

DESCRIPTION		APPLICATIONS	
The SPN09T10 is the N-Channel logic power field effect transistor which is p high cell density DMOS trench technol has been designed specifically to impre efficiency of DC/DC converters using conventional switching PWM controll optimized for low gate charge, low Rt speed.	produced using super plogy. The SPN09T10 rove the overall g either synchronous or lers. It has been	 Powered System DC/DC Converter Load Switch 	
FEATURES		PIN CONFIGURATIO	N
• $100V/8A,RDS(ON)=160m\Omega(a)$	TO-252-2L		
 VGS=10V High density cell design for extremely low RDS (ON) Exceptional on-resistance and maximum DC current capability TO-252-2L package design 	G D S H 2 1 3		
		PART MARKING	
	SPN09T10 AAAAAA BBBBBB D G S A : Lot Code B : Date Code		

PIN DESCRIPTION

Pin	Symbol	Description
1	G	Gate
2	D	Drain
3	S	Source

ORDERING INFORMATION

Part Number	Package	Part Marking		
SPN09T10T252RGB	TO-252-2L	SPN09T10		

* SPN09T10T252RGB : Tape Reel ; Pb – Free ; Halogen – Free

ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage		Vdss	100	V	
Gate –Source Voltage		VGSS	±20	V	
Continuous Drain Current(TJ=150°C)		25°C	ID	14	А
	TA=	70°C	ID	9.0	11
Pulsed Drain Current		Ідм	45	А	
Avalanche Current		Ias	14	А	
Power Dissipation	TA=25°C		Pd	40	W
Avalanche Energy with Single Pulse ($Tj=25^{\circ}C$, $L = 0.14mH$, $Ias = 20A$, $Vdd = 20V$.)		E _{AS}	28	mJ	
Operating Junction Temperature		τŢ	-55/150	°C	
Storage Temperature Range		Tstg	-55/150	°C	
Thermal Resistance-Junction to Ambient		Reja	100	°C/W	

ELECTRICAL CHARACTERISTICS

(TA=25°C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit	
Static			1				
Drain-Source Breakdown Voltage	V(BR)DSS	Vgs=0V,Id=250uA	100			v	
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1		3		
Gate Leakage Current	Igss	VDS=0V,VGS=±20V			±100	nA	
		Vds=80V,Vgs=0V			25		
Zero Gate Voltage Drain Current	Idss	VDS=80V,VGS=0V TJ=125°C			250	uA	
On-State Drain Current	ID(on)	VDS≥5V,VGS=10V	9			А	
Drain-Source On-Resistance	RDS(on)	Vgs=10V,Id=10A		0.110	0.160	Ω	
Forward Transconductance	gfs	Vds=10V,Id=5A		5.6		S	
Diode Forward Voltage	VSD	Is=9A,VGs=0V			1.3	V	
Dynamic							
Total Gate Charge	Qg			10	16	nC	
Gate-Source Charge	Qgs	Vds=80V,Vgs=10V Id=5A		2.5			
Gate-Drain Charge	Qgd			4.5			
Input Capacitance	Ciss			430		pF	
Output Capacitance	Coss	VDS=25,VGS=0V f=1MHz		56			
Reverse Transfer Capacitance	Crss			35			
Turn-On Time	td(on)			6.5		nS	
	tr	$V_{DD}=50V,RL=10\Omega$		10			
	td(off)	ID=5A,VGEN=10V RG= 3.3Ω		13			
Turn-Off Time	tf			3.4			

TYPICAL CHARACTERISTICS

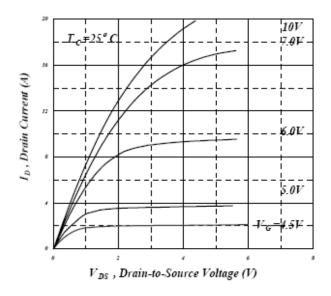


Fig 1. Typical Output Characteristics

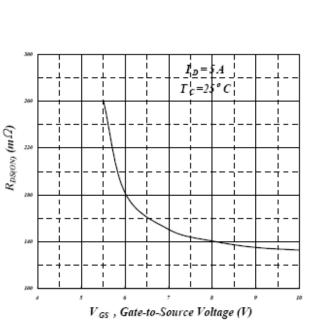


Fig 3. On-Resistance v.s. Gate Voltage

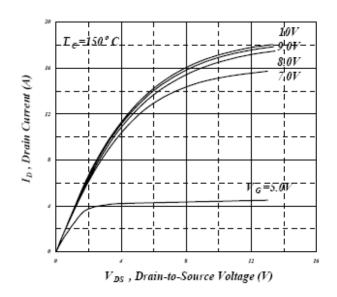
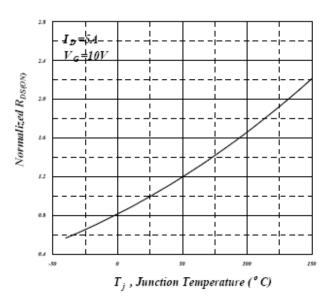
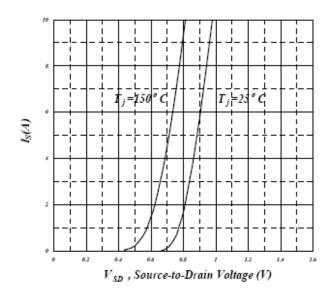
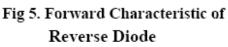
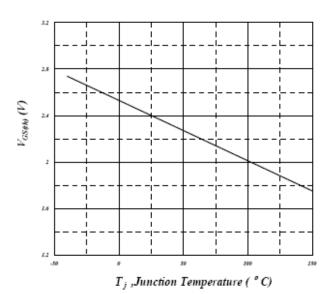
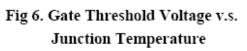


Fig 2. Typical Output Characteristics


Fig 4. Normalized On-Resistance v.s. Junction Temperature

TYPICAL CHARACTERISTICS

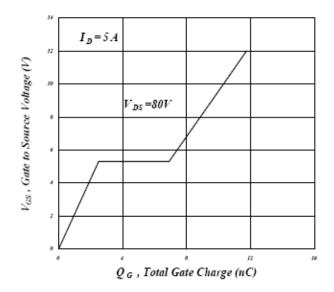
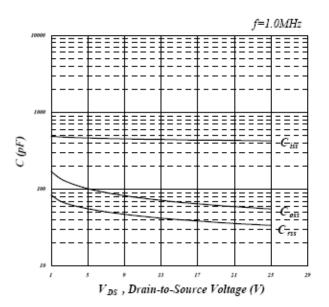
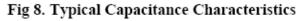




Fig 7. Gate Charge Characteristics

TYPICAL CHARACTERISTICS

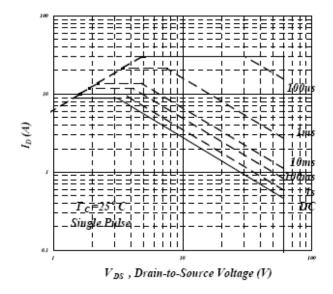


Fig 9. Maximum Safe Operating Area

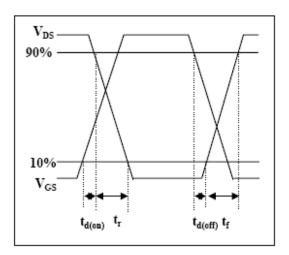


Fig 11. Switching Time Waveform

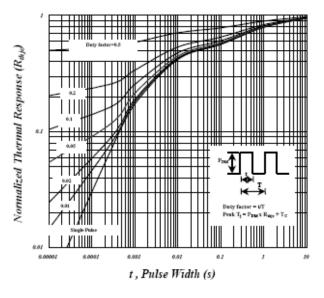


Fig 10. Effective Transient Thermal Impedance

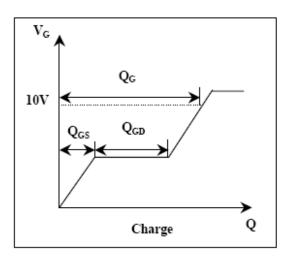


Fig 12. Gate Charge Waveform

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

> [©] The SYNC Power logo is a registered trademark of SYNC Power Corporation © 2020 SYNC Power Corporation - Printed in Taiwan - All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan 115 Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 © http://www.syncpower.com