

Product Description

Sirenza Microdevices' SPA-2318 is a high efficiency GaAs Heterojunction Bipolar Transistor (HBT) amplifier housed in a low-cost surface-mountable plastic package. These HBT amplifiers are fabricated using molecular beam epitaxial growth technology which produces reliable and consistent performance from wafer to wafer and lot to lot.

This product is specifically designed for use as a driver amplifier for infrastructure equipment in the 1960 and 2140 MHz bands. Its high linearity makes it an ideal choice for multi-carrier and digital applications.

The matte tin finish on Sirenza's lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

SPA-2318

SPA-2318Z

1700-2200 MHz 1 Watt Power Amp with Active Bias

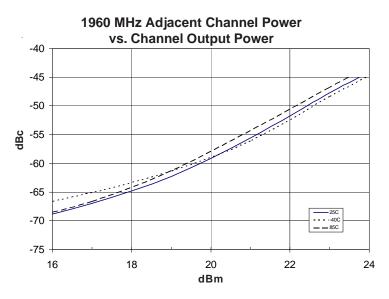
Product Features

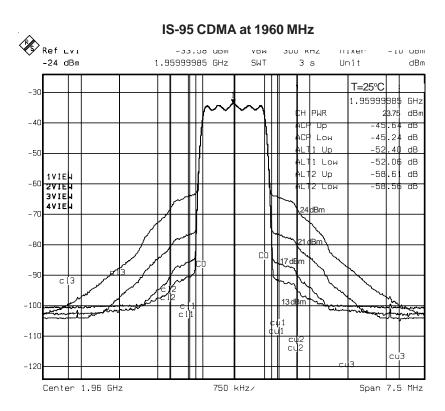
- Now available in Lead Free, RoHS Compliant, & Green Packaging
- High Linearity Performance:
- +21 dBm IS-95 Channel Pwr at -55 dBc ACP
- +20.7 dBm W-CDMA Channel Pwr at -50dBc ACP +47 dBm Typ. OIP3
- On-chip Active Bias Control
- High Gain: 24 dB Typ. at 1960 MHz
- Patented High Reliability GaAsHBT Technology
- Surface-Mountable Plastic Package

Applications

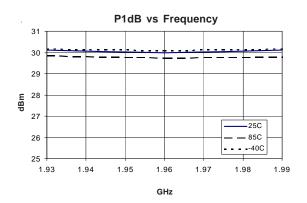
- W-CDMA Systems
- PCS Systems
- Multi-Carrier Applications

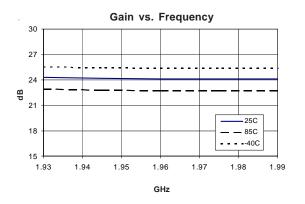
Symbol	Parameters: Test Conditions: $Z_0 = 50$ Ohms Temp = 25°C, Vcc = 5.0V		Units	Min.	Тур.	Max.
f _o	Frequency of Operation		MHz	1700		2200
P _{1dB}	Output Power at 1dB Compression ^[1]	f = 1960 MHz f = 2140 MHz	dBm		29.5 29.5	
ACP	Adjacent Channel Power ^[1] IS-95 @ P_{OUT} = 21.0 dBm W-CDMA @ P_{OUT} = 20.7 dBm	f = 1960 MHz f = 2140 MHz	dBc		-55.0 -50.0	-47.0
S ₂₁	Small Signal Gain [1,2]	f = 1960 MHz f = 2140 MHz	dB	22.5	24.0 23.5	25.0
VSWR	Input VSWR [1,2]	f = 1960 MHz f = 2140 MHz	-		1.6:1 1.6:1	
OIP ₃	Output Third Order Intercept Point [2] Power out per tone = +14dBm	f = 1960 MHz f = 2140 MHz	dBm		46.5 47.0	
NF	Noise Figure ^[1,2]	f = 1960 MHz f = 2140 MHz	dB		5.5 5.5	
I _{cc}	Device Current [1,2]	lbias = 10 mA lc1 = 70 mA lc2 = 320 mA	mA	360	400	425
V _{cc}	Device Voltage [1,2]		V	4.75	5.0	5.25
R _{th j-l}	Thermal Resistance (junction - lead), $T_L = 85^{\circ}C$		°C/W		31	

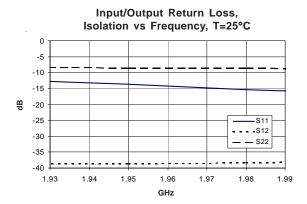

[1] Optimal ACP tune

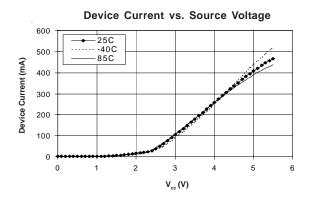

[2] Optimal IP3 tune

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices does not authorize or warrant any Sirenza Microdevices product for use in life-support devices and/or systems. Copyright 2002 Sirenza Microdevices, Inc. All worldwide rights reserved.

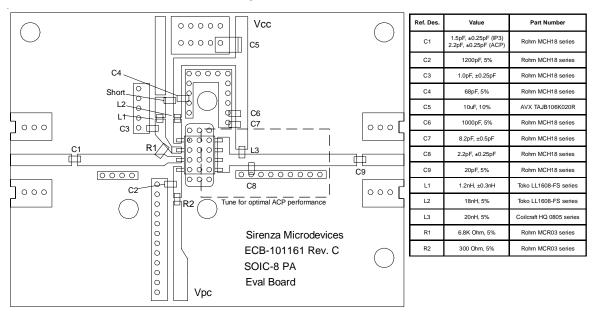

ACP Optimized 1960 MHz Application Circuit Data, Icc=400mA, Vcc=5V IS-95, 9 Channels Forward





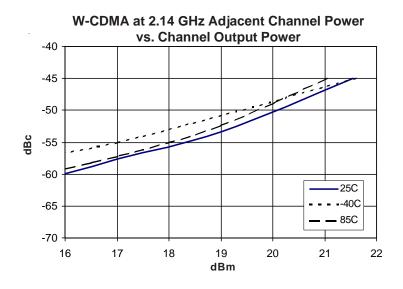


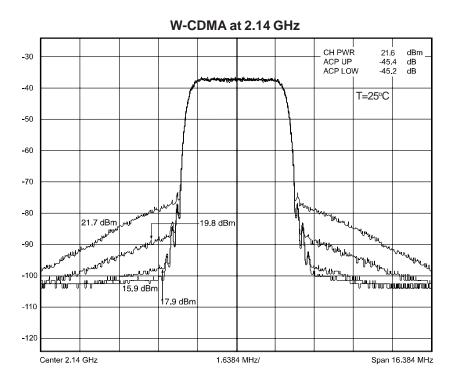
ACP Optimized 1960 MHz Application Circuit Data, Icc=400mA, Vcc=5V



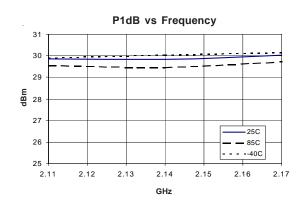
1930 - 1990 MHz Schematic Vcc 10uF Tantalum **External Connection** lc2 1000pF Z=63 lc1 8.2pF 1.2nH 18nH 1.0pF 20 nH 6.8K 20pF Z=50 Ω, 13.2° Ibias 1.5pF(IP3) 2.2pF 2.2pF(ACP) 300 Ohm \$1200pF

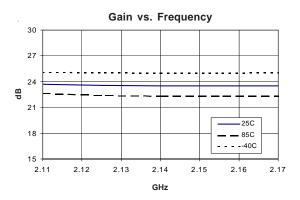
Tune for optimal ACP performance

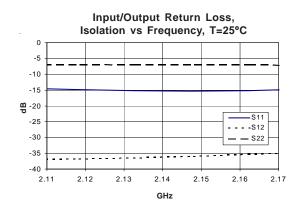

1930 - 1990 MHz Evaluation Board Layout

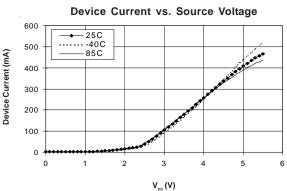


ACP Optimized 2140 MHz Application Circuit Data, Icc=400mA, Vcc=5V

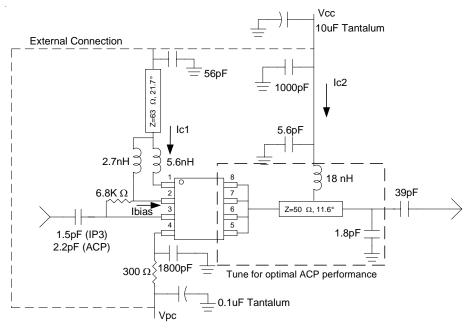

W-CDMA setup is PCCPCH+PSCH+SSCH+CPICH+PICH+64 DPCH, 10.5 dB peak to average @ 0.001% probability

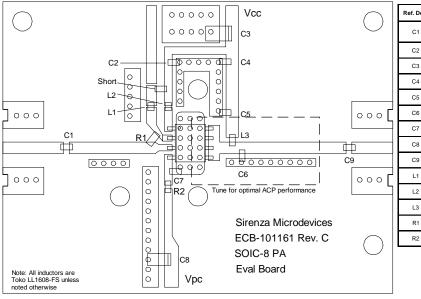






ACP Optimized 2140 MHz Application Circuit Data, Icc=400mA, Vcc=5V





2110 - 2170 MHz Schematic

2110 - 2170 MHz Evaluation Board Layout

Ref. Des.	Value	Part Number	
C1	1.5pF, ±0.25pF (IP3) 2.2pF, ±0.25pF (ACP)	Rohm MCH18 series	
C2	56pF, 5%	Rohm MCH18 series	
С3	10uF, 10%	AVX TAJB106K020R	
C4	1000pF, 5%	Rohm MCH18 series	
C5	5.6pF, ±0.5pF	Rohm MCH18 series	
C6	1.8pF, ±0.25pF	Rohm MCH18 series	
C7	1800pF, 5%	Rohm MCH18 series	
C8	0.1uF, 10%	Matsuo 267M3502104K	
C9	39pF, 5%	Rohm MCH18 series	
L1	2.7nH, ±0.3nH	Toko LL1608-FS series	
L2	5.6nH, ±0.3nH	Toko LL1608-FS series	
L3	18nH, 5%	Toko LL1608-FS series	
R1	6.8K Ohm, 5%	Rohm MCR03 series	
R2	300 Ohm, 5%	Rohm MCR03 series	

Pin #	Function	Description		
1 VC1		VC1 is the supply voltage for the first stage transistor. The configuration as shown on application schematic is required for optimum RF performance.		
2	Vbias	Vbias is the bias control pin for the active bias network. Recommended configuration is shown in the Application Schematic.		
3	RF In	RF input pin. This pin requires the use of an external DC blocking capacitor as shown in the Application Schematic.		
4	VPC2	VPC2 is the bias control pin for the active bias network for the second stage. The recommended configuration is shown in the Application Schematic.		
5, 6, 7, 8	RF Out/VC2	RF output and bias pins. Bias should be supplied to this pin through an external RF choke. Because DC biasing is present on this pin, a DC blocking capacitor should be used in most applications (see application schematic). The supply side of the bias network should be well bypassed. An output matching network is necessary for optimum performance.		
EPAD	Gnd	Exposed area on the bottom side of the package needs to be soldered to the ground plane of the board for thermal and RF performance. Several vias should be located under the EPAD as shown in the recommended land pattern (page 9).		

Caution: ESD sensitive

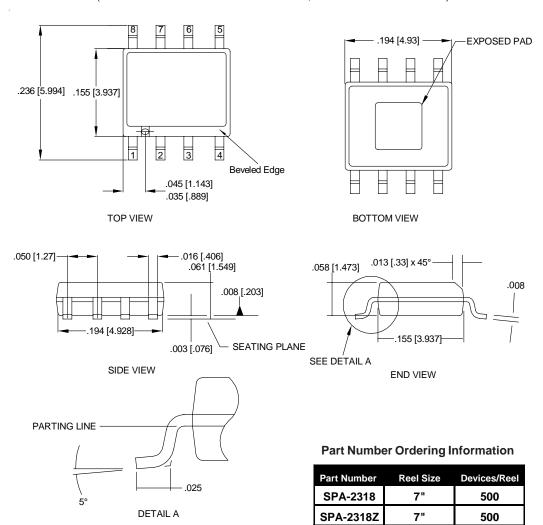
Appropriate precautions in handling, packaging and testing devices must be observed.

The Moisture Sensitivity Level rating for this device is level 1 (MSL-1) based on the JEDEC 22-A113 standard classification. No special moisture packaging/handling is required during storage, shipment, or installation of the devices.

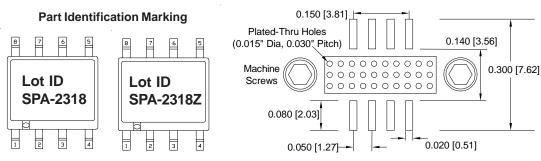
Absolute Maximum Ratings

Parameter (Ta = 25°C)	Absolute Limit
Max. Supply Current (I_{c1}) at V_{cc} typ.	150 mA
Max. Supply Current (I_{c2}) at V_{cc} typ.	750 mA
Max. Device Voltage ($V_{\rm CC}$) at $I_{\rm cc}$ typ.	6.0 V
Max. RF Input Power	16 dBm
Max. Junction Temp. (T _J)	+160 ℃
Max. Storage Temp.	+150 °C

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.


Bias Conditions should also satisfy the following expression:

 $I_{CC}V_{CC}$ (max) < $(T_J - T_L)/R_{th}$,j-I


Package Outline Drawing

(See SMDI MPO-101644 for tolerances, available on our website)

Note: DIMENSIONS ARE IN INCHES [MM]

Recommended Land Pattern

