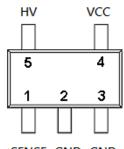


DESCRIPTION

The SP689 is a low cost version ultra high voltage start up IC. This IC is ideal to use in conjunction with any PWM to further reduce the standby power. By using SP689, it can eliminate the need for startup resistors and bleeder resistors in switching mode power supply design. It would provide the users a superior AC/DC power application with higher efficiency and lower standby power. With low external component counts, SP689 is a low cost solution for the applications. SP689 is available in SOT-23-5L package.

APPLICATIONS

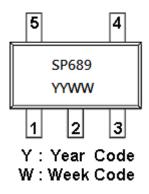
- AC/DC Switching Power Adaptor
- Battery Charger
- Open-Frame Switching Power Supply
- LED Power Supply


FEATURES

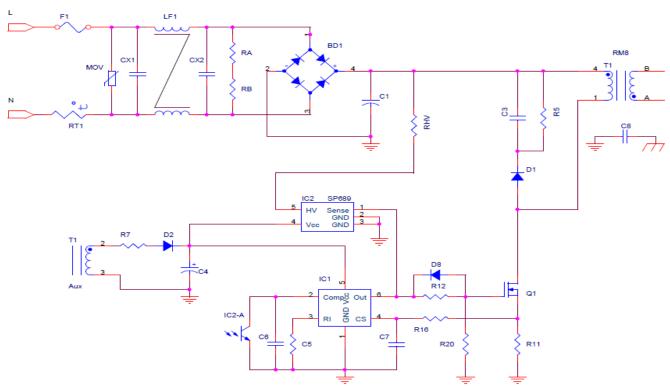
• 700V CDMOS Process

PIN CONFIGURATION

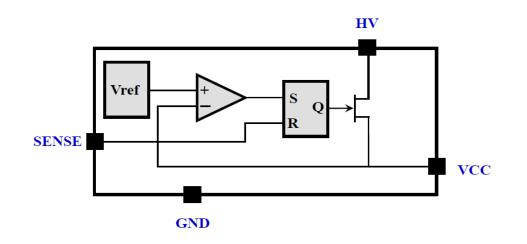
SOT-23-5L


- Auto Re-StartHigh-voltage start-up
- Low standby power circuits
- SOT-23-5L Package

SENSE GND GND


PART MARKING

SOT-23-5L


TYPICAL APPLCATION CIRCUIT

PIN DESCRIPTION

Pin	Symbol	Description
1	SENSE	Sense External Signal to Switch off HV MOSFET
2	GND	Ground
3	GND	Ground
4	VCC	Supply Voltage In
5	HV	Ultra High Voltage

BLOCK DIAGRAM

ORDERINGINFORMATION								
Part Number	Package	Part Marking						
SP689S25RGB	SOT-23-5L	SP689						

※ SP689S25RGB ∶ Tape Reel ; Pb – Free ; Halogen-Free

ABSOULTE MAXIMUM RATINGS ($T_A=25^{\circ}C$, unless otherwise specified.)

The following ratings designate persistent limits beyond which damage to the device may occur.

Symbol	Parameter	Value	Unit	
V_{HV}	HV Voltage	-0.3~700	V	
V _{CC / SENSE}	Vcc / SENSE Voltage	-0.3 ~ 40	V	
P _D	Power Dissipation @ $T_A = 85^{\circ}C$ (*)	0.3	W	
ESD	Human Body Model	4	KV	
	Machine Model	300	V	
T_{J}	Operating Junction Temperature Range		-40 ~ 150	°C
T _{STG}	Storage Temperature Range	-40 ~ 150	°C	
$R_{\Theta JC}$	Thermal Resistance Junction – Case (*)	SOT-23-5L	210	°C/W

(*) The power dissipation and thermal resistance are evaluated under copper board mounted with free air conditions.

ELECTRICAL CHARACTERISTICS

 $(T_A=25^{\circ}C, V_{HV}=30V, unless otherwise specified.)$

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vhv	HV Voltage	Ir=50uA	650			V
Istartup	Start Up Current	$V_{\rm HV} = 30V$		100	140	uA
		VHV = 30V, VCC = 12V	1.5	2.5	5.0	mA
Ic	HV Current Source	VHV = 30V, VCC = 16V	1.0	2.0	4.0	mA
		VHV = 120V, VCC = 16V	2.0	3.0	4.5	mA
	Vcc decreasing level at when the HV	$V_{\rm HV} = 30V,$				
Vcc_rs	Voltage Re-start			6.5		V
Iq	Quiescent Current, which HV turns-off	$V_{HV} = 30V, V_{CC} = 16V$		115	150	uA
VSENSE HI	Sense Voltage High(Logic level)		2.25		2.75	V
VSENSE LO	Sense Voltage Low(Logic level)				0.7	V

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties that may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation © 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 http://www.syncpower.com