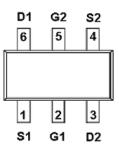
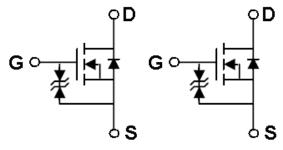
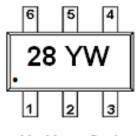
DESCRIPTION

The SPN1028 is the Dual N-Channel enhancement mode field effect transistors are produced using high cell density DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 640mA DC and can deliver pulsed currents up to 950mA. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.


APPLICATIONS


- Drivers: Relays, Solenoids, Lamps, Hammers, Display, Memories, Transistors, etc.
- High saturation current capability. Direct Logic-Level Interface: TTL/CMOS
- Battery Operated Systems
- Solid-State Relays

FEATURES


- 30V/0.95A, RDS(ON)= $550m\Omega@VGS=4.5V$
- 30V/0.75A, RDS(ON)= $650m\Omega@VGS=2.5V$
- 30V/0.65A, RDS(ON)= $850m\Omega@VGS=1.8V$
- Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- ♦ ESD protected
- ♦ SOT-563 (SC-89-6L) package design

PIN CONFIGURATION (SOT-563 / SC-89-6L)

PART MARKING

Y: Year Code W: Week Code

PIN DESCRIPTION						
Pin	Symbol	Description				
1	S1	Source 1				
2	G1	Gate 1				
3	D2	Drain 2				
4	S2	Source 2				
5	G2	Gate 2				
6	D1	Drain1				

ORDERING INFORMATION

Part Number	Package	Part Marking
SPN1028S56RGB	SOT-563	28

Week Code : A ~ Z(1 ~ 26); a ~ z(27 ~ 52)

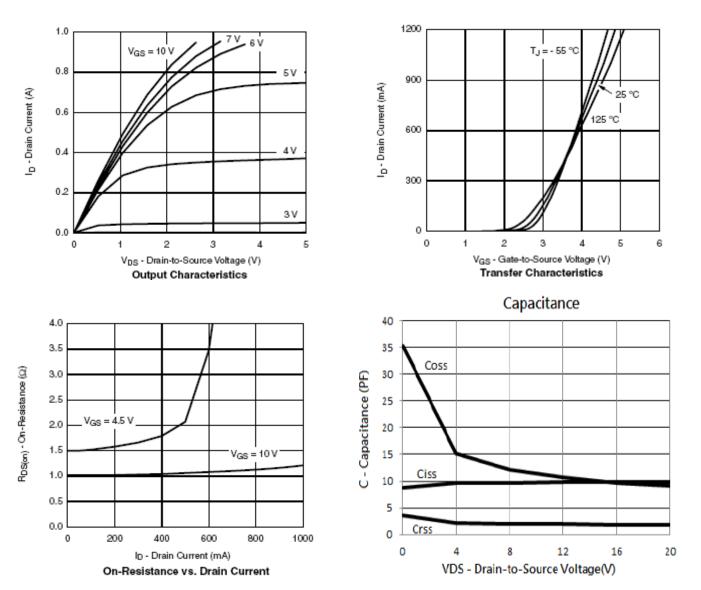
X SPN1028S56RGB : Tape Reel ; Pb – Free ; Halogen – Free

ABSOULTE MAXIMUM RATINGS

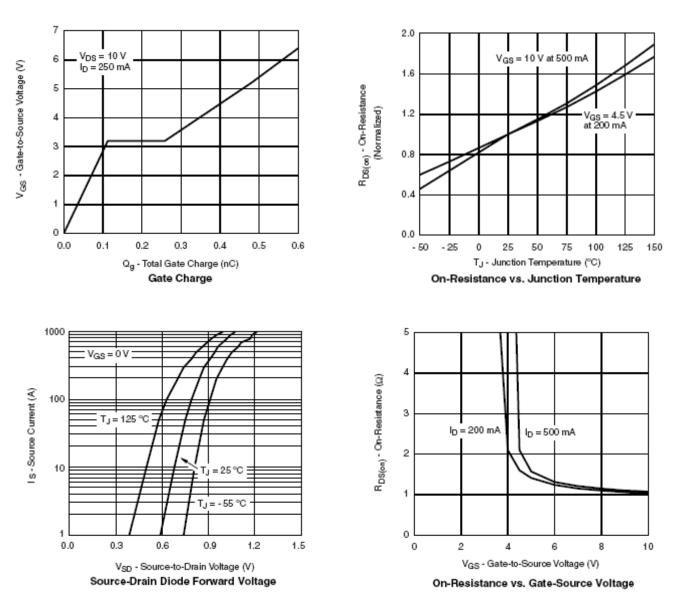
(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage		Vdss	30	V	
Gate –Source Voltage - Continuous		VGSS	±12	V	
Continuous Drain Current(TJ=150°C)	TA=25°C	ID	0.64	А	
Pulsed Drain Current (*)		Ідм	0.95	А	
Power Dissipation	TA=25°C	PD	1.35	W	
Operating Junction Temperature		τJ	-55 ~ 150	°C	
Storage Temperature Range		Tstg	-55 ~ 150	°C	
Thermal Resistance-Junction to Ambient		Rөја	375	°C/W	

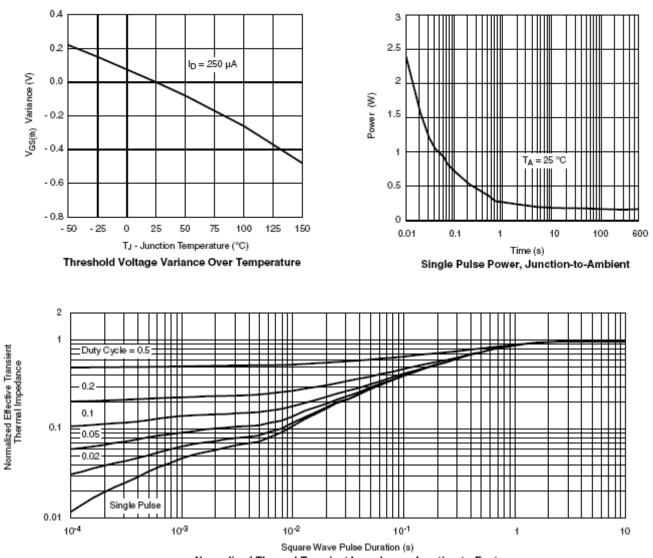
(*) Pulse width limited by safe operating area



ELECTRICAL CHARACTERISTICS


(TA=25°C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit	
Static			1			<u>.</u>	
Drain-Source Breakdown Voltage	V(BR)DSS	VGs=0V,ID=250Ua	30			v	
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	0.4		1.0	V	
Gate Leakage Current	IGSS	VDS=0V,VGS=±12V			±10	uA	
Zero Gate Voltage Drain Current	Idss	Vds=48V,Vgs=0V Tj=25°C			1	– uA	
		VDS=48V,VGS=0V TJ=55°C			100		
On-State Drain Current	ID(on)	VDS≥4.5V,VGS =5V	0.7			Α	
		Vgs=4.5V,Id=0.95A		0.45	0.55	Ω	
Drain-Source On-Resistance	RDS(on)	Vgs=2.5V,Id=0.75A		0.50	0.65		
		Vgs=1.8V,Id=0.65A		0.70	0.85		
Forward Transconductance	Gfs	Vds=10V,Id=0.4A		1.0		S	
Diode Forward Voltage	Vsd	Vgs=0V,Is=0.15A		0.8	1.2	V	
Dynamic							
Total Gate Charge	Qg			1.2	1.5	nC	
Gate-Source Charge	Qgs	$V_{DD} = 10 V, I_D = 0.6 A,$ $V_{GS} = 4.5 V$		0.2			
Gate-Drain Charge	Qgd	V US – 4.5 V		0.3			
Input Capacitance	Ciss			7.2		pF	
Output Capacitance	Coss	$V_{DS} = 10V, f = 1 \text{ MHz},$ $V_{GS} = 0V$		13.5			
Reverse Transfer Capacitance	Crss	V 05 – 0 V		1.6			
Turn-On Time	td(on)			5	10	nS	
	tr	$V_{DD} = 10V, I_D = 0.5A$		8	15		
Turn Off Time	td(off)	$R_{G} = 6\Omega V_{GEN} = 4.5V$ $R_{L} = 10\Omega$		10	18		
Turn-Off Time	tf			1.2	2.8		


TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

TYPICAL CHARACTERISTICS

Normalized Thermal Transient Impedance, Junction-to-Foot

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation © 2022 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 © http://www.syncpower.com