

DESCRIPTION

The SP6837 has the built-in programmable cable voltage drop compensation function, which make it flexible to accommodate various cables with different gauges and lengths.

The SP6837provides accurate constant voltage, constant current (CV/CC) regulation without requiring an opto-coupler and secondary control circuitry. It also eliminates the need of loop compensation circuitry while maintaining stability.

The SP6837 achieves excellent regulation and high average efficiency, yet meets the requirement for no-load consumption less than 30mW.

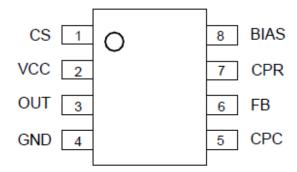
The SP6837is a high performance AC/DC power supply controller for battery charger and adapter applications. The device uses Pulse Frequency Modulation (PFM) method to build discontinuous conduction mode (DCM) flyback power supplies.

The SP6837is available in SOIC-8 package.

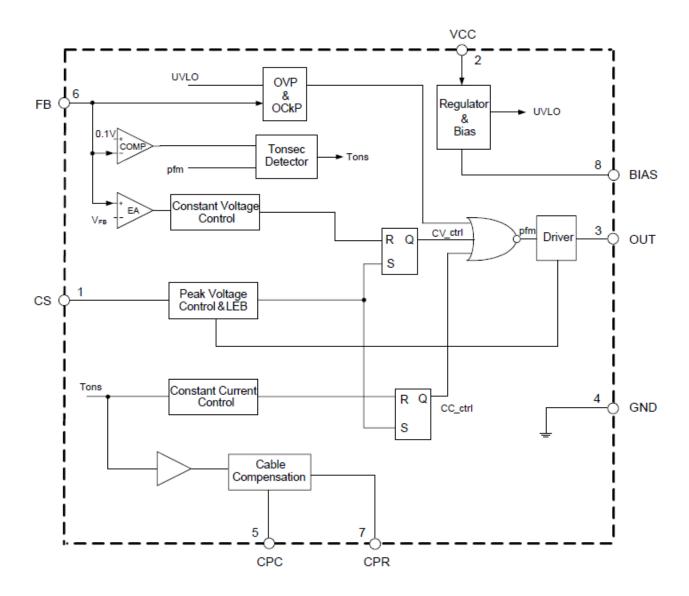
FEATURES

- Primary Side Control for Eliminating Optocoupler and Secondary CV/CC Control Circuitry
- · 30mW No-load Input Power
- · Programmable Output Cable Voltage Drop Compensation
- · Proprietary CC Tightening Technique to Achieve Vertical CC Profile
- · Compensation for External Component Temperature Variations
- · Flyback Topology in DCM Operation
- · Random Frequency Adjustment to Reduce System EMI
- · Built-in Soft Start
- · Over Voltage Protection
- · Short Circuit Protection
- · SOIC-8 Package

APPLICATIONS

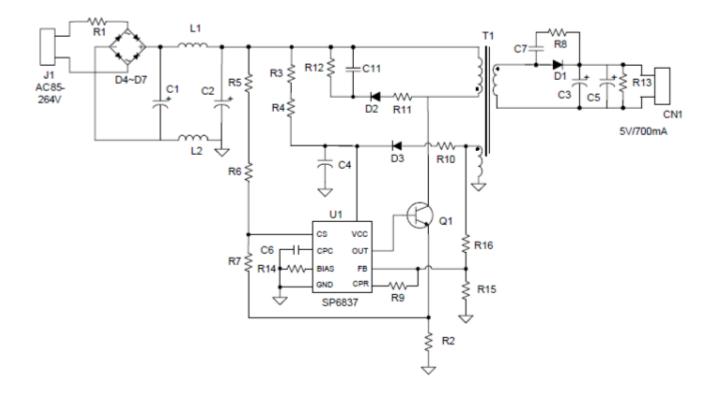

- · Adapter/Chargers for Cell/Cordless Phones, PDAs, MP3 and Other Portable Apparatus
- · LED Driver
- · Standby and Auxiliary Power Supplies

Pin Configuration



Pin Description

Pin Number	Pin Name	Function		
1	CS	The primary current sense		
2	VCC	Supply voltage		
3	OUT	This pin drives the base of external power NPN switch		
4	GND	Ground		
5	CPC	This pin connects a capacitor for output cable compensation		
6	FB	The voltage feedback from the auxiliary winding		
7	CPR	Connects a resistor to FB pin for adjustable output cable compensation		
8	BIAS	This pin sets the bias current inside SP6837 with an external resistor to GND		



Functional Block Diagram

Typical Application

2014/03/12 **Ver.1**

ORDERING INFORMATION								
Part Number	Package	Part Marking						
SP6837D8TGB	DIP-8P	SP6837						
SP6837S8RGB	SOP-8P	SP6837						

SP6837D8TGB: Tube; Pb – Free; Halogen-Free

SP6837S8RGB : Tape Reel ; Pb – Free ; Halogen-Free

PART MARKING

SOIC-8

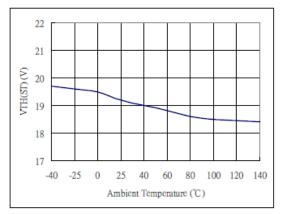
A : Lot Code B : Date Code

ABSOULTE MAXIMUM RATINGS (T_A=25°C, unless otherwise specified.)

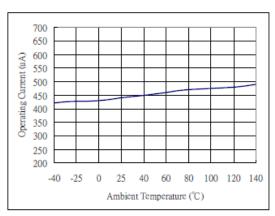
The following ratings designate persistent limits beyond which damage to the device may occur.

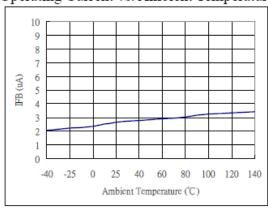
Symbol	Parameter	Value	Unit
V_{CC}	DC Supply Voltage	-0.3 ~ 36	V
$V_{COMP/RT/CS}$	COMP / RT / CS Voltage	-0.3 ~ 7.0	V
OUT	Output Current at OUT	Internally limiter	A
ESD	Human Body Model	2	KV
	Machine Model	200	V
FB	FB input -40 ~ 10		V
T_{J}	Operating Junction Temperature Range	150	$^{\circ}\! \mathbb{C}$
T_{STG}	Storage Temperature Range	-65 ~ 150	$^{\circ}\!\mathbb{C}$
T_{LEAD}	Pb-Free Lead Soldering Temperature for 5 sec.	300	$^{\circ}\!\mathbb{C}$
$R_{\Theta JC}$	Thermal Resistance Junction – Case (*)	190	°C/W

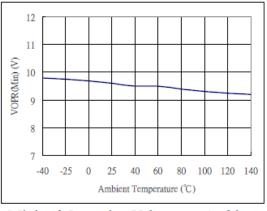
(*)Note 1: Stresses greater than those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "Recommended Operating Conditions" is not implied. Exposure to "Absolute Maximum Ratings" for extended periods may affect device reliability.

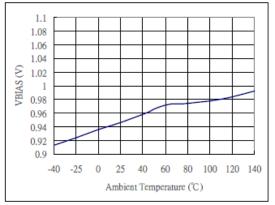

ELECTRICAL CHARACTERISTICS

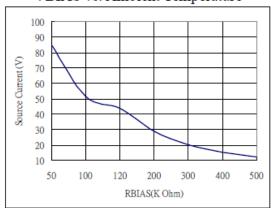
(T_A=25°C , V_{CC}=15V, unless otherwise specified.)


Symbol	Parameter	Conditions	Min.	Typ.	Max.	Unit
UVLO SEC	CTION					
V _{TH(ST)}	Start-up Threshold		17	18.5	21	V
Vopr(min)	Minimal Operating Voltage		8.2	9.2	10.2	V
Reference V	Voltage		- "	II.		
V _{BIAS}	BIAS Pin Voltage	$R_{BIAS=200K\Omega}$, After Turn On	1.0	1.1	1.2	V
STANDBY	CURRENT SECTION)					
Ist	Start-up Current	$V_{\text{CC}}=V_{\text{TH(ST)}}-0.5V,$ $R_{\text{BIAS}}=200K\Omega$ Before start-up			1.5	uA
$I_{\text{CC}(\text{OPR})}$	Operating Current	R _{BIAS} =200KΩ		390	480	uA
DRIVE OU	TPUT SECTION		1	I		
Iout	OUT Maximum Current Source	$R_{BIAS}=200K\Omega$	20	30	40	mA
CURRENT	SENSE SECTION					
V_{CS}	Current Sense Threshold		490	513	535	mV
Vcs(pre)	Pre-Current Sense		390	413	435	mV
	Leading Edge Blanking			500		ns
FEEDBAC	K INPUT SECTION					
Іғв	Feedback Pin Input Leakage Current	V _{FB} =4V	2.0	3.0	4.0	uA
V_{FB}	Feedback Threshold		3.97	4.03	4.09	V
$V_{FB(EN)} \\$	Enable Turn-on Voltage		-2.0	-1.7	-1.4	V
OUTPUT V	OLTAGE COMPENSATION SE	CTION				
V_{CPR}	CPR Voltage	Dons (Tons/T): from 55% to 0.02%	1.5		3.5	V
I CPR	CPR Sink Current				200	uA
PROTECT	ION SECTION					
V _{FB(OVP)}	Over Voltage Protection		7	8	9	V
				1		


Typical Performance Characteristics


Start-up voltage vs. Ambient Temperature


Operating Current vs. Ambient Temperature


IFB vs. Ambient Temperature

Minimal Operating Voltage vs. Ambient Temperature

VBIAS vs. Ambient Temperature

Source Current vs. RBIAS

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties that may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2004 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C
Phone: 886-2-2655-8178
Fax: 886-2-2655-8468
http://www.syncpower.com