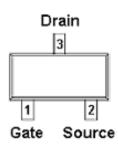
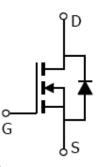
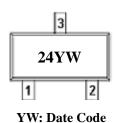
DESCRIPTION

The SPN2324 is the N-Channel logic enhancement mode power field effect transistor which is produced using super high cell density DMOS trench technology. The SPN2324 has been designed specifically to improve the overall efficiency of DC/DC converters using either synchronous or conventional switching PWM controllers. It has been optimized for low gate charge, low RDS(ON) and fast switching speed.


APPLICATIONS


- Powered System
- DC/DC Converter
- Load Switch

FEATURES


- 100V/3A, RDS(ON)= $310m\Omega@VGS=10V$
- 100V/1.3A, RDS(ON)= $330m\Omega@VGS=4.5V$
- High density cell design for extremely low RDS (ON) Exceptional on-resistance and maximum DC current capability
- SOT-23 package design

PIN CONFIGURATION(SOT-23)

PART MARKING

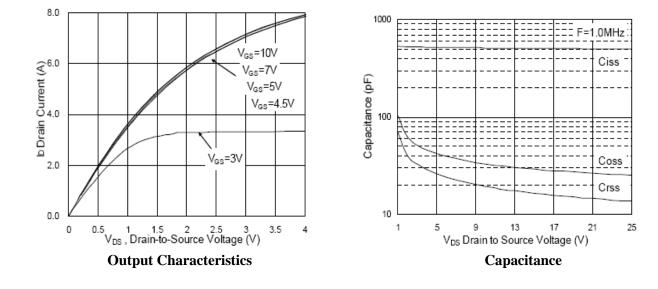
PIN DESCRIPTION		
Pin	Symbol	Description
1	G	Gate
2	S	Source
3	D	Drain

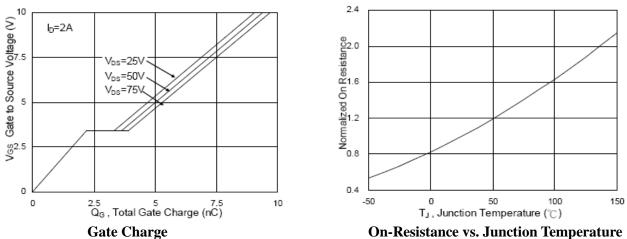
ORDERING INFORMATION

Part Number	Package	Part Marking		
SPN2324S23RGB	SOT-23	24		

※ SPN2324S23RGB : Tape Reel ; Pb − Free ; Halogen − Free

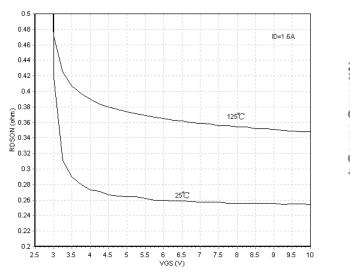
ABSOULTE MAXIMUM RATINGS (TA=25°C Unless otherwise noted)

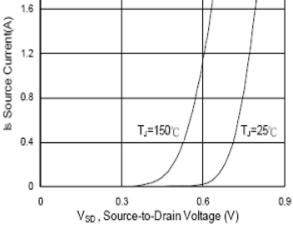

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage		Vdss	100	V	
Gate –Source Voltage		VGSS	±30	V	
	TA=25°C	In	3.0		
Continuous Drain Current(TJ=150°C)	T _A =70°C	- Id	2.0	A	
Pulsed Drain Current		Idм	10	А	
	TA=25°C	D	1.25	XX/	
Power Dissipation	Ta=70°C	PD	0.8	W	
Operating Junction Temperature		TJ	-55/150	°C	
Storage Temperature Range		Tstg	-55/150	°C	
Thermal Resistance-Junction to Ambient		Reja	100	°C/W	



ELECTRICAL CHARACTERISTICS (TA=25°C Unless otherwise noted)								
Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit		
Static						-		
Drain-Source Breakdown Voltage	V(BR)DSS	Vgs=0V,Id=250uA	100			v		
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1	1.5	2.5			
Gate Leakage Current	Igss	VDS=0V,VGS=±30V			±100	nA		
Zero Gate Voltage Drain Current		VDS=80V,VGS=0V			1	uA		
	Idss	VDS=80V,VGS=0V TJ=125°C			5			
On-State Drain Current	ID(on)	VDS≥5V,VGS =10V	3.0			А		
Drain-Source On-Resistance	RDS(on)	Vgs=10V,Id=3A		0.26	0.31	Ω		
		Vgs=4.5V,Id=1.3A		0.28	0.33			
Forward Transconductance	gfs	VDS=10V,ID=3A		2.4		S		
Diode Forward Voltage	VSD	Is=1A,VGs =0V			1.2	V		
Dynamic								
Total Gate Charge	Qg			9	13	nC		
Gate-Source Charge	Qgs	$V_{DS}=80V, V_{GS}=10V$ $I_{D}=5A$		2				
Gate-Drain Charge	Qgd	10- 573		1.4				
Input Capacitance	Ciss			508		pF		
Output Capacitance	Coss	VDS=25,VGS=0V f=1MHz		29				
Reverse Transfer Capacitance	Crss			16.5				
Turn-On Time	td(on)			2		nS		
	tr	$VDD=50V,RL=10\Omega$		21.5				
Turn-Off Time	td(off)	ID=3A,VGEN=10V RG= 3.3Ω		11.2				
	tf			18.8				

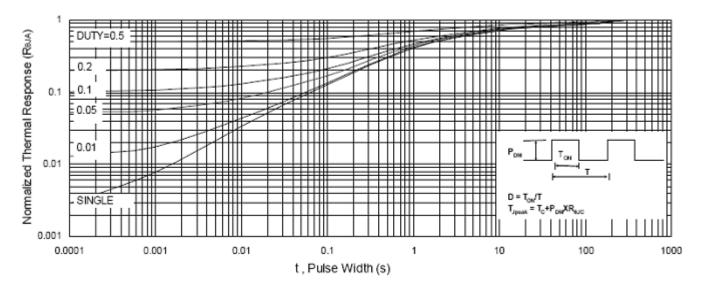
TYPICAL CHARACTERISTICS





On-Resistance vs. Junction Temperature

2


TYPICAL CHARACTERISTICS

On Resistance vs Gate-Source Voltage

Source-Drain Forward Diode Voltage

Normalized Thermal Transient Impedance, Junction to Foot

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

 The SYNC Power logo is a registered trademark of SYNC Power Corporation
2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1, Park Street NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C Phone: 886-2-2655-8178 Fax: 886-2-2655-8468
http://www.syncpower.com

