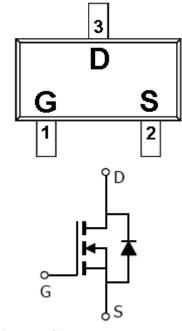
DESCRIPTION

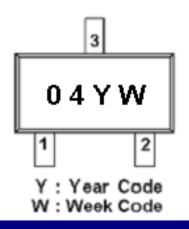
The SPN2304 is the N-Channel logic enhancement mode power field effect transistors are produced using high cell density, DMOS trench technology.

This high density process is especially tailored to minimize on-state resistance.

These devices are particularly suited for low voltage application such as cellular phone and notebook computer power management and other battery powered circuits, and low in-line power loss are needed in a very small outline surface mount package.


APPLICATIONS

- Power Management in Note book
- Portable Equipment
- Battery Powered System
- DC/DC Converter
- Load Switch
- DSC
- LCD Display inverter


FEATURES

- 30V/3.2A, RDS(ON)= $65m\Omega@VGS=10V$
- 30V/2.0A, RDS(ON)= $90m\Omega@VGS=4.5V$
- Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- SOT-23-3L package design

PIN CONFIGURATION(SOT-23-3L)

PART MARKING

PIN DESCRIPTIONPinSymbolDescription1GGate2SSource3DDrain

ORDERING INFORMATION

Part Number	Package	Part Marking		
SPN2304S23RGB	SOT-23-3L	04		

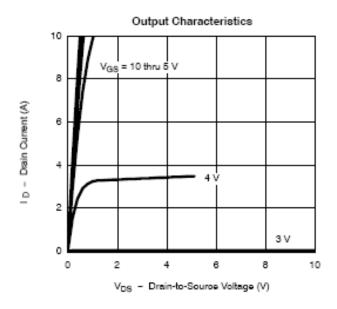
: Week Code : A ~ Z(1 ~ 26) ; a ~ z(27 ~ 52)

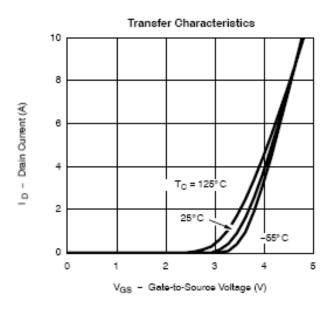
※ SPN2304S23RGB : Tape Reel ; Pb − Free ; Halogen - Free

ABSOULTE MAXIMUM RATINGS

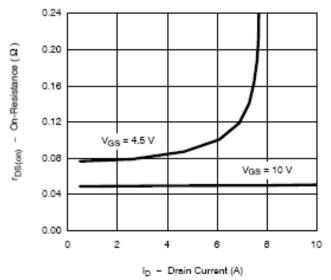
(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage		Vdss	30	V	
Gate –Source Voltage	VGSS	±20	V		
	TA=25°C	I.	3.2		
Continuous Drain Current(TJ=150°C)	Ta=70°C	- Id	2.6	A	
Pulsed Drain Current	Ідм	10	А		
Continuous Source Current(Diode Conduction)		Is	1.25	А	
Denne Dissingtion	TA=25°C	Da	1.25	W 7	
Power Dissipation	Ta=70°C	- Pd	0.8	W	
Operating Junction Temperature		τı	150	°C	
Storage Temperature Range		Tstg	-55/150	°C	
Thermal Resistance-Junction to Ambient		Reja	100	°C/W	

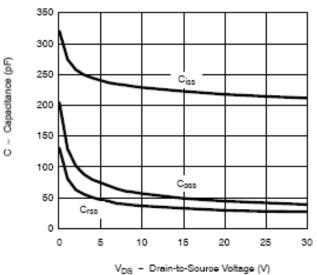


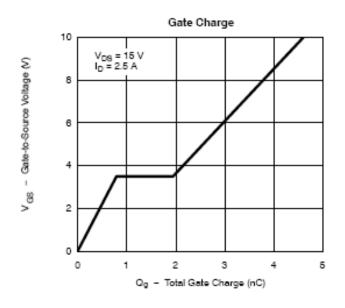

ELECTRICAL CHARACTERISTICS

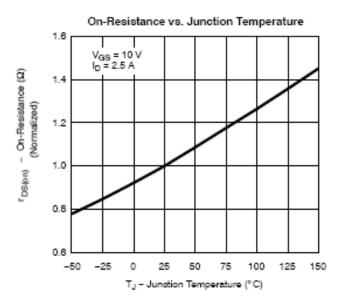
(TA=25°C Unless otherwise noted)


Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit
Static	·	•				
Drain-Source Breakdown Voltage	V(BR)DSS	Vgs=0V,Id=250uA	30			v
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1.0		3.0	v
Gate Leakage Current	IGSS	VDS=0V,VGS=±20V			±100	nA
Zero Gate Voltage Drain Current		VDS=30V,VGS=1.0V			1	uA
	IDSS	VDS=30V,VGS=0.0V TJ=55°C			10	
On-State Drain Current	ID(on)	$V_{DS} \ge 4.5V, V_{GS} = 10V$	6			A
	ID(on)	$V_{DS} \ge 4.5V, V_{GS} = 4.5V$	4			
Drain-Source On-Resistance	RDS(on)	$V_{GS} = 10V, I_D = 3.2A$		0.050	0.065	Ω
		$V_{GS} = 4.5 V, ID = 2.0 A$		0.065	0.090	
Forward Transconductance	gfs	VDS=4.5V,ID=2.5A		4.6		S
Diode Forward Voltage	Vsd	Is=1.25A,VGs=0V		0.82	1.2	V
Dynamic						
Total Gate Charge	Qg			4.5	10	nC
Gate-Source Charge	Qgs	$V_{DS}=15V_{GS}=10V$ $I_{D}=2.5$		0.8		
Gate-Drain Charge	Qgd	10-2.5		1.0		
Input Capacitance	Ciss			240		pF
Output Capacitance	Coss	VDS=15VGS=0V f=1MHz		110		
Reverse Transfer Capacitance	Crss			17		
Turn-On Time	td(on)			8	20	
	tr	VDD=15RL=15		12	30	- nS
Turn-Off Time	td(off)	$ID \equiv 1.0A, VGEN = 10$ RG=6 Ω		17	35	
	tf]		8	20	

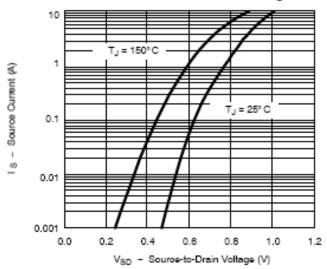
TYPICAL CHARACTERISTICS



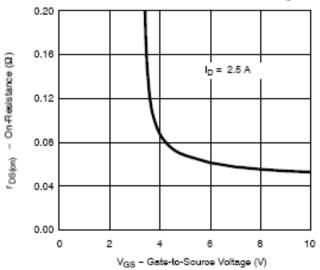

On-Resistance vs. Drain Current

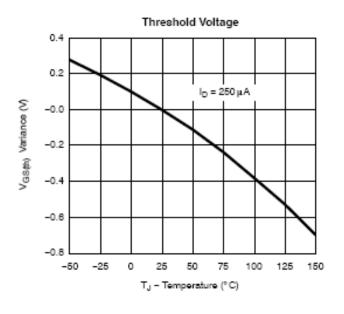


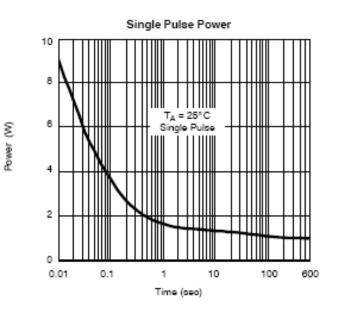
Capacitance



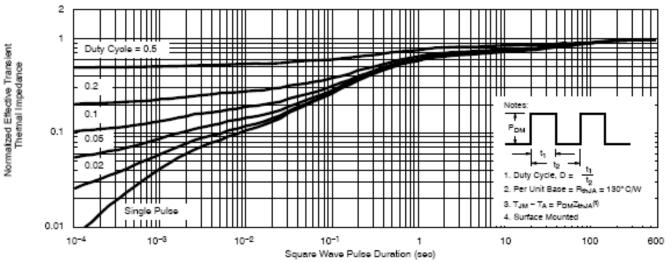
TYPICAL CHARACTERISTICS




Source-Drain Diode Forward Voltage



On-Resistance vs. Gate-to-Source Voltage



TYPICAL CHARACTERISTICS

Normalized Thermal Transient Impedance, Junction-to-Ambient

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation © 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan 115 Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 © http://www.syncpower.com