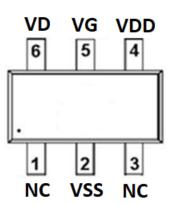


DESCRIPTION

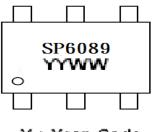
The SP6089 is a low-drop diode emulator IC, which when it combined with an external switch replaces Schottky diodes in high-efficiency flyback converters.

The SP6089 generates its own supply voltage and does not need auxiliary winding for either high-side or low-side applications. Programmable ringing detection circuitry prevents the SP6089 from false turning on at $V_{\rm DS}$ oscillations during discontinuous conduction mode (DCM) and quasi-resonant (QR) operation.

SP6089 is available in space saving SOT-23-6L package.

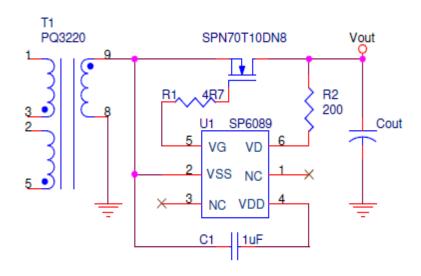

APPLICATIONS

- Industrial Power Systems
- Distributed Power Systems
- Battery Powered Systems
- Flyback Converters
- USB PD Quick Chargers


FEATURES

- Does not need auxiliary winding for either high-side or low-side applications
- Fast turn-on and turn-off delay
- Ringing detection prevents false turn-on during DCM and QR operations
- Less than 100mW standby power
- <400uA quiescent current at light load mode
- Supports CCM, DCM and QR operation
- Support both high-side and low-side rectification
- Available in space saving SOT-23-6L package

PINCONFIGURATION (SOT-23-6L)



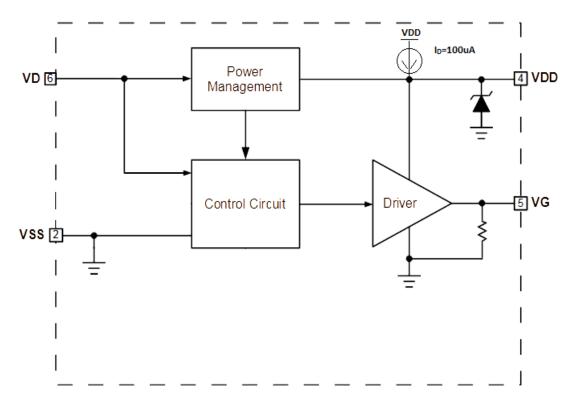
PART MARKING

Y: Year Code W: Week Code

TYPICAL APPLCATION CIRCUIT

PIN DESCRIPTION

Pin	Symbol	Description	
1	NC		
2	V_{SS}	Ground, also used as reference for V _D	
3	NC		
4	V_{DD}	Linear regulator output. Supply voltage for internal circuits	
5	V_{G}	Gate driver output	
6	V_{D}	External FET drain voltage sensing and input of linear regulator	


ORDERING INFORMATION

Part Number	Package	Part Marking		
SP6089S26RGB	SOT-23-6L	SP6089		

※ SP6089S26RGB: Tape Reel; Pb − Free; Halogen - Free

BLOCK DIAGRAM

ABSOLUTE MAXIMUM RATINGS (T_A =25°C, unless otherwise specified) The following ratings designate persistent limits beyond which damage to the device may occur.

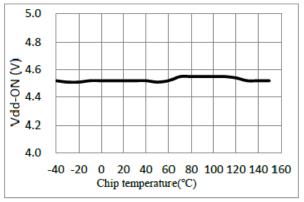
Symbol	Para	Value	Unit	
$ m V_D$	V_D pin voltage to V_{SS}	-0.7~200	V	
$V_{ m DD}$	V_{DD} , and V_G pins voltages to V_{SS}	-0.3~8	V	
V_G	Driver Pin	-0.3~8	V	
P_{D}	The power dissipation	0.30	W	
T_{J}	Operating junction temperature range	-40 to 150	$^{\circ}$	
T_{STG}	The storage temperature range	-55 to 150	$^{\circ}$	

THERMAL RESISTANCE

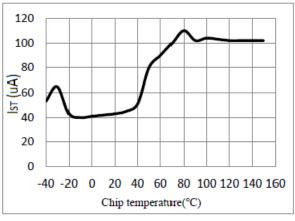
Symbol	Para	Value	Unit
Rөja	Thermal Resistance Junction –to Ambient	220	°C/W
Rөjc	Thermal Resistance Junction –to Case	110	°C/W

Page 3 2023/2/15 **Ver 3.1**

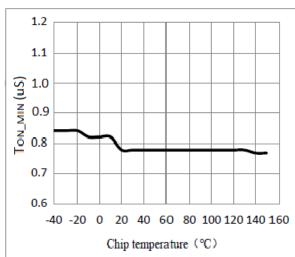
ELECTRICAL CHARACTERISTICS

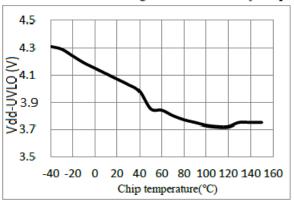

 $(T_A=25^{\circ}C, V_{dd}=6V, unless otherwise specified.)$

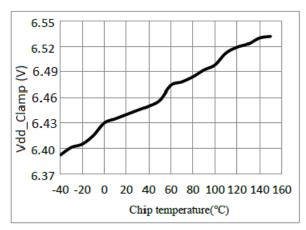
Symbol	Parameter	Conditions	Min	Тур	Max	Units	
Supply Sect	ion						
UVLO	V _{DD} UVLO rising	V _{DD} Rising	4.0	4.4	4.7	V	
	$V_{ m DD}$ UVLO Hysteresis			0.4		V	
I_{DD}	Operating current		280	340	430	uA	
I_{ST}	V _{DD} Startup Current	$V_{\rm DD} = V_{\rm DD_ON} - 0.1 V$			150	uA	
V_{DD}	V _{DD} Operating Voltage	V _D =40V, Other Floating	5.8	6.2	6.6	V	
V_{DD} _clamp	V _{DD} Clamp Voltage	I _{DD} =40mA	6.1	6.5	6.9	V	
Control Circ	uitry Section						
$V_{\rm LL\ DS}$	V _{SS} -V _D Turn-on Threshold		150	200	250	mV	
	V _{SS} -V _D Forward Voltage			0		25 mV	
$ m V_{FWD}$	V _{SS} -V _D Turn-off Threshold		15	20	25		
T_{BON}	Turn-on blanking time	C _{LOAD} =5nF	1.1	1.3	1.6	uS	
T_{BOFF}	Turn-off blanking time	C _{LOAD} =5nF	0.2	0.3	0.5	uS	
T_{DON}	The Turn-on Delay	C _{LOAD} =5nF	120	150	180	nS	
T_{DOFF}	Turn-off Delay Time	C _{LOAD} =5nF	25	30	33	nS	
Gate Driver	Section						
V_{DRV}	Maximum Drive Voltage			6		V	
V _{GSMIN}	Regulated Minimum Drive Voltage			3		V	
I_source	Maximum Source current	C _{LOAD} =5nF		1.5		A	
I_ _{SINK}	Maximum Sink current	C _{LOAD} =5nF		4		A	
T_{RISE}	Driving Rising Time	C _{LOAD} =5nF			25	nS	
T_{FALL}	Driving Falling Time	C _{LOAD} =5nF			10	nS	

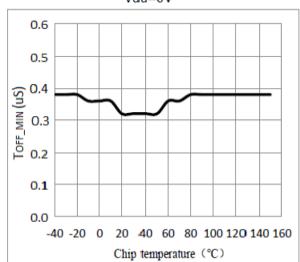


TYPICAL CHARACTERISTICS


Vdd Start-up Voltage vs Temperature C_{Vdd}=1uF, Vdd Rising, Current Suddenly Increases


Vdd Start-up Current vs Temperature $C_{Vdd} = 1uF$, Vdd-ON- 0.1V


SR Minimum Turn-on Time vs Temperature Vdd=6V


 $\label{eq:VddTurn-offVoltage} Vdd\ Turn-off\ Voltage\ vs\ Temperature$ $C_{Vdd}\!=\!1uF,\ Vdd\ Falling,\ Current\ Suddenly\ Drops$

Vdd Clamp Voltage vs Temperature $C_{Vdd}=1uF$, $I_{CC}=20mA$

SR Minimum Turn-off Time vs Temperature Vdd=6V

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties, which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

> ©The SYNC Power logo is a registered trademark of SYNC Power Corporation ©2022 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C Phone: 886-2-2655-8178 Fax: 886-2-2655-8468

http://www.syncpower.com