

Product Description

Sirenza Microdevices' SPF-3143Z is a high performance 0.5µm pHEMT Gallium Arsenide FET. This 600µm device is ideally biased at 3V, 20mA for lowest noise performance and battery powered requirements. At 5V, 40mA the device can deliver OIP3 of 32.5 dBm. It provides ideal performance as a driver stage in many commercial and industrial LNA applications.

The matte tin finish on Sirenza's lead-free package utilizes a post annealing process to mitigate tin whisker formation and is RoHS compliant per EU Directive 2002/95. This package is also manufactured with green molding compounds that contain no antimony trioxide nor halogenated fire retardants.

SPF-3143Z

Low Noise pHEMT GaAs FET

Product Features

- Available in Lead free, RoHS compliant, & Green • packaging
- **DC-3.5 GHz Operation**

- 0.58 dB NF_{MIN} @ 2 GHz 21 dB G_{MAX} @ 2 GHz +31 dBm OIP3 (5V,40mA)
- +17.7 dBm P1dB (5V,40mA)
- Low Current, Low Cost
- Apps circuits available for key bands

Applications

- Analog and Digital Wireless Systems
- 3G, Cellular, PCS
- **Fixed Wireless, Pager Systems** •
- **Driver Stage for Low Power Applications** •

Symbol	Parameters	Test Conditions V_{DS} =5V, I_{DQ} =40mA, 25C (unless otherwise noted)	Units	Test Frequency (GHz)	Min.	Тур.	Max.
G _{MAX}	Maximum Available Gain	$Z_{s}=Z_{s}^{*}, Z_{L}=Z_{L}^{*}$	dB	0.9		23.3	
⊖ MAX			UD	1.9		19.9	
NF _{MIN}	Minimum Noise Figure	$Z_{S}=\Gamma_{OPT}, Z_{I}=Z_{I}*$	dB	0.9		0.36	
			40	1.9		0.58	
S ₂₁	Insertion Gain	Z _S =Z _L =50Ω	dB	0.9	18.2	19.7	21.2
NF	Noise Figure	Application Circuit	dB	1.9		0.8	1.0
Gain	Gain	Application Circuit	dB	1.9	14.1	15.6	17.1
OIP ₃	Output Third Order Intercept Point	Application Circuit, Tone Spacing = 1MHz, Pout per tone = 0 dBm	dBm	1.9	30.5	32.5	
P_{1dB}	Output Power at 1dB Compression	Application Circuit		1.9	19.0	20.5	
V _P	Pinchoff Voltage	$V_{DS} = 2V, I_{DS} = 0.6mA$	V		-1.4	-1.0	-0.6
I _{DSS}	Saturated Drain Current	V_{DS} = 2V, V_{GS} = 0 V	mA			180	
9 _m	Transconductance	$V_{DS} = 2V, V_{GS} = 0 V$	mS			210	
BVGSO	Gate-Source Breakdown Voltage	I _{GS} = 300 μA, drain open	V			-10	-7
BVGDO	Gate-Drain Breakdown Voltage	I_{GD} = 300 μ A, source open	V			-12	-7
V_{DS}	Device Operating Voltage	drain-source	V				5.5
I _{DS}	Device Operating Current	drain-source	mA		38	40	42
R _{TH} , j-l	Thermal Resistance (junction - lead)	junction to lead	°C/W			200	

The information provided herein is believed to be reliable at press time. Sirenza Microdevices assumes no responsibility for inaccuracies or omissions. Sirenza Microdevices assumes no responsibility for the use of this information, and all such information shall be entirely at the user's own risk. Prices and specifications are subject to change without notice. No patent rights or licenses to any of the circuits described herein are implied or granted to any third party. Sirenza Microdevices, Inc. All word/wide rights reserved.

303 Technology Court, Broomfield, CO 80021

SPF-3143Z Low Noise pHEMT GaAs FET

Junction Temperature Calculation

MTTF is inversely proportional to the device junction temperature. For junction temperature and MTTF considerations the device operating conditions should also satisfy the following expression:

 $P_{DC} < (T_{J} - T_{L}) / R_{TH}$

where:

 $P_{DC} = I_{DS} * V_{DS} (W)$ T_J = Junction Temperature (C) T_{L} = Lead Temperature (pin 2) (C) R_{TH} = Thermal Resistance (C/W)

Biasing Details

The SPF-3143Z is a depletion mode FET and requires a negative gate voltage to achieve pinchoff. As such, power supply sequencing circuitry is strongly recommended to prevent damaging bias transients during turn-on. Active bias circuitry is also recommended to maintain a constant drain current from part-to-part.

Absolute Maximum Ratings

Parameter	Symbol	Value	Unit	
Drain Current	I _{DSS}	180	mA	
Forward Gate Current	I _{gsf}	600	μA	
Reverse Gate Current	I _{gsr}	600	μA	
Drain-to-Source Voltage	V _{DS}	7	V	
Gate-to-Source Voltage	V _{gs}	<-3 OR >0	V	
RF Input Power	P _{IN}	15	dBm	
Storage Temperature Range	T _{stor}	-40 TO +150	С	
Power Dissipation	P _{DISS}	325	mW	
Junction Temperature	Tj	+150	с	
Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the				

Peak RF Performance Under Optimum Matching Conditions

Freq (GHz)	V _{DS} (V)	l _{DQ} (mA)	NF _{MIN} ^[1] (dB)	Gmax (dB)	P1dB ^[2] (dBm)	OIP3 ^[3] (dBm)	
0.90	3	20	0.25	21.5	15	29	
0.90	5	40	0.36	23.3	18	31	G Z LOPT
1.90	3	20	0.50	18.3	15	29	
1.90	5	40	0.58	19.1	18	31	Z _{SOPT} S

table on page 1.

^[1] $Z_s = \Gamma_{OPT}, Z_t = Z_t^*$, The input matching circuit losses have been de-emebedded. ^[2] $Z_s = Z_{SOPT}, Z_t = Z_{LOPT},$ where Z_{SOPT} and Z_{LOPT} have been tuned for max P1dB ^[3] $Z_s = Z_{SOPT}, Z_t = Z_{LOPT},$ where Z_{SOPT} and Z_{LOPT} have been tuned for max OIP3 Note: Optimum NF, P1dB, and OIP3 performance cannot be achieved simultaneously.

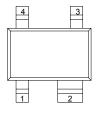
Typical Performance - Noise Parameters

Freq (GHz)	V _{DS} (V)	I _{DS} (mA)	NF _{MIN} ^[4] (dB)	Г _{орт} Mag ∠ Ang	r _n	Gmax (dB)
0.90	3	20	0.25	0.70 ∠ 12.1	0.14	21.5
0.90	5	40	0.36	0.66 ∠ 12.6	0.14	23.3
1.90	3	20	0.50	0.46 ∠ 26.4	0.13	18.3
	5	40	0.58	0.38 ∠ 28.1	0.13	19.1

^[4] Z_s=Γ_{OPT}, Z_L=Z_L*, NF_{MIN} is a noise parameter for which the input matching circuit losses have been de-emebedded. The device was mounted on a 0.010" PCB with plated-thru holes close to pins 2 and 4.

Caution: ESD sensitive Appropriate precautions in handling, packaging and testing devices must be observed. ESD class rating 1B.

MSL (Moisture Sensitivity Level) Rating: Level 1

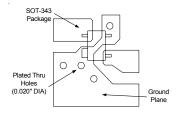


SPF-3143Z Low Noise pHEMT GaAs FET

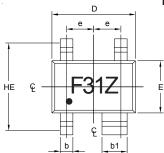
Pin Description

Pin #	Function	Description
1	Gate	RF Input / Gate Bias
2	Source	Connection to ground. Use via holes to reduce lead inductance. Place vias as close to ground leads as possible.
3	Drain	RF Output / Drain Bias
4	Source	No Connection / Recommend grounding pin

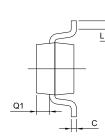
Pin Designation

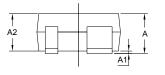

Part Number Ordering Information

Part Number	Reel Size	Devices/Reel
SPF-3143Z	7"	3000


Part Symbolization

The part will be symbolized with the "F31Z" designator and a dot signifying pin 1 on the top surface of the package.


Recommended PCB Layout



Use multiple plated-through vias holes located close to the package pins to ensure a good RF ground connection to a continuous groundplane on the backside of the board.

Package Dimensions

Sometrations are exclusive of mode form
Metal Burr,
ALLS BURR,
ALLS BECIFICATIONS COMPLY TO EIAJ SC70.
DIE IS FACING UP FOR MOLD AND FACING DOWN
FOR TRIMFORM.
PACKAGE SURFACE TO BE MIRROR FINISH.

NOM
1.25
2.05
2.10
1.05
0.90
0.05
0.25
0.65
0.375
0.675
0.14
0.20