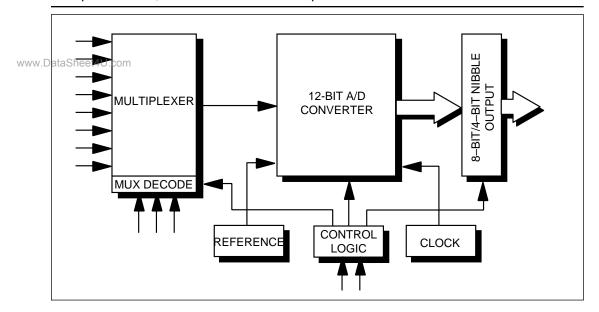


Monolithic, 12-Bit Data Acquisition System


- Complete Monolithic 8-Channel, 12-Bit DAS
- 100kHz Throughput
- 16-Bit Microprocessor Bus Interface
- MUX Inputs Overvoltage Protected
- Parallel 8/4-Bit Nibble Output
- Tri-State Latched Output
- No Missing Codes to 12-Bits
- 28-pin SOIC and PDIP package
- 200mW Max Power Dissipation (140mw Typ.)

*Formerly part of the SP410 Series.

DESCRIPTION...

The **SP8480 Series** are complete monolithic data acquisition systems, featuring 8-channel multiplexer, internal reference and 12-bit sampling A/D converter in 28–pin plastic DIP or SOIC packages. Linearity errors of ± 0.5 and ± 1.0 LSB, and Differential Non-linearity to 12-bits are guaranteed, with no missing codes over temperature. Multiplexer settling plus acquisition time is $1.9\mu s$ maximum; A/D conversion time is $8.1\mu s$ maximum.

ABSOLUTE MAXIMUM RATINGS

V _{cc} to Common Ground	0V to +16.5V
V _{Logic} to Common Ground	0V to +7V
Analog Common to Digital Common Ground .	0.5V to +1V
Digital Inputs to Common Ground	0.5V to V ₁₀₀₀ +0.5V
Digital Outputs to Common Ground	0.5V to V +0.5V
Multiplexer Analog Inputs	16.5V to +31.5V
Gain and Offset Adjustment	0.5V to V +0.5V
Analog Input Maximum Current	25mA
Temperature with Bias Applied	55°C to +125°C
Storage Temperature	65°C to +150°C
Lead Temperature, Soldering	300°C, 10sec

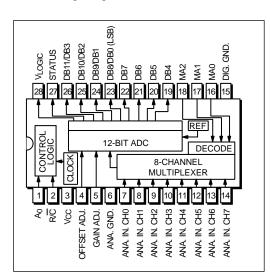
CAUTION: www. DataSheet 4U.com
ESD (ElectroStatic Discharge) sensitive
device. Permanent damage may occur on
unconnected devices subject to high energy
electrostatic fields. Unused devices must be
stored in conductive foam or shunts.
Personnel should be properly grounded prior
to handling this device. The protective foam
should be discharged to the destination
socket before devices are removed.

SPECIFICATIONS

(T_A= 25°C and nominal supply voltages unless otherwise noted)

	MIN.	TYP.	MAX.	UNIT	CONDITIONS
ANALOG INPUTS Input Voltage Range Multiplexer Inputs Configuration	9	0 to +5 Single-ende	8 ed	V	
Input Impedance ON Channel OFF Channel Input Bias Current		10 ⁹ 10 ¹⁰		$\Omega \Omega$	Parallel with 30pF Parallel with 5pF
Per Channel Crosstalk			±10 ±250	nA nA	25°C -55°C to +125°C
OFF to ON Channel			-90 -80 -70	dB dB dB	10kHz, 0V to +5V $_{pk\text{-to-pk}}$ 50kHz, 0V to +5V $_{pk\text{-to-pk}}$ 100kHz, 0V to +5V $_{pk\text{-to-pk}}$
ACCURACY Resolution Linearity Error	12			Bits	
−K, −B −J, −A Differential Non-Linearity			±0.5 ±1	LSB LSB	
-K, -B -J, -A Offset Error www.⊅atGaineError.com No Missing Codes		±2 ±0.3	±1 ±2	LSB LSB LSB %FSR	Adjustable to zero Adjustable to zero
–K, –B		Guarantee	d		
TRANSFER CHARACTERIS Throughput Rate MUX Settling/Acquisition A/D Conversion	100		1.9 8.1	kHz μs μs	
STABILITY Linearity Offset Gain		±0.5 ±5 ±10	±2.5 ±25 ±50	ppm/°C ppm/°C ppm/°C	
DIGITAL INPUTS Capacitance Logic Levels		5		pF	
V _{IH} V _{IL} I _{IH} I _{IL}	+2.4 -0.5		+5.5 +0.8 ±5 ±5	V V μΑ μΑ	

 $(T_{\rm A}{=}~25^{\circ}{\rm C}$ and nominal supply voltages unless otherwise noted)


	MIN.	TYP.	MAX.	UNIT	CONDITIONS
DIGITAL OUTPUTS					
Capacitance Logic Levels		5		pF	
V _{OH}	+2.4			V	I _{OH} ≤ 500μA
l V _{OI}			+0.4	V	I o ≤ 1.6mA
Leakage Current Data Output		±40 lffset Bina	 	μΑ	High impedance, data bits only
POWER REQUIREMENTS		iliset billa	y		
V _{LOGIC}	+4.5		+5.5	V	
Logic		0.8	4	mA	
Vcc	+11.4	0	+16.5	V	
Power Dissipation		9 140	12 200	mA mW	
ENVIRONMENTAL					
Operating Temperature					
Commercial; –J, –K Industrial; –A, –B	0 -40		+70 +85	°C °C	
Storage Temperature	-65		+150	°C	

PIN FUNCTION...

A₀ — Device Address — Logic low enables 8 MSB read; logic high enables 4 LSB read

STATUS — Identifies valid data output; goes to logic high during conversion; goes to logic low when conversion is completed and data is valid

R/C — Read/Convert — Initiates conversion on the high-to-low transition; logic low disconnects data bus; logic high initiates read

CE — Chip Enable — Logic www DataSheet4U.com or convert; logic high enables read or convert

 ${\rm MA_0}, {\rm MA_1}, {\rm MA_2}$ — MUX Address 0, 1 & 2 — Selects analog input channels ${\rm CH_0}$ through ${\rm CH_7}$

 ${\rm DB_0}$ through ${\rm DB_{11}}$ — Data Outputs — Logic high is binary true; logic low binary false

CONTROL TRUTH TABLE

A _°	R/C	OPERATION			
Х	H ->L	Start Conversion			
0	1	Enable 8 MSBs			
1	1	Enable 4 LSBs			

MULTIPLEXER TRUTH TABLE

MA ₂	MA ₁	MΑ _o	OPERATION
0	0	0	CH₀ Selected
0	0	1	CH₁ Selected
0	1	0	CH ₂ Selected
0	1	1	CH₃ Selected
1	0	0	CH₄ Selected
1	0	1	CH₅ Selected
1	1	0	CH ₆ Selected
1	1	1	CH ₇ Selected

FEATURES...

The **SP8480 Series** are complete data acquisition systems, featuring 8-channel multiplexer, internal reference and 12-bit sampling A/D converter implemented as a single monolithic IC. The analog multiplexer accepts 0V to +5V unipolar full scale inputs. Output data is formatted as an 8-bit/4-bit nibble.

Linearity errors of ±0.5 and ±1.0 LSB, and Differential Non-linearity to 12-bits is guaranteed, with no missing codes over temperature. Channel-to-channel crosstalk is typically -85dB. Multiplexer settling plus acquisition time is 1.9μs maximum; A/D conversion time is 8.1μs maximum.

Versions of the **SP8480** are available in 28-pin plastic DIP, ceramic DIP or SOIC packages. Operating temperature ranges are 0°C to +70°C commercial and -40°C to +85°C industrial.

CIRCUIT OPERATION...

The **SP8480** is a complete 8-channel data acquisition systems (DAS), with on-board multiplexer, voltage reference, sample-and-hold, clock and tri-state outputs. The digital control architecture is very similar to the industry-standard 574-type A/D, and uses identical control lines and digital states.

The multiplexer for the **SP8480** is identical in operation to many discrete devices available today, except that it has been integrated into the single-chip DAS. The appropriate channel is selected using the MUX address lines MA₀, MA₁, and MA₂ per the truth table. The selected analog input is fed through to the ADC. The input impedance into any MUX channel will be on the order to 10⁹ ohms, since it is connected to the integral sampling structure of the capacitor DAC. Crosstalk is kept to -85dB at 0V to 5V_{pp} over an input frequency range of 10kHz to 50kHz.

When the internal control section of the **SP8480** initiates a conversion command the internal clock is enabled, and the successive approximation register (SAR) is reset to all zeros. Once the conversion has been started it cannot be stopped or restarted. Data is not available at the output buffers until the conversion has been completed.

The SAR, timed by the clock, sequences through the conversion cycle and www.BataSheet4D.com convert flag to the control section of the ADC. The clock is then disabled by the control section, which puts the STATUS output line low. The control section is enabled to allow the data to be read by external command (R/\overline{C}) .

Multiplexer Control and Inputs

On the **SP8480** the multiplexer is independent of any other control line. The address line latches MA, MA, and MA, are hard-wired in an enabled mode in the **SP8480**, and are therefore transparent. Data setup time for these inputs is 50ns. If a device is required with additional MUX control, please refer to the Sipex SP8481 DAS. Since the latches are enabled, MUX channel select data need not be held by the bus for a minimum period of 3.0µs after the conversion has been initiated. This is the time required for the MUX and Sample and Hold to settle. However it is advisable that the MUX not be changed at all during the full 10us conversion time due to capacitive coupling effects of digital edges through the silicon.

The **SP8480** multiplexer inputs have been designed to allow substantial overvoltage conditions to occur without any damage. The inputs are diode-clamped and further protected with a 200Ω series resistor. As a result, momentary (10 seconds) input voltages can be as low as -16.5V or as high as +31.5V with no change or degradation in multiplexer performance or crosstalk. This feature allows the output voltage of an externally connected op amp to swing to ± 15 V supply levels with no multiplexer damage. Complicated power-up sequencing is not required to protect the **SP8480**. The multiplexer inputs may be damaged, however, if the inputs are allowed to either source or sink greater than 100mA.

Initiating A Conversion

Please refer to Figure 4. The **SP8480** was designed to require a minimum of control to perform a 12-bit conversion. The control input used is R/C which tri-states the outputs and starts the conversion when low. The STATUS line indicates when a conversion is in process and when it is complete. The $A_{\scriptscriptstyle 0}$ control input is used to

latch the 8 MSB's and 4 LSB's of output data on the 8-bit wide output data bus.

The conversion cycle is started when R/\bar{C} is brought low and must be held low for a minimum of 50ns. The R/\bar{C} signal will also cause the output latches to be in a tri-state mode when low. Approximately 200ns after R/\bar{C} is low, STATUS will change from low to high. This output signal will stay high while the **SP8480** is performing a conversion. Valid data will be latched to the output bus, through internal control, 500ns prior to the STATUS line transitioning from a high to low.

Reading the Data

Please refer to Figure 5. To read data from the **SP8480**, the R/\overline{C} and A_{\circ} control lines are used. R/\overline{C} must be high a minimum of 50ns prior to reading the data to allow time for the output latches to come out of the high impedance tri-state mode. A_{\circ} is used to access the data. The first 8 MSBs will be on pins 26 through 19, with pin 26 being the MSB. The remaining 4 LSBs will be on pins 23 through 26 with pin 23 being the LSB. When A_{\circ} is switched from one state to the next, there is a 50ns output latch propagation delay between the MSBs and LSBs being present on the output pins.

CALIBRATION

The calibration procedure for the **SP8480** consists of adjusting the most negative input voltage (0V) to the ideal output code for offset adjustment, and then adjusting the most positive input www. Voltage (5.0V) to its ideal output code for gain adjustment.

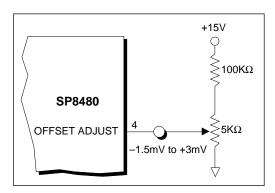


Figure 1. Offset Adjust

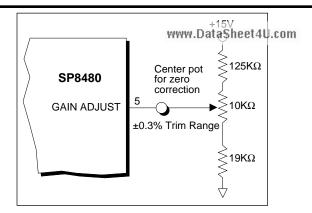
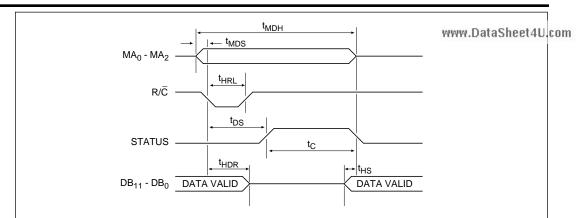


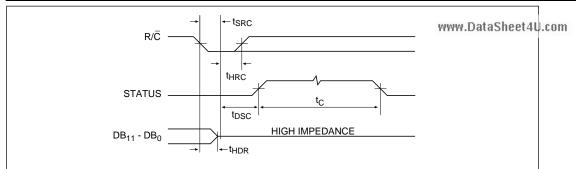
Figure 2. Gain Adjust


Offset Adjustment

The offset adjustment must be completed first. Please refer to *Figure 1*. Apply an input voltage of 0.5LSB or 610µV to any multiplexer input. Adjust the offset potentiometer so that the output code fluctuates evenly between 000...000 and 000...001. It is only necessary to observe the lower eight LSB's during this procedure.

Gain Adjustment

With the offset adjusted, the gain error can now be trimmed to zero (see *Figure 2*). The ideal input voltage corresponding to 1.5 LSB's below the nominal full scale input value, or +4.988V, is applied to any multiplexer input. The gain potentiometer is adjusted so that the output code alternates evenly between 111...111 and 111...110. Again, only the lower eight LSB's need be observed during this procedure. With the above adjustment made, the converter is now calibrated.


LOW PULSE FOR R/C DYNAMIC CHARACTERISTICS

 $V_{CC} = +15V; V_{LOGIC} = +5V; T_A = 25^{\circ}C$

PARA	METER	MIN	TYP	MAX	UNIT	CONDITIONS
t _{hrl}	Low R/C Pulse Width	50			ns	
t _{os}	Status Delay from R/\overline{C}			200	ns	
t _{HDR}	Data Valid after R/C Low	25			ns	
t _{HS}	Status Delay after Data Valid	500			ns	
t _{mds}	MUX Data Setup	50			ns	
t _{mdh}	MUX Data Valid	3		10	μs	

Figure 3. Low Pulse for R/\overline{C} Timing

CONVERT MODE DYNAMIC CHARACTERISTICS

 $V_{cc} = +15V; V_{LOGIC} = +5V; T_{A} = 25^{\circ}C$

PAR	AMETER	MIN	TYP	MAX	UNIT	CONDITIONS
t _{SRC}	R/C to CE Setup	50			ns	
t _{HRC}	R/C Low during CE High	50			ns	
t _{DSC}	Status Delay from CE			200	ns	

Figure 4. Convert Mode Timing

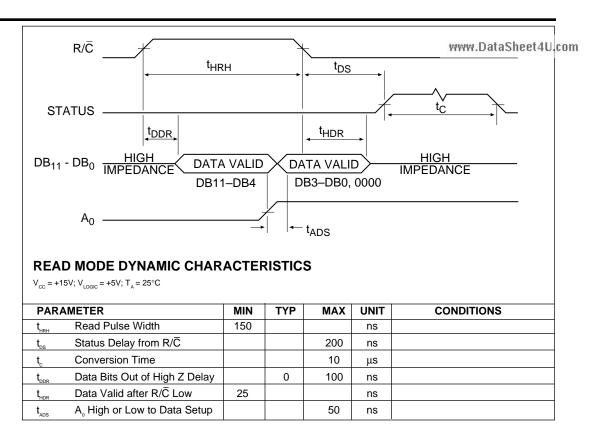


Figure 5. Read Mode Timing

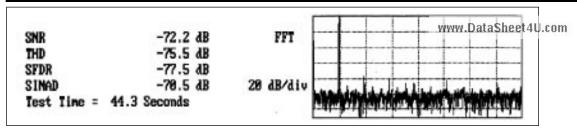


Figure 6. FFT; 6kHz 5V (0dB) Full Scale Input; F_s=10kHz

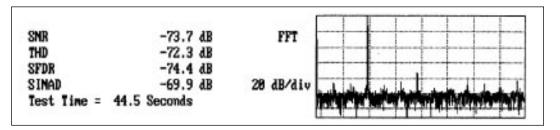


Figure 7. FFT; 12kHz 5V (0dB) Full Scale Input; F_s=10kHz



Figure 8. FFT; 24kHz 5V (0dB) Full Scale Input; F_s=10kHz

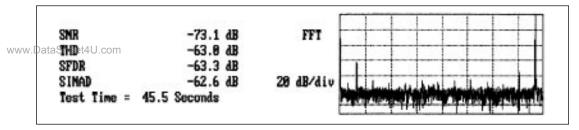


Figure 9. FFT; 48kHz 5V (0dB) Full Scale Input; F_s=10kHz

Figure 10. FFT; 48kHz 1V (-14dB) Input; F_s=10kHz

ORDERING INFORMATION					
12-Bit Data Acquisition System with 12-Bit Par	rallel Data Output:				
Commercial (0°C to +70°C):	Non-Linearity	Package			
SP8480JP	±1.0LSB INL	28-pin, 0.6" Plastic DIF			
SP8480KP	±0.5LSB INL	28-pin, 0.6" Plastic DIF			
SP8480JS	±1.0LSB INL				
SP8480KS	±0.5LSB INL				
Industrial (-40°C to +85°C):	Non-Linearity	Package			
SP8480AP	±1.0LSB INL	28-pin, 0.6" Plastic DIF			
SP8480BP	±0.5LSB INL	28-pin, 0.6" Plastic DIF			
SP8480AS	±1.0LSB INL				
SP8480BS	±0.5LSB INL				

www.DataSheet4U.com

THIS PAGE LEFT INTENTIONALLY BLANK

