                                                              |
| t <sub>DZH</sub> , t <sub>DZL</sub>   | Driver Output Enable Time                                 |         |        | 1000     | ns             | $R_L = 500\Omega, C_L = 50pF,$                               |
| $t_{DHZ}, t_{DLZ}$                    | Driver Output Disable Time                                |         |        | 200      | ns             | Figure 13                                                    |
| RS-485/RS-42                          | 2, DATA RATE = 20Mbps (SLEW = V<br>Maximum Data Rate      | 20      | TRANSI | MITTER   | SWITCH<br>Mbps | IING $R_L = 54\Omega, C_L = 50pF$                            |
| t <sub>RPHL</sub> , t <sub>RPLH</sub> | Receiver Propagation Delay                                |         | 50     | 150      | ns             | C 45p5 Figure 40                                             |
| t <sub>RPHL</sub> -t <sub>RPLH</sub>  | Receiver Propagation Delay Skew                           |         |        | 10       | ns             | C <sub>L</sub> = 15pF, Figure 10                             |
| t <sub>DPHL</sub> , t <sub>DPLH</sub> | Driver Propagation Delay                                  |         | 30     | 100      | ns             |                                                              |
| t <sub>DPHL</sub> -t <sub>DPLH</sub>  | Driver Propagation Delay Skew                             |         |        | 10       | ns             | $R_L = 54\Omega$ , $C_L = 50pF$ ,<br>Figure 11               |
| t <sub>DR</sub> , t <sub>DF</sub>     | Driver Rise and Fall Time                                 |         | 10     | 20       | ns             | Tigure 11                                                    |
|                                       |                                                           | -       |        | 1        | •              |                                                              |
|                                       |                                                           |         |        |          |                |                                                              |
| t <sub>RZH</sub> , t <sub>RZL</sub>   | Receiver Output Enable Time                               |         |        | 200      | ns             | C <sub>1</sub> = 15pF Figure 12                              |
| t <sub>RZH</sub> , t <sub>RZL</sub>   | Receiver Output Enable Time  Receiver Output Disable Time |         |        | 200      | ns<br>ns       | C <sub>L</sub> = 15pF, Figure 12                             |
|                                       |                                                           |         |        |          |                | $C_L$ = 15pF, Figure 12 $R_L$ = 500 $\Omega$ , $C_L$ = 50pF, |



### **PIN DESCRIPTIONS**

| Pin | Name          | RS-232                       | RS-485 Full Duplex                                                        | RS-485 Half Duplex                   |  |  |  |
|-----|---------------|------------------------------|---------------------------------------------------------------------------|--------------------------------------|--|--|--|
| 1   | ,             |                              |                                                                           |                                      |  |  |  |
| 2   | GND           | Ground                       |                                                                           |                                      |  |  |  |
| 3   | T1OUT, B/Z    | Transmitter 1 Output         | Z Driver Neg Output                                                       | B/Z Neg Input/Output                 |  |  |  |
| 4   | T2OUT, A/Y    | Transmitter 2 Output         | Y Driver Pos Output                                                       | A/Y Pos Input/Output                 |  |  |  |
| 5   |               |                              |                                                                           |                                      |  |  |  |
| 6   | R1OUT         | Receiver 1 Output            | X                                                                         | Х                                    |  |  |  |
| 7   | R2OUT, RO     | Receiver 2 Output            | Receiver TTL Output                                                       | Receiver TTL Output                  |  |  |  |
| 8   |               |                              |                                                                           |                                      |  |  |  |
| 9   |               |                              |                                                                           |                                      |  |  |  |
| 10  | SHDN          | Lov                          | w power shutdown mode when                                                | low                                  |  |  |  |
| 11  | SLEW          | Dat                          | a rate limited to 250kbps when                                            | low                                  |  |  |  |
| 12  | FD_TX_TERM    | Х                            | 120Ω Y-Z termination<br>enabled when both TERM<br>and FD_TX_TERM are high | х                                    |  |  |  |
| 13  | TERM          | X                            | 120Ω A-B termination                                                      | n enabled when high                  |  |  |  |
| 14  | RS-485/RS-232 | 0                            | 1                                                                         | 1                                    |  |  |  |
| 15  | HALF/FULL     | Х                            | 0                                                                         | 1                                    |  |  |  |
| 16  |               |                              |                                                                           |                                      |  |  |  |
| 17  | GND           |                              | Ground                                                                    |                                      |  |  |  |
| 18  | R2IN, A       | Receiver 2 Input             | A Pos Receiver Input                                                      | Х                                    |  |  |  |
| 19  | R1IN, B       | Receiver 1 Input             | B Neg Receiver Input                                                      | Х                                    |  |  |  |
| 20  | RE            | Х                            | Receiver enab                                                             | oled when low                        |  |  |  |
| 21  | T2IN, DE      | Transmitter 2 Input          | Driver enable                                                             | ed when high                         |  |  |  |
| 22  | T1IN, DI      | Transmitter 1 Input          | Driver T                                                                  | TL Input                             |  |  |  |
| 23  |               |                              |                                                                           |                                      |  |  |  |
| 24  |               |                              |                                                                           |                                      |  |  |  |
| 25  | V-            | Charge p                     | ump negative supply, 0.1µF fro                                            | m ground                             |  |  |  |
| 26  | C2-           | C                            | Charge pump cap 2 negative lea                                            | ad                                   |  |  |  |
| 27  | C2+           | Cha                          | rge pump cap 2 positive lead, 0                                           | .1μF                                 |  |  |  |
| 28  | V+            | Charge                       | pump positive supply, 0.1µF to                                            | ground                               |  |  |  |
| 29  | C1+           | Cha                          | rge pump cap 1 positive lead, 0                                           | .1μF                                 |  |  |  |
| 30  | VL            | Logic Supply for TTL I       | nputs and Outputs, $V_L = +1.65$                                          | / to +5.5V or tie to V <sub>CC</sub> |  |  |  |
| 31  | VCC           | Main Supply, V <sub>C0</sub> | $_{\rm C}$ = +3.0V to +5.5V, bypass to $_{\rm C}$                         | ground with 1.0μF                    |  |  |  |
| 32  | C1-           | C                            | Charge pump cap 1 negative lea                                            | ad                                   |  |  |  |



## **SUGGESTED DB9 CONNECTOR PINOUT**

| DB9<br>Pin | RS-232 | RS-485<br>Full Duplex | RS-485<br>Half Duplex |
|------------|--------|-----------------------|-----------------------|
| 1          |        |                       |                       |
| 2          | RXD    | RX+                   |                       |
| 3          | TXD    | TX-                   | Data-                 |
| 4          |        |                       |                       |
| 5          |        | Ground                |                       |
| 6          |        |                       |                       |
| 7          | RTS    | TX+                   | Data+                 |
| 8          | CTS    | RX-                   |                       |
| 9          |        |                       |                       |

### **BLOCK DIAGRAMS**

### FIGURE 1. RS-232 MODE

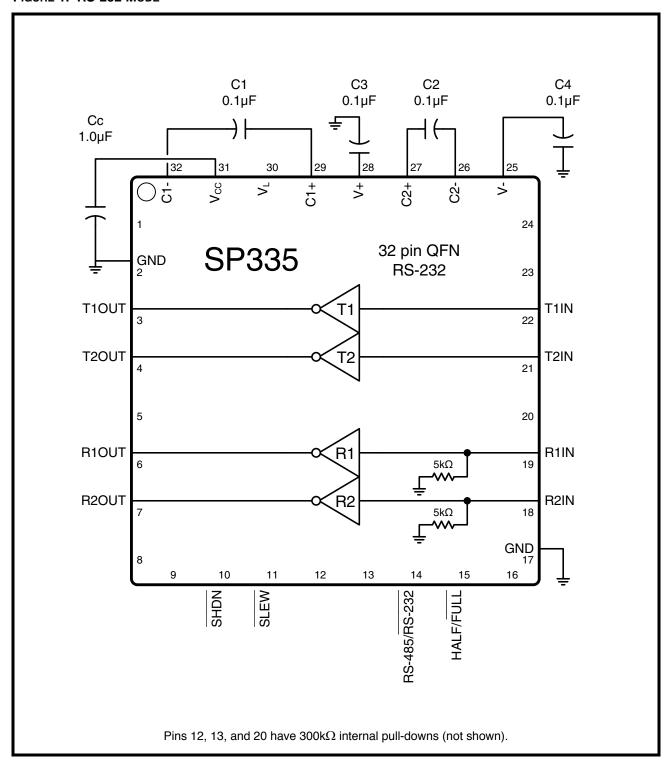





FIGURE 2. RS-485 FULL DUPLEX MODE

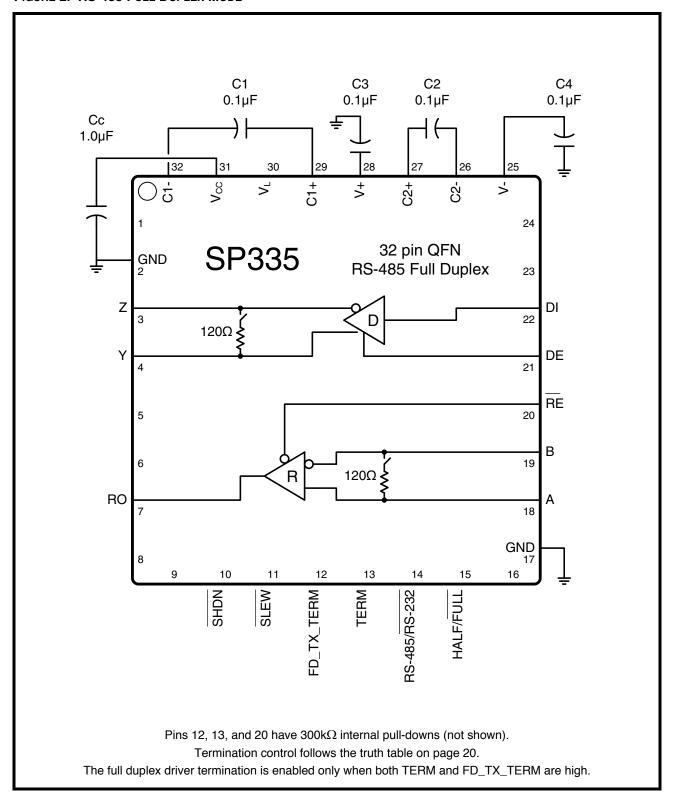
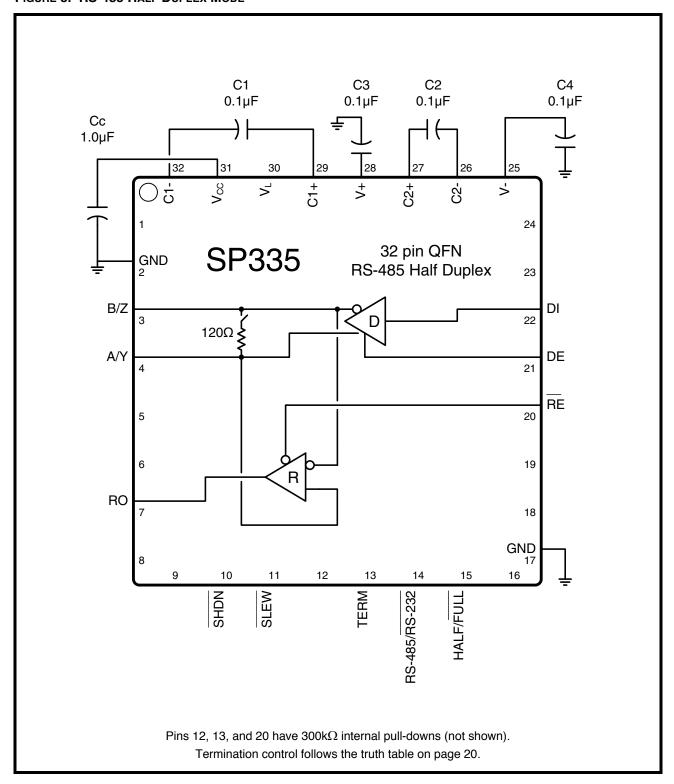






FIGURE 3. RS-485 HALF DUPLEX MODE





### **TEST CIRCUITS**

### FIGURE 4. RS-485/422 RECEIVER TERMINATION RESISTANCE

$$R_{TERM} = \underbrace{2 \ (V_A - V_B)}_{I_A - I_B} \qquad B \qquad \downarrow_{\pm 2V} \qquad R_{TERM} \qquad Rx$$
 
$$-7V \leq V_A, \ V_B \leq +12V \qquad A$$
 Termination is enabled when both TERM and RS-485/RS-232 are logic high.

FIGURE 5. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE

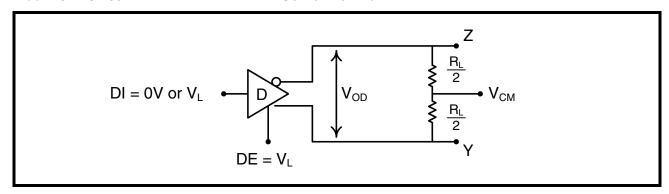



FIGURE 6. RS-485/422 DIFFERENTIAL DRIVER OUTPUT VOLTAGE OVER COMMON MODE




FIGURE 7. RS-485/422 DRIVER OUTPUT SHORT CIRCUIT CURRENT

$$DI = 0V \text{ or } V_L$$

$$DE = 0V \text{ or } V_L$$

$$DE = 0V \text{ or } V_L$$



FIGURE 8. RS-232 RECEIVER PROPAGATION DELAY

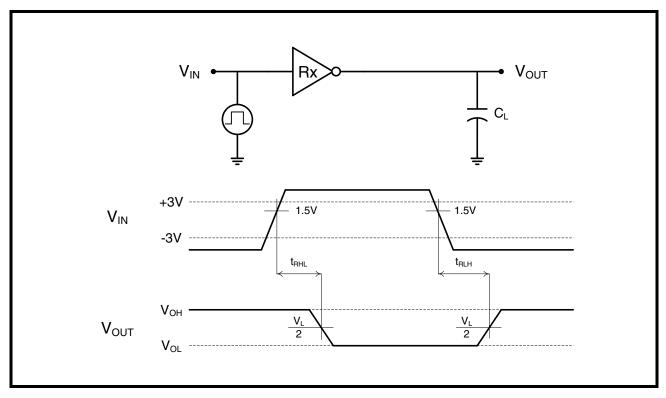



FIGURE 9. RS-232 DRIVER PROPAGATION DELAY

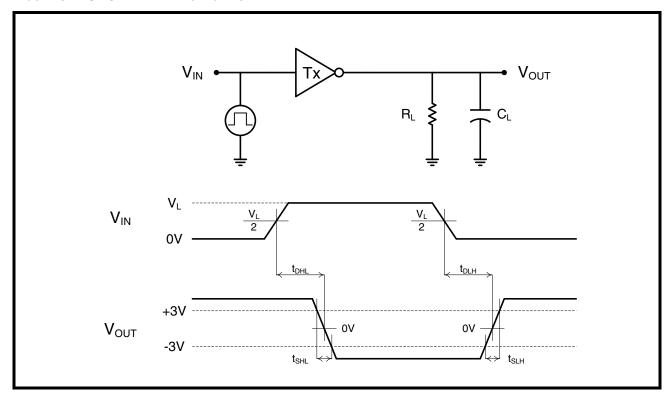





FIGURE 10. RS-485/422 RECEIVER PROPAGATION DELAY

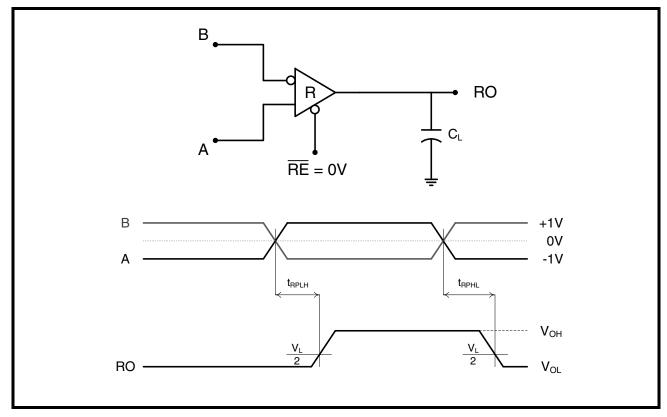



FIGURE 11. RS-485/422 DRIVER PROPAGATION DELAY AND RISE/FALL TIMES

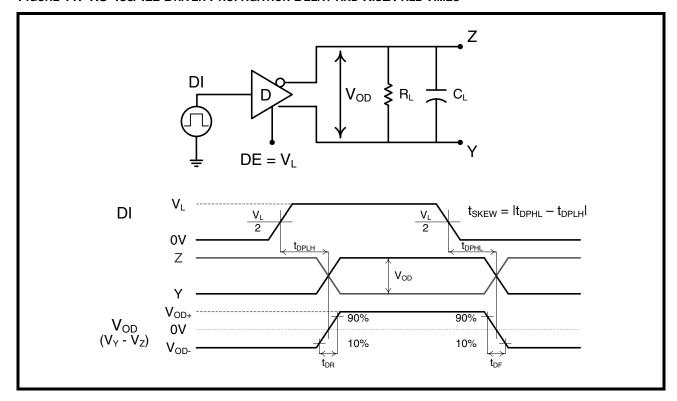





FIGURE 12. RS-485/422 RECEIVER OUTPUT ENABLE/DISABLE TIMES

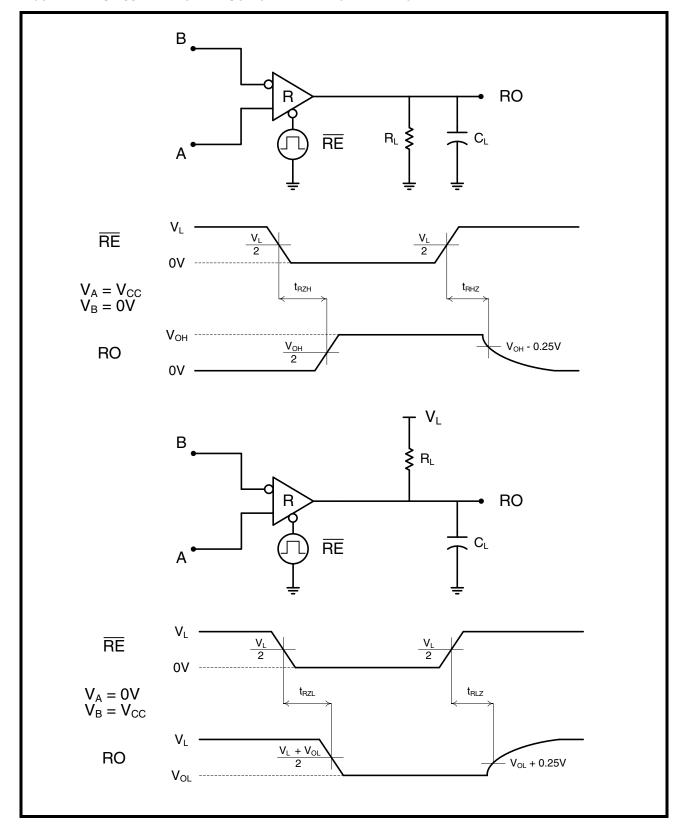
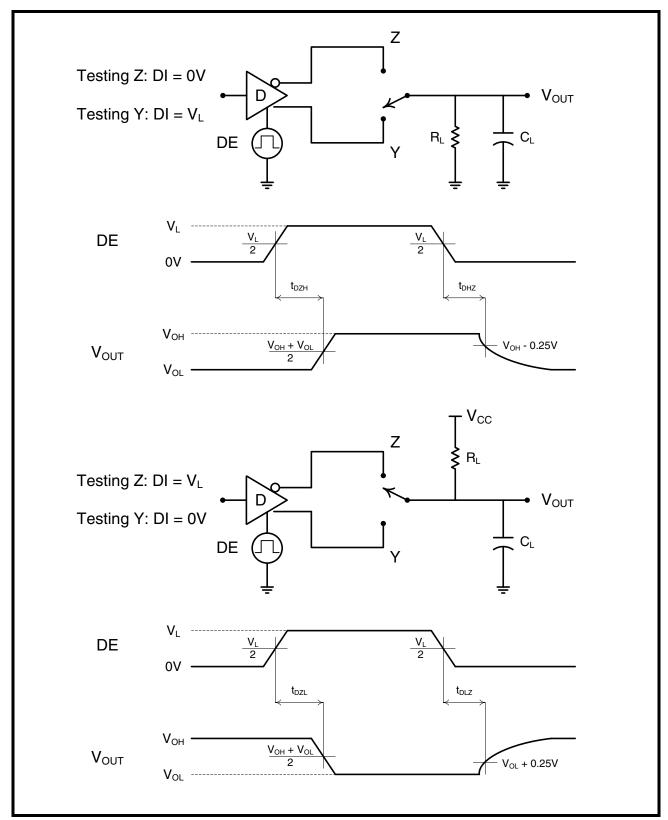






FIGURE 13. RS-485/422 DRIVER OUTPUT ENABLE/DISABLE TIMES



### **PRODUCT SUMMARY**

The SP335 is an advanced multiprotocol transceiver supporting RS-232, RS-485, and RS-422 serial standards. Integrated cable termination and multiple configuration modes allow all three protocols to be used interchangeably over a single cable or connector with no additional switching components. Full operation requires only four external charge pump capacitors.

#### INTERNALLY SWITCHED CABLE TERMINATION

Enabling and disabling the RS-485/422 termination resistor is one of the largest challenges system designers face when sharing a single connector or pair of lines across multiple serial protocols. A termination resistor may be necessary for accurate RS-485/422 communication, but must be removed when the lines are used for RS-232. SP335 provides an elegant solution to this problem by integrating the termination resistor and switching control, and allowing it to be switched in and out of the circuit with a single pin. No external switching components are required. Termination on the receiver inputs will be enabled if both TERM and RS-485/RS-232 are high.

#### **ENHANCED FAILSAFE**

The enhanced failsafe feature of the SP335 guarantees a logic-high receiver output when the receiver inputs are open, shorted, or terminated but idle/undriven. The enhanced failsafe interprets 0V differential as a logic high with a minimum 50mV noise margin, while maintaining compliance with the EIA/TIA-485 standard of ±200mV. No external biasing resistors are required, further easing the usage of multiple protocols over a single connector.

#### ±15kV ESD PROTECTION

ESD protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The bus pins (driver outputs and receiver inputs) have extra protection structures, which have been tested up to ±15kV without damage. These structures withstand high ESD in all states: normal operation, in shutdown, and when powered off.

ESD protection is be tested in various ways. Exar uses the following methods to qualify the protection structures designed into SP335:

±8kV using IEC 61000-4-2 Contact Discharge

±15kV using IEC 61000-4-2 Airgap Discharge

±15kV using the Human Body Model (HBM)

The IEC 61000-4-2 standard is more rigorous than HBM, resulting in lower voltage levels compared with HBM for the same level of ESD protection. Because IEC 61000-4-2 specifies a lower series resistance, the peak current is higher than HBM. The SP335 has passed both HBM and IEC 61000-4-2 testing without damage.

### VARIABLE LOGIC LEVEL VOLTAGE

The SP335 includes a  $V_L$  pin, which reduces the logic level thresholds to interface with processors operating at reduced supply voltages. This pin should be connected to the supply voltage of the processor, or can be connected to  $V_{CC}$  for typical logic levels.



### **TRUTH TABLES**

TABLE 1: RS-232 TX TRUTH TABLE

|      | INPUTS        |                  |                        |  |  |
|------|---------------|------------------|------------------------|--|--|
| SHDN | RS-485/RS-232 | DI/T1IN, DE/T2IN | Z(B)/T1OUT, Y(A)/T2OUT |  |  |
| 0    | X             | X                | 1/8th unit load        |  |  |
| 1    | 0             | 0                | 1                      |  |  |
| 1    | 0             | 1                | 0                      |  |  |
| 1    | 1             | X                | RS-485 Mode            |  |  |

TABLE 2: RS-232 RX TRUTH TABLE

|      | INPUTS        |                |                                          |  |  |
|------|---------------|----------------|------------------------------------------|--|--|
| SHDN | RS-485/RS-232 | B/R1IN, A/R2IN | R1OUT, RO/R2OUT                          |  |  |
| X    | 0             | 0              | 1                                        |  |  |
| Х    | 0             | 1              | 0                                        |  |  |
| Х    | 0             | Inputs open    | 1                                        |  |  |
| х    | 1             | x              | R1OUT High-Z,<br>RO/R2OUT in RS-485 Mode |  |  |

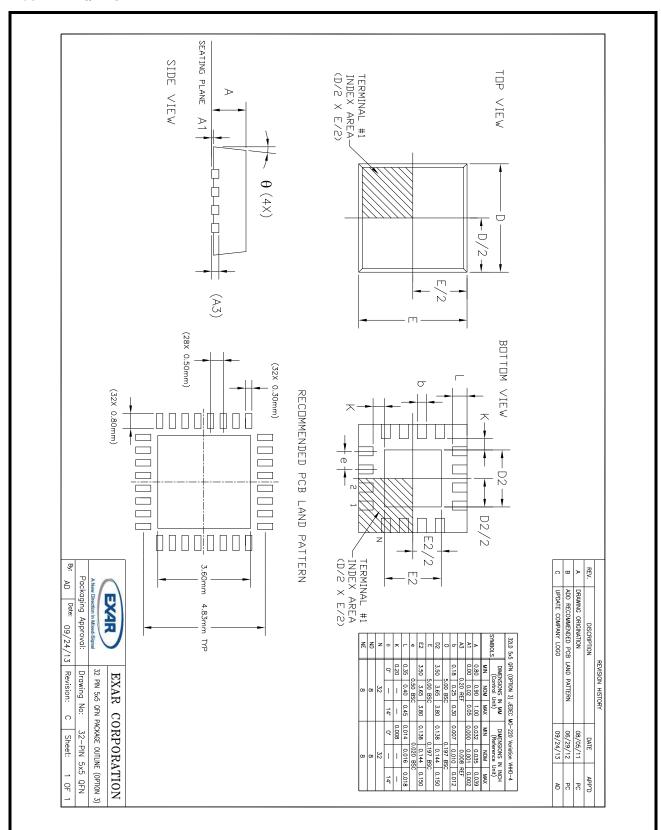
TABLE 3: RS-485/422 TX TRUTH TABLE

| INPUTS |               |         |         | OUTPUTS         |                 |
|--------|---------------|---------|---------|-----------------|-----------------|
| SHDN   | RS-485/RS-232 | DE/T2IN | DI/T1IN | Z(B)/T1OUT      | Y(A)/T2OUT      |
| 0      | Х             | Х       | Х       | 1/8th unit load | 1/8th unit load |
| 1      | 1             | 0       | Х       | 1/8th unit load | 1/8th unit load |
| 1      | 1             | 1       | 0       | 1               | 0               |
| 1      | 1             | 1       | 1       | 0               | 1               |
| Х      | 0             | Х       | Х       | RS-232 Mode     |                 |

TABLE 4: RS-485/422 RX TRUTH TABLE

| INPUTS        |      |           |    |                  |                  | OUTPUT      |
|---------------|------|-----------|----|------------------|------------------|-------------|
| RS-485/RS-232 | SHDN | HALF/FULL | RE | (A-B)            | (Y-Z)            | RO/R2OUT    |
| 1             | 0    | Х         | Х  | Х                | Х                | High-Z      |
| 1             | 1    | 0         | 0  | ≥ <b>-</b> 50mV  | Х                | 1           |
| 1             | 1    | 0         | 0  | ≤ <b>-</b> 200mV | Х                | 0           |
| 1             | 1    | 0         | 0  | Floating         | Х                | 1           |
| 1             | 1    | 1         | 0  | Х                | ≥ -50mV          | 1           |
| 1             | 1    | 1         | 0  | Х                | ≤ <b>-</b> 200mV | 0           |
| 1             | 1    | 1         | 0  | Х                | Floating         | 1           |
| 1             | 1    | Х         | 1  | Х                | Х                | High-Z      |
| 0             | Х    | Х         | Х  | Х                | Х                | RS-232 Mode |

TABLE 5: RS-485/422 TERMINATION TRUTH TABLE


| FD_TX_TERM | TERM   | RS-485/RS-232 | HALF/FULL | TX TERM  | RX TERM    |
|------------|--------|---------------|-----------|----------|------------|
| PIN 12     | Pin 13 | Pin 14        | Pin 15    | Pins 3-4 | Pins 18-19 |
| Х          | 0      | 1             | 0         | -        | -          |
| 0          | 1      | 1             | 0         | -        | ON         |
| 1          | 1      | 1             | 0         | ON       | ON         |
| Х          | 0      | 1             | 1         | -        | -          |
| Х          | 1      | 1             | 1         | ON       | -          |
| Х          | Х      | 0             | Х         | -        | -          |

The DE and  $\overline{\text{RE}}$  pins have no effect on the termination setting in any mode.



### **PACKAGE DRAWINGS**

### FIGURE 14. QFN 32







### **REVISION HISTORY**

| DATE      | REVISION | DESCRIPTION        |
|-----------|----------|--------------------|
| Sept 2013 | 1.0.0    | Production Release |

### **NOTICE**

EXAR Corporation reserves the right to make changes to the products contained in this publication in order to improve design, performance or reliability. EXAR Corporation assumes no responsibility for the use of any circuits described herein, conveys no license under any patent or other right, and makes no representation that the circuits are free of patent infringement. Charts and schedules contained here in are only for illustration purposes and may vary depending upon a user's specific application. While the information in this publication has been carefully checked; no responsibility, however, is assumed for inaccuracies.

EXAR Corporation does not recommend the use of any of its products in life support applications where the failure or malfunction of the product can reasonably be expected to cause failure of the life support system or to significantly affect its safety or effectiveness. Products are not authorized for use in such applications unless EXAR Corporation receives, in writing, assurances to its satisfaction that: (a) the risk of injury or damage has been minimized; (b) the user assumes all such risks; (c) potential liability of EXAR Corporation is adequately protected under the circumstances.

Copyright 2013 EXAR Corporation

Datasheet Sept 2013.

For technical support please email Exar's Serial Technical Support group at: serialtechsupport@exar.com.

Reproduction, in part or whole, without the prior written consent of EXAR Corporation is prohibited.