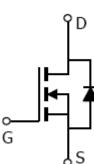


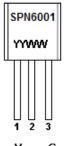
DESCRIPTION

The SPN6001 is the N-Channel enhancement mode field effect transistors that are produced using high cell density DMOS technology.

APPLICATIONS


- High efficiency SMPS
- AC adapter
- Electronic Lamp Ballast

FEATURES


- 600V/1.0A, RDS(ON)= $15\Omega@VGS=10V$
- TO-92 package design
- Fast switch, Low Ciss, Low gate charge
- ٠

PIN CONFIGURATION(TO-92)

PART MARKING

Y : Year Code W: Weak Code

2020/04/17 Ver.2

PIN DESCRIPTION		
Pin	Symbol	Description
1	G	Gate
2	D	Drain
3	S	Source

ORDERING INFORMATION

Part Number	Package	Part Marking
SPN6001T92AGB	TO-92	SPN6001

₩ Week Code : 01~53

X SPN6001T92AGB : Tape Ammo ; Pb – Free ; Halogen - Free

ABSOULTE MAXIMUM RATINGS

(TA=25°C Unless otherwise noted)

Parameter		Symbol	Typical	Unit	
Drain-Source Voltage		Vdss	600	V	
Gate –Source Voltage - Continuous		VGSS	±20	V	
Gate –Source Voltage - Non Repetitive ($t_p < 50 \mu s$)		VGSS	±40	V	
Continuous Drain Current(TJ=150°C)	TA=25°C	ID	1	А	
Pulsed Drain Current (*)		Ідм	2.5	А	
Power Dissipation	TA=25°C	Pd	3	W	
Operating Junction Temperature		ΤJ	-55 ~ 150	°C	
Storage Temperature Range		Tstg	-55 ~ 150	°C	
Thermal Resistance-Junction to Ambient		Rөја	120	°C/W	

(*) Pulse width limited by safe operating area

ELECTRICAL CHARACTERISTICS

(TA=25°C Unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit
Static				1		-
Drain-Source Breakdown Voltage	V(BR)DSS	Vgs=0V,Id=250uA	600			- v
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	2.0		4.0	
Gate Leakage Current	Igss	VDS=0V,VGS=±20V			±100	nA
Zero Gate Voltage Drain Current	IDSS	Vds=480V, Vgs=0V			10	uA
Drain-Source On-Resistance	RDS(on)	VGS=10V, ID=500mA			15	Ω
Forward On Voltage	Vsd	Vgs=0V, Id=500mA			1	V
Forward Transconductance	Gfs	VDS=40V, ID=500 mA		0.8		S
Dynamic						
Total Gate Charge	Qg			6.1	7.2	nC
Gate-Source Charge	Qgs	$V_{DD} = 480 \text{ V}, \text{ ID} = 1 \text{ A},$ $V_{GS} = 10 \text{ V}$		1.0		
Gate-Drain Charge	Qgd			3.0		
Input Capacitance	Ciss			178	221	pF
Output Capacitance	Coss	$V_{DS} = 25 V, f = 1 MHz,$ $V_{GS} = 0$		19	27	
Reverse Transfer Capacitance	Crss	105 - 0		3.7	4.8	
Turn-On Time	td(on)			15		- nS
	tr	$V_{DD} = 300 \text{ V}, \text{ ID} = 1 \text{ A}$		46		
Turn-Off Time	td(off)	$R_G = 25\Omega$		26		
	tf]		37]

(1) Pulsed: Pulse duration = $300 \ \mu$ s, duty cycle 2 %.

(2) Pulse width limited by maximum junction temperature.

TYPICAL CHARACTERISTICS

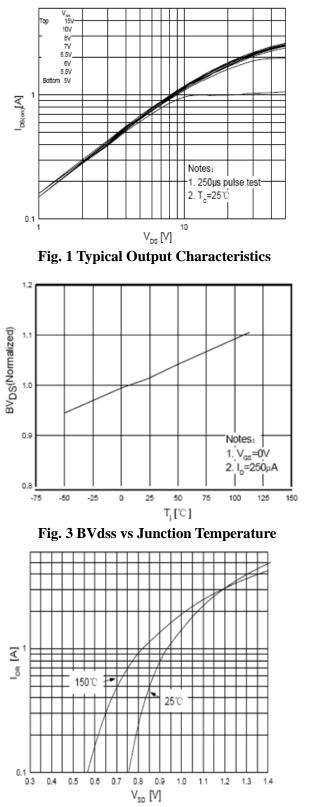


Fig. 5 Forward Characteristic of Reverse Diode

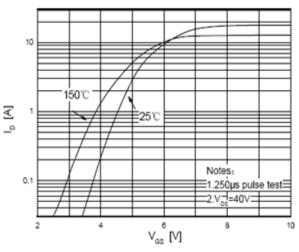


Fig. 2 Transfer Characteristics

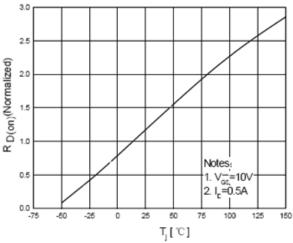


Fig. 4 On-Resistance vs Junction Temperature

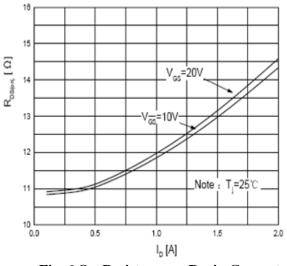


Fig. 6 On-Resistance vs Drain Current

2020/04/17 Ver.2

TYPICAL CHARACTERISTICS

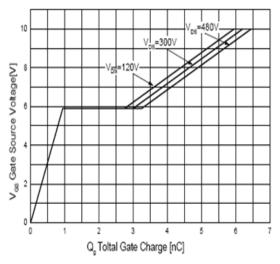
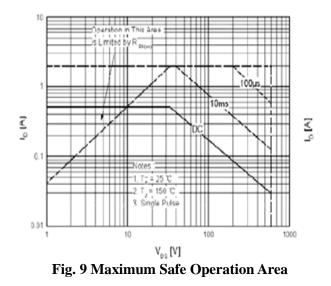



Fig. 7 Gate Charge Characteristics

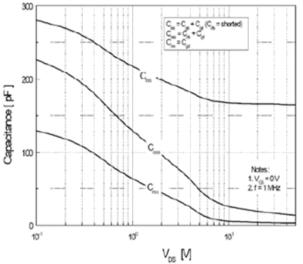


Fig. 8 Typical Capacitance Characteristics

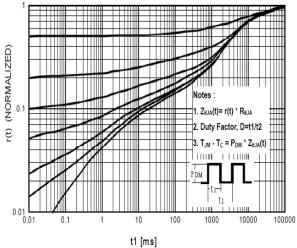


Fig. 10 Effective Transient Thermal Impedance

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation © 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved SYNC Power Corporation 7F-2, No.3-1 Park Street NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C Phone: 886-2-2655-8178 Fax: 886-2-2655-8468 © http://www.syncpower.com