SPD10N65 Silicon Carbide Schottky Diode

DESCRIPTION

The SPD10N65 is silicon carbide Schottky diode which is fabricated using an advanced process. It delivers high level of performance and robustness in popular AC-DC applications. By providing high voltage and low $V_{\rm F}$, these parts can be adopted quickly into new and existing offline power supply designs.

APPLICATIONS

- AC/DC Switching Power Supply
- Server Power
- Motor Driver
- Solar Power
- PV Inverter/UPS

FEATURES

- ◆ 650V/32A, V_F=1.75V@I_F=10A
- ♦ High blocking voltage
- ◆ Zero forward/reverse recovery current
- ◆ High frequency operation
- ◆ Positive temperature coefficient on V_F
- ◆ TO-220-2L/TO-220F-2L/TO252 package design

PART MARKING

ORDERING INFORMATION

Part Number	Package	Part Marking
SPD10N65T252RGB	TO252	SPD10N65
SPD10N65T220TGB	TO-220-2	SPD10N65
SPD10N65T220FTGB	TO-220F-2	SPD10N65

X SPD10N65T252TGB : Reel ; Pb – Free ; Halogen – Free

X SPD10N65T220TGB : Tube ; Pb – Free ; Halogen – Free

※ SPD10N65T220FTGB : Tube ; Pb − Free ; Halogen − Free

ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit	
Peak Repetitive Reverse Voltage		V _{RRM}	650	V	
Peak Reverse Surge Voltage		V _{RSM}	650	V	
DC Blocking Voltage		V _R	650	V	
Continuous Forward Current	Tc=25°C		32 16*		
	Tc=135°C	${f I}_{ m F}$	14 7*	А	
	Tc=150°C		10 5*		
Non-repetitive Froward Surge Current	Tc=25°C, t_P =10 ms, half Sine		65 50*	А	
	Tc=150°C, t_P =10 ms, half Sine	I _{FSM}	55 40*		
	Tc=25°C, t_P =10 us, Square		520 400*		
Repetitive Froward Surge Current	Tc=25°C, t _P =10 ms, Freq = 0.1 Hz, 100 Cycles, half Sine	Т	55 45*	•	
	Tc=150 °C , t_P =10 ms, Freq = 0.1Hz, 100 Cycles, half Sine	I _{FRM}	45 40*	A	
Power Dissipation		P _D	94 38*	W	
Operating Junction Temperature		TJ	-55/175	°C	
Storage Temperature Range		T _{STG}	-55/175	°C	
Thermal Resistance-Junction to Case		Røjc	1.6 3.95*	°C/W	

*For TO220F

ELECTRICAL CHARACTERISTICS

(TA=25°C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit
DC Blocking Voltage	V _{DC}	$I_R = 250 uA, T_J = 25 °C$	650			V
Forward Voltage	V _F	$I_{\rm F} = 10 {\rm A}, {\rm T}_{\rm J} = 25 {\rm °C}$		1.4	1.75	v
		$I_{\rm F} = 10$ A, $T_{\rm J} = 125$ °C		1.5		
		$I_{\rm F} = 10 {\rm A}, {\rm T}_{\rm J} = 175 {\rm °C}$		1.7		
Reverse Current	I _R	V _R =650V, TJ=25°C		2	50	uA
		V _R =650V, TJ=125°C		6		
		V _R =650V, TJ=175°C		18		
Total Capacitive Charge	Qc	V _R =400V, TJ=25°C		23		nC
Total Capacitance	С	$V_R=1V$, TJ=25°C, f=1MHz		395		pF
		V_R =200V, TJ=25°C, f=1MHz		43		
		V_R =400V, TJ=25°C, f=1MHz		32		

TYPICAL CHARACTERICS

Figure 5. Capacitance vs Reverse Voltage

Firmer 2. Forward Observed

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

©The SYNC Power logo is a registered trademark of SYNC Power Corporation ©2024 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan 115 Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 ©http://www.syncpower.com