

Ultra-low Quiescent Current, High Efficiency Boost DC-DC Regulator

FEATURES

- Ultra-low 12µA Quiescent Current
- 700mA Output Current at 2.6V_{IN.} 3.3V_{OUT}
- 94% Efficiency Possible
- Wide Input Voltage Range: 0.85V to 4.5V
- 3.3V Fixed Output and adjustable 2.5V to 5.0V Output Range
- Internal Synchronous Rectifier for High Efficiency
- 0.3 Charging Switch, 0.3 Synchronous Rectifier
- Anti-Ringing Inductor Switch
- Programmable Inductor Peak Current
- Logic Shutdown Control
- Under Voltage Lock-Out, 0.62V
- Programmable Low Battery Detect
- Small 10 pin MSOP Package

APPLICATIONS

- Digital Still Cameras
- MP3 Players
- PDA's
- Pagers
- Handheld Portable Devices
- Medical Monitors

DESCRIPTION

The SP6649 is an ultra-low quiescent current, high efficiency step-up DC-DC converter ideal for single and dual cell alkaline, or Li-lon battery applications such as digital still cameras, PDA's, MP3 players, and other portable devices. The SP6649 combines the high delivery associated with PWM control, and the low quiescent current and excellent light-load efficiency of PFM control. The SP6649 features 12µA quiescent current, synchronous rectification, a 0.3 charging switch, anti-ringing inductor switch, programmable low battery detect, under-voltage lockout and programmable inductor peak current. The device can be controlled by a 1nA active LOW shutdown pin.

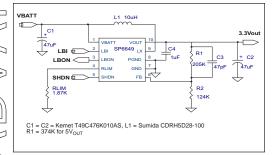


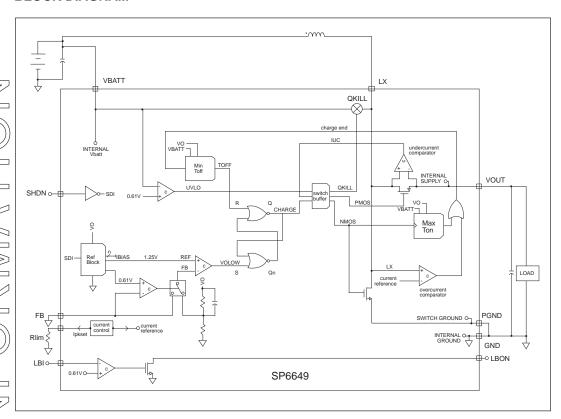
Figure 1. Typical Application Circuit

Figure 2. Maximum Load Current in Operation

ABSOLUTE MAXIMUM RATINGS

These are stress ratings only and functional operation of the device at these ratings or any other above those indicated in the operation sections of the specifications below is not implied. Exposure to absolute maximum rating conditions for extended periods of time may affect reliability.

LX, Vo, V _{BATT} , LBON, FB to GND pin	0.3 to 6.0V
SHDN, LBÎ	0.3V to V _{parr} +0.5V
Vo, GND, LX Current	
Reverse V _{RATT} Current	
Forward V _{BATT} Current	
Storage Temperature	
Operating Temperature	
Lead Temperature (Soldering, 10 sec) .	
ESD Rating	


 $V_{BATT} = V_{\overline{SHDN}} = 1.3 \text{V}, V_{FB} = 0 \text{V}, I_{LOAD} = 0 \text{mA}, T_{AMB} = -40 ^{\circ}\text{C to} + 85 ^{\circ}\text{C}, V_{OUT} = +3.3 \text{V}, typical values at } 27 ^{\circ}\text{C unless otherwise noted}.$

age Operating Range, V_{BATT} ltage Lock-out/UVLO nput Voltage, V_{BATT} oltage, V_{O} t Current into V_{O} , I_{QO} t Current into V_{BATT} , I_{QB} n Current into V_{O} , I_{SDO} n Current into V_{BATT} , I_{SDB} , $R_{LIM} = 4.0 K$, $R_{LIM} = 1.87 K$ Current Limit, I_{PK} urrent	3.16	0.62 0.85 3.30 12 20 1 200 85 91 85 92 1.2 250 700	4.5 0.9 3.44 22 500 500 500	V V V V μA nA nA nA % %	After Startup $R_{LOAD} = 3k$ $3.3V V_{O} \text{ preset}$ $V_{OUT} = 3.3V, V_{FB} = 1.5V, Toggle \overline{SHDN}$ $V_{OUT} = 3.3V, V_{FB} = 1.5V$ $V_{SHDN} = 0V$ $V_{SHDN} = 0V, V_{BATT} = 2.6V$ $V_{BATT} = 1.3V, I_{OUT} = 50\text{mA}$ $V_{BATT} = 2.6V, I_{OUT} = 100\text{mA}$ $V_{BATT} = 2.6V, I_{OUT} = 100\text{mA}$ $V_{BATT} = 2.6V, I_{OUT} = 200\text{mA}$ $V_{BATT} = 2.6V, I_{OUT} = 200\text{mA}$ $V_{BATT} = 2.6V, I_{OUT} = 200\text{mA}$ $V_{BATT} = 1.3V, I_{PK} = 1400/R_{LIM}$ $V_{BATT} = 1.3V, R_{LIM} = 1.17k$
nput Voltage, V_{BATT} oltage, V_{O} t Current into V_{O} , I_{QO} t Current into V_{BATT} , I_{QB} current into V_{O} , I_{SDO} Current into V_{BATT} , I_{SDB} $I_{CURRENT}$, $I_{CURRENT}$, I_{SDB} $I_{CURRENT}$, I_{CU		0.85 3.30 12 20 1 200 85 91 85 92 1.2 250 700	3.44 22 500 500 500	V V μA nA nA nA % % %	$\begin{array}{c} 3.3 \text{V V}_{\text{O}} \text{preset} \\ \\ \text{V}_{\text{OUT}} = 3.3 \text{V}, \text{V}_{\text{FB}} = 1.5 \text{V}, \text{Toggle SHDN} \\ \\ \text{V}_{\text{OUT}} = 3.3 \text{V}, \text{V}_{\text{FB}} = 1.5 \text{V} \\ \\ \text{V}_{\text{SHDN}} = 0 \text{V} \\ \\ \text{V}_{\text{SHDN}} = 0 \text{V}, \text{V}_{\text{BATT}} = 2.6 \text{V} \\ \\ \text{V}_{\overline{\text{BATT}}} = 1.3 \text{V}, \text{I}_{\text{OUT}} = 50 \text{mA} \\ \\ \text{V}_{\text{BATT}} = 2.6 \text{V}, \text{I}_{\text{OUT}} = 100 \text{mA} \\ \\ \text{V}_{\text{BATT}} = 1.3 \text{V}, \text{I}_{\text{OUT}} = 100 \text{mA} \\ \\ \text{V}_{\text{BATT}} = 2.6 \text{V}, \text{I}_{\text{OUT}} = 200 \text{mA} \\ \\ \text{V}_{\text{BATT}} = 2.6 \text{V}, \text{I}_{\text{OUT}} = 200 \text{mA} \\ \\ \text{R}_{\text{LIM}} = 1.17 \text{K}, \text{I}_{\text{PK}} = 1400 / \text{R}_{\text{LIM}} \\ \\ \end{array}$
off-Time Constant K _{OFF}		3.30 12 20 1 200 85 91 85 92 1.2 250 700	3.44 22 500 500 500	V μA nA nA nA % % % A mA	$\begin{array}{c} 3.3 \text{V V}_{\text{O}} \text{preset} \\ \\ \text{V}_{\text{OUT}} = 3.3 \text{V}, \text{V}_{\text{FB}} = 1.5 \text{V}, \text{Toggle SHDN} \\ \\ \text{V}_{\text{OUT}} = 3.3 \text{V}, \text{V}_{\text{FB}} = 1.5 \text{V} \\ \\ \text{V}_{\text{SHDN}} = 0 \text{V} \\ \\ \text{V}_{\text{SHDN}} = 0 \text{V}, \text{V}_{\text{BATT}} = 2.6 \text{V} \\ \\ \text{V}_{\overline{\text{BATT}}} = 1.3 \text{V}, \text{I}_{\text{OUT}} = 50 \text{mA} \\ \\ \text{V}_{\text{BATT}} = 2.6 \text{V}, \text{I}_{\text{OUT}} = 100 \text{mA} \\ \\ \text{V}_{\text{BATT}} = 1.3 \text{V}, \text{I}_{\text{OUT}} = 100 \text{mA} \\ \\ \text{V}_{\text{BATT}} = 2.6 \text{V}, \text{I}_{\text{OUT}} = 200 \text{mA} \\ \\ \text{V}_{\text{BATT}} = 2.6 \text{V}, \text{I}_{\text{OUT}} = 200 \text{mA} \\ \\ \text{R}_{\text{LIM}} = 1.17 \text{K}, \text{I}_{\text{PK}} = 1400 / \text{R}_{\text{LIM}} \\ \\ \end{array}$
t Current into V_O , I_{QO} t Current into V_O , I_{QO} t Current into V_O , I_{SDO} current into V_{O} , I_{SDO} current into V_{BATT} , I_{SDB} $I_{CURRENT}$, $I_{CURRENT}$, $I_{CURRENT}$, $I_{CURRENT}$		12 20 1 200 85 91 85 92 1.2 250 700	22 500 500 500	μΑ nA nA nA % % % A mA	V _{OUT} = 3.3V, V _{FB} = 1.5V, Toggle SHDN V _{OUT} = 3.3V, V _{FB} = 1.5V V _{SHDN} = 0V V _{SHDN} = 0V, V _{BATT} = 2.6V V _{BATT} = 1.3V, I _{OUT} = 50mA V _{BATT} = 2.6V, I _{OUT} = 100mA V _{BATT} = 1.3V, I _{OUT} = 100mA V _{BATT} = 2.6V, I _{OUT} = 200mA R _{LIM} = 1.17K, I _{PK} = 1400/R _{LIM}
t Current into V_{BATT} , I_{QB} n Current into V_{O} , I_{SDO} n Current into V_{BATT} , I_{SDB} n, $R_{LIM} = 4.0K$ n, $R_{LIM} = 1.87K$ Current Limit, I_{PK} urrent	1.0	20 1 200 85 91 85 92 1.2 250 700	500 500 500	nA nA nA % % A mA	$\begin{split} &V_{OUT} = 3.3 \text{V, V}_{FB} = 1.5 \text{V} \\ &V_{SHDN} = 0 \text{V} \\ &V_{SHDN} = 0 \text{V, V}_{BATT} = 2.6 \text{V} \\ &V_{\overline{BATT}} = 1.3 \text{V, I}_{OUT} = 50 \text{mA} \\ &V_{BATT} = 2.6 \text{V, I}_{OUT} = 100 \text{mA} \\ &V_{BATT} = 2.6 \text{V, I}_{OUT} = 100 \text{mA} \\ &V_{BATT} = 2.6 \text{V, I}_{OUT} = 200 \text{mA} \\ &R_{LIM} = 1.17 \text{K, I}_{PK} = 1400 / R_{LIM} \end{split}$
n Current into $V_{O,}$ I _{SDO} n Current into $V_{BATT,}$ I _{SDB} $, R_{LIM} = 4.0K$ $, R_{LIM} = 1.87K$ Current Limit, I _{PK} urrent	1.0	1 200 85 91 85 92 1.2 250 700	500	nA nA % % % A mA	V _{SHDN} = 0V V _{SHDN} = 0V, V _{BATT} = 2.6V V _{BATT} = 1.3V, I _{OUT} = 50mA V _{BATT} = 2.6V, I _{OUT} = 100mA V _{BATT} = 1.3V, I _{OUT} = 100mA V _{BATT} = 2.6V, I _{OUT} = 200mA R _{LIM} = 1.17k, I _{PK} = 1400/R _{LIM}
Current into V_{BATT} , I_{SDB} , $R_{LIM} = 4.0 K$, $R_{LIM} = 1.87 K$ Current Limit, I_{PK} urrent Off-Time Constant K_{OFF}	1.0	200 85 91 85 92 1.2 250 700	500	nA % % % A mA	V _{SHDN} = 0V, V _{BATT} = 2.6V V _{BATT} = 1.3V, I _{OUT} = 50mA V _{BATT} = 2.6V, I _{OUT} = 100mA V _{BATT} = 1.3V, I _{OUT} = 100mA V _{BATT} = 2.6V, I _{OUT} = 200mA R _{LIM} = 1.17K, I _{PK} = 1400/R _{LIM}
, R _{LIM} = 4.0K , R _{LIM} = 1.87K Current Limit, I _{PK} urrent Off-Time Constant K _{OFF}	1.0	85 91 85 92 1.2 250 700		% % % A mA	V _{BATT} = 1.3V, I _{OUT} = 50mA V _{BATT} = 2.6V, I _{OUT} = 100mA V _{BATT} = 1.3V, I _{OUT} = 100mA V _{BATT} = 2.6V, I _{OUT} = 200mA R _{LIM} = 1.17K, I _{PK} = 1400/R _{LIM}
, R _{LIM} = 1.87K Current Limit, I _{PK} urrent Off-Time Constant K _{OFF}	1.0	91 85 92 1.2 250 700	1.4	% % % A mA	$\begin{split} &V_{BATT} = 2.6V, \ I_{OUT} = 100 \text{mA} \\ &V_{BATT} = 1.3V, \ I_{OUT} = 100 \text{mA} \\ &V_{BATT} = 2.6V, \ I_{OUT} = 200 \text{mA} \\ &R_{LIM} = 1.17k \ , \ I_{PK} = 1400 / R_{LIM} \end{split}$
Current Limit, I _{PK} urrent Off-Time Constant K _{OFF}	1.0	92 1.2 250 700	1.4	% A mA	$V_{BATT} = 2.6V$, $I_{OUT} = 200mA$ $R_{LIM} = 1.17k$, $I_{PK} = 1400/R_{LIM}$
off-Time Constant K _{OFF}	1.0	250 700	1.4	mA	
Off-Time Constant K _{OFF}		700		1	\/ = 1.3\/_P = 1.17k
***		150		mA	$V_{BATT} = 1.3V$, $R_{LIM} = 1.17k$ $V_{BATT} = 2.6V$, $R_{LIM} = 1.17k$
***		400		mA mA	$V_{BATT} = 1.3V, R_{LIM} = 1.87k$ $V_{BATT} = 2.6V, R_{LIM} = 1.87k$
		1.1		V*µs	t _{OFF} K _{OFF} /(V _{OUT} -V _{BATT})
On-Time Constant K _{ON}		3.3		V*µs	ton Kon/VBATT
tch Resistance		0.30	0.6		I _{NMOS} = 100mA
tch Resistance		0.30	0.6		$I_{PMOS} = 100 mA$
oltage, V _{FB}	1.20	1.25	1.30	V	External feedback
Current		1	100	nA	V _{FB} =1.3V
g Trip Voltage	0.594	0.625	0.656	V	
resis		25		mV	
ut Voltage for LBON, V _{OL}			0.4	V	V _{BATT} = 1.3V, Isink = 1mA
current for LBON			500	nA	$V_{BATT} = 1.3V$, $V_{LBON} = 3.3V$
V _{IH} V _{IL}	1.0		0.25 0.5	V	$V_{BATT} = 1.3V$ $V_{BATT} = 1.3V$ $V_{BATT} = 2.6V$ $V_{BATT} = 2.6V$
		1	100	nA	- DATT
֡	V _{IH}	current for LBON cut Voltage V _{IL} V _{IH} V _{IL} V _{IH} V _{IH} 2.0	25 25 25 25 25 25 25 25	25	25

PIN DESCRIPTION

PIN NUMBER	PIN NAME	DESCRIPTION
1	V _{ВАТТ}	Battery Voltage pin. The startup circuitry runs off of this pin. The operate circuit also uses this voltage to regulate the off-time [$t_{OFF} = K_{OFF} / (V_{OUT} - V_{BATT})$]. When the battery voltage drops below 0.62V after a successful startup the SP6649 goes into an undervoltage lockout mode (UVLO).
2	LBI	Low Battery Input pin. LBI below 0.61V causes the LBON pin to pull down to ground. Use a resistor divider to program the low voltage threshold for each battery configuration.
3	LBON	Low Battery Output Not pin. Open drain N _{MOS} output that sinks current to ground when LBI is below 0.625V.
4	R_{LIM}	Resistor Programmable Inductor Peak Current. By connecting a resistor R_{LIM} from this pin to ground the inductor peak current is set by $I_{PEAK}=1400/R_{LIM}$. The range for R_{LIM} is 4.0K (for 350mA) to 1.17K (for 1.2A).
5	SHDN	Shutdown Not. Tie this pin to V_{BATT} for normal operation. Tie this pin to ground to disable all circuitry inside the chip. In shutdown the output voltage will float down to a diode drop below the battery potential.
6	FB	External Feedback pin. Connect this pin to GND for fixed +3.3V operation. Connect this pin to a resistor voltage divider between V _{OUT} and GND for adjustable output operation.
7	GND	Ground pin for the internal regulator bias currents.
8	P_{GND}	Switch ground pin. The inductor charging current flows out of this pin.
9	LX	Inductor switching node. Connect one terminal of the inductor to the positive terminal of the battery. Connect the second terminal of the inductor to this pin. The inductor charging current flows into LX, through the internal charging N-channel FET, and out the GND pin.
10	V _{OUT}	Output Voltage pin. The inductor current flows out of this pin during the off-time. It is also the internal regulator voltage supply, and minimum off-time one shot input. Kelvin connect this pin to the positive terminal of the output capacitor.

BLOCK DIAGRAM

THEORY OF OPERATION

Detailed Desctiption:

The SP6649 is a step-up DC-DC converter that starts up with input voltages as low as 0.85V (typically) and operates with input voltages down to 0.62V. The ultra low quiescent current of 12µA provides excellent efficiencies. In addition to the 0.3 internal MOSFET the SP6649 has an internal synchronous rectifier eliminating the need for an external diode. An internal inductive-damping switch significantly reduces inductive ringing. If the supply voltage drops below 0.62V the SP6649 goes into under voltage lock-out opening up the internal switches. An externally programmable low battery detector with open drain output provides the user the ability to monitor the supply voltage. The inductor peak current is externally programmable to allow for a range of inductors.

Control Scheme:

A minimum off-time, current limited pulse frequency modulation (PFM) control scheme combines the high output power and efficiency of a pulse width modulation (PWM) device with the ultra low quiescent current of the traditional PFM. At low to moderate output loads the PFM control provides a higher efficiencies than traditional PWM converters are capable of delivering. At these loads the switching frequency is determined by a minimum off-time (t_{OFF}, MIN) and a maximum on-time (t_{ON}, MAX) where:

 t_{OFF} K $_{OFF}$ / $(V_{OUT}$ - $V_{BATT})$ and t_{ON} K $_{ON}$ / V_{BATT} with K_{OFF} = 1.1V μs and K_{ON} = 3.3V μs .

At light loads (plot A in *Figure 3*) the charge cycle will take $t_{ON, MAX} \mu s$. For a 1V battery this would be:

$$t_{ON, MAX} = K_{ON} / V_{BATT} = 3.3 V \mu s / 1 V = 3.3 \mu s$$

The current built up in the coil during the charge cycle gets fully discharged (discontinuous conduction mode, DCM) When the current in the coil has reached zero the synchronous rectifier switch is opened and the voltage across the coil (from V_{BATT} to LX) is shorted internally to eliminate inductive ringing.

With increasing load (plot B in *Figure 3*) this inductor damping time becomes shorter (because the output will drop quicker below its regulation point due to the heavier load) up to the point where it becomes zero. If the load increases further the SP6649 enters continuous conduction mode (CCM) where there is always current in the inductor. The charge time is still ton, MAX as long as the inductor peak current limit is not reached (plot C in *Figure 3*). the inductor peak current limit can be programmed by trying a resistor R_{LIM} from the R_{LIM} pin to ground where:

$$I_{PEAK} = 1400 / R_{LIM}$$

with a maximum recommended I_{PEAK} of 1.2A (or a minimum R_{LIM} of 1.17K).

When the peak current limit is reached the charge time is short-cycled.

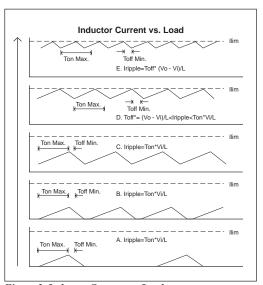


Figure 3. Inductor Current vs. Load

In (plot D of *Figure 3*) the current reaches the peak current limit during the charge cycle but full load is still not reached becuse at the end of the minimum off-time V_{OUT} was still not below its regulation point. Finally in plot E the maximum load is reached where the discharge time has shrunk to its minimum allowed value toff-min.

PERFORMANCE CHARACTERISTICS

3.3V out, refer to the Circuit in Figure 1, T_{AMB}=+25°C.

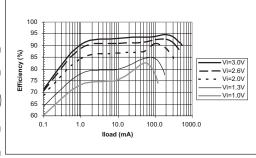


Figure 4. Efficiency vs. Load Current

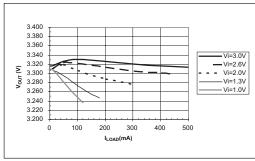


Figure 5. Line/Load Rejection vs. Load Current

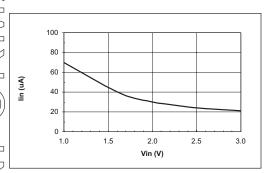


Figure 6. No Load Battery Current

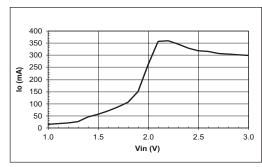


Figure 7. Maximum Resistive Load Current in Startup

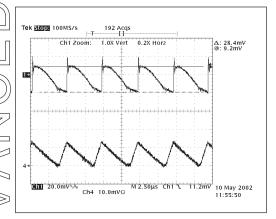


Figure 8. Output Ripple, V_{IN} =2.6V, I_{LOAD} =80mA

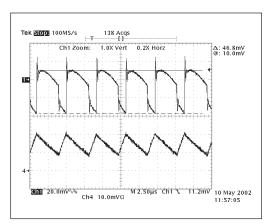


Figure 9. Output Ripple, V_{IN} =2.6V, I_{LOAD} =200mA

PERFORMANCE CHARACTERISTICS

5V out, refer to the Circuit in Figure 1, T_{AMB}=+25°C, R1=374K.

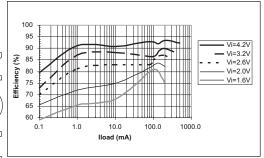


Figure 10. SP6649 5V Efficiency vs. Load Current

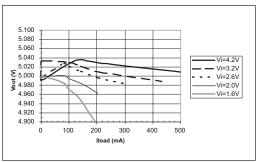


Figure 11. SP6649 5V Line/Load Rejection vs. Load

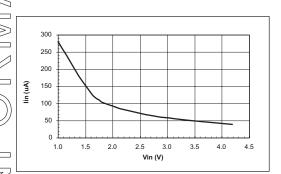


Figure 12. SP6649 5V No Load Battery Current

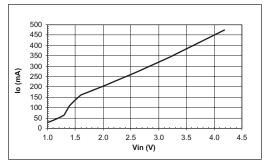


Figure 13. SP6649 5V Maximum Resistive Load Current in Startup

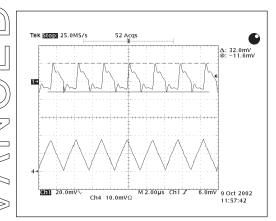


Figure 14. SP6649 5V Output Ripple, Vin=2.6V, Iload=80mA

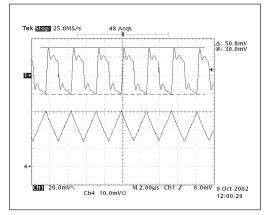
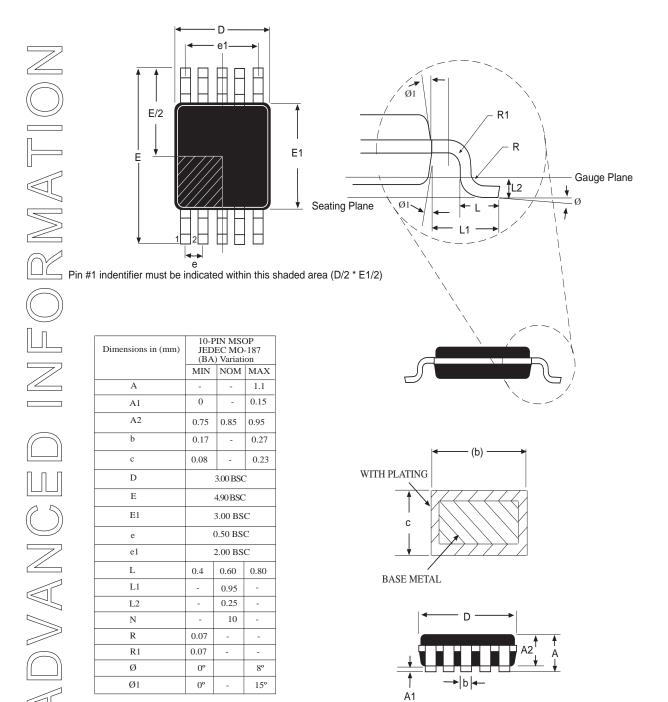



Figure 15. SP6649 5V Output Ripple, Vin=2.6V, Iload=200mA

PACKAGE: 10-PIN MSOP

(ALL DIMENSIONS IN MILLIMETERS)

ORDERING INFORMATION							
Part Number	Operating Temperature Range	Package Type					
	-40°C to +85°C(Ta						

SIGNAL PROCESSING EXCELLENCE

Sipex Corporation

233 South Hillview Drive

23. Milpit.
TEL: (40. FAX: (408)

Sales Office
22 Linnell Circle
Billerica, MA 01821
TEL: (978) 667-8700
FAX: (978) 670-900'
e-mail: sales@sipe

Sipex Cor
applicati e-mail: sales@sipex.com

Sipex Corporation reserves the right to make changes to any products described herein. Sipex does not assume any liability arising out of the application or use of any product or circuit described herein, neither does it convey any license under its patent rights nor the rights of others.