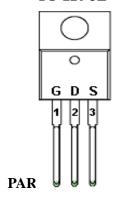
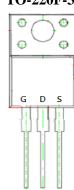


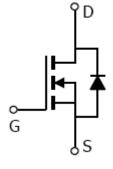
DESCRIPTION

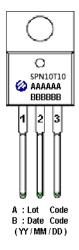
The SPN10T10 is the N-Channel enhancement mode power field effect transistor which is produced using super high cell density DMOS trench technology. The SPN10T10 has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.

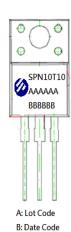

APPLICATIONS

- Powered System
- DC/DC Converter
- Load Switch


FEATURES


- 100V/5A,RDS(ON)= $160m\Omega(@)V$ GS=10V
- ♦ High density cell design for extremely low RDS(ON)
- ◆ Exceptional on-resistance and maximum DC current capability
- ◆ TO-220-3L,TO-220F-3L package design


PIN CONFIGURATION TO-220-3L



(YYMMDD)

PIN DESCRIPTION						
Pin	Symbol	Description				
1	G	Gate				
2	D	Drain				
3	S	Source				

ORDERING INFORMATION

Part Number	Package	Part Marking		
SPN10T10T220TGB	TO-220-3L	SPN10T10		
SPN10T10T220FTGB	TO-220F-3L	SPN10T10		

※ SPN10T10T220TGB: Tube; Pb − Free; Halogen - Free

※ SPN10T10T220FTGB : Tube ; Pb − Free ; Halogen - Free

ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit
Drain-Source Voltage		Vdss	100	V
Gate –Source Voltage		VGSS	±20	V
Continuous Drain Current(TJ=150°C)	Tc=25°C	ID	9	A
Continuous Diani Current(13–130 C)	Tc=100°C		5.6	A
Pulsed Drain Current		Ірм	30	A
Avalanche Current		Ias	9	A
Doman Dissination	$Tc = 25^{\circ}C$	PD	28	W
Power Dissipation	Tc=100°C		10	W
Operating Junction Temperature		Tı	150	°C
Storage Temperature Range		Tstg	-55/150	°C
Thermal Resistance-Junction to Ambient		RθJA	65	°C/W

ELECTRICAL CHARACTERISTICS

(TA=25°C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit
Static		1				
Drain-Source Breakdown Voltage	V(BR)DSS	$V_{\rm (BR)DSS}$ Vgs=0V,ID=250uA 100	100			V
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1		3] v
Gate Leakage Current	Igss	VDS=0V,VGS=±20V			±100	nA
		Vds=80V,Vgs=0V			25	uA
Zero Gate Voltage Drain Current	Idss	V _{DS} =80V,V _{GS} =0V T _J =125°C			250	
On-State Drain Current	ID(on)	Vds\geq5V,Vgs=10V	9			A
Drain-Source On-Resistance	RDS(on)	Vgs=10V,Id=5A		0.110	0.160	Ω
Forward Transconductance	gfs	Vds=10V,Id=5A		5.6		S
Diode Forward Voltage	Vsd	Is=9A,VGS =0V			1.3	V
Dynamic						
Total Gate Charge	Qg	V _{DS} =80V,V _{GS} =10V -I _D = 5A		10	16	nC
Gate-Source Charge	Qgs			2.5		
Gate-Drain Charge	Qgd	1D- 37 X		4.5		
Input Capacitance	Ciss	VDS=25,VGS=0V -f=1MHz		430		pF
Output Capacitance	Coss			56		
Reverse Transfer Capacitance	Crss			35		
Turn-On Time	td(on)			6.5		nS
	tr	$V_{DD}=50V,RL=10\Omega$		10		
Turn-Off Time	td(off)	ID=5A,VGEN=10V RG= 3.3Ω		13		
	tf			3.4		

TYPICAL CHARACTERISTICS

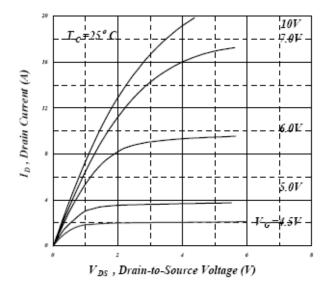


Fig 1. Typical Output Characteristics

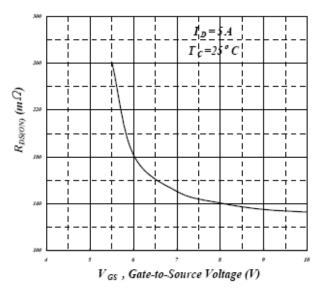


Fig 3. On-Resistance v.s. Gate Voltage

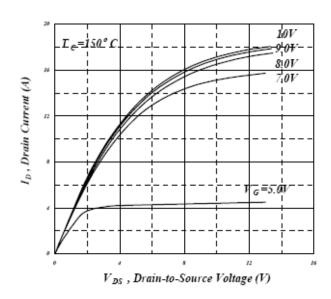


Fig 2. Typical Output Characteristics

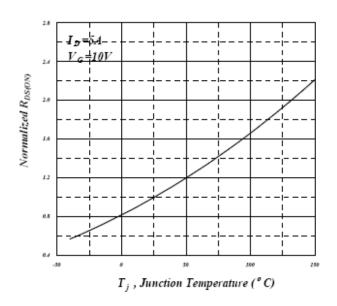


Fig 4. Normalized On-Resistance v.s. Junction Temperature

TYPICAL CHARACTERISTICS

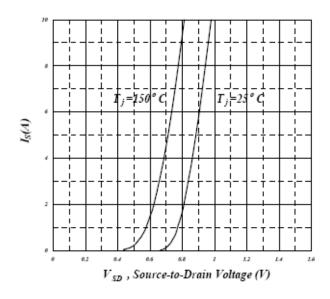


Fig 5. Forward Characteristic of Reverse Diode

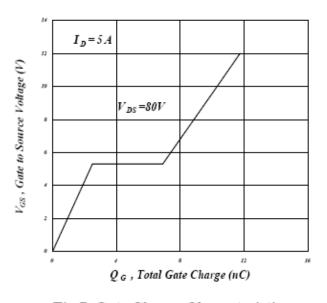


Fig 7. Gate Charge Characteristics

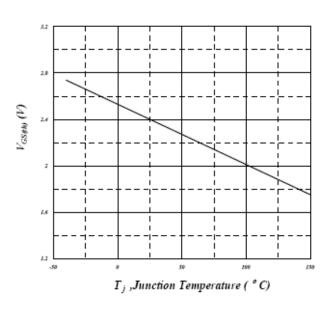


Fig 6. Gate Threshold Voltage v.s. Junction Temperature

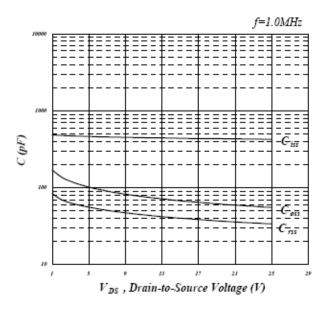


Fig 8. Typical Capacitance Characteristics

TYPICAL CHARACTERISTICS

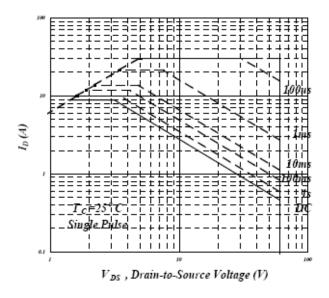


Fig 9. Maximum Safe Operating Area

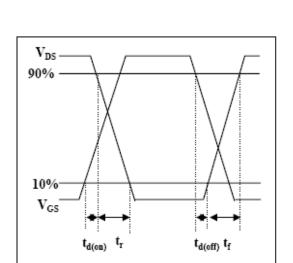


Fig 11. Switching Time Waveform

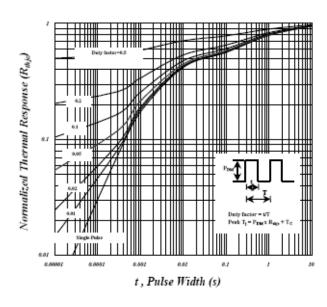


Fig 10. Effective Transient Thermal Impedance

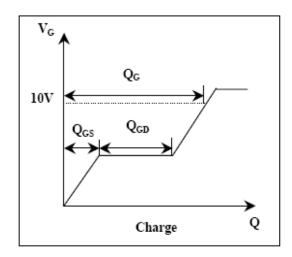


Fig 12. Gate Charge Waveform

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan 115
Phone: 886-2-2655-8178
Fax: 886-2-2655-8468

Fax: 886-2-2655-8468 © http://www.syncpower.com