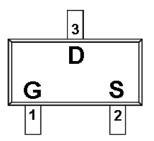
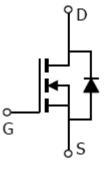
SPN7002V N-Channel Enhancement Mode MOSFET

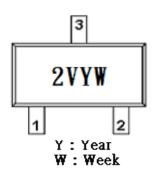
DESCRIPTION

The SPN7002V is the N-Channel enhancement mode field effect transistors are produced using high cell density DMOS technology. These products have been designed to minimize on-state resistance while provide rugged, reliable, and fast switching performance. They can be used in most applications requiring up to 300mA DC and can deliver pulsed currents up to 1.0A. These products are particularly suited for low voltage, low current applications such as small servo motor control, power MOSFET gate drivers, and other switching applications.


APPLICATIONS


- Drivers: Relays, Solenoids, Lamps, Hammers, Display, Memories, Transistors, etc.
- High saturation current capability. Direct Logic-Level Interface: TTL/CMOS
- Battery Operated Systems
- Solid-State Relays

FEATURES


- \bullet 60V/0.50A, RDS(ON)=4.0 Ω @VGS=10V
- 60V/0.30A, RDS(ON)= 5.0Ω @VGS=5V
- ◆ Super high density cell design for extremely low RDS (ON)
- Exceptional on-resistance and maximum DC current capability
- ♦ SOT-523 (SC-89) package design

PIN CONFIGURATION (SOT-523 / SC-89)

PART MARKING

PIN DESCRIPTION						
Pin	Symbol	Description				
1	G	Gate				
2	S	Source				
3	D	Drain				

ORDERING INFORMATION

Part Number		Package	Part Marking		
	SPN7002VS52RGB	SOT-523	2V		

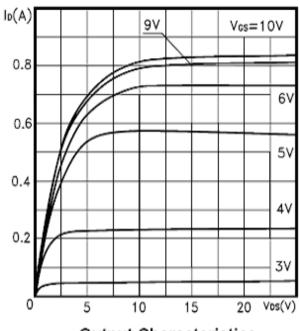
[※] SPN7002VS52RGB: Tape Reel; Pb − Free; Halogen − Free

ABSOULTE MAXIMUM RATINGS (Ta=25°C Unless otherwise noted)

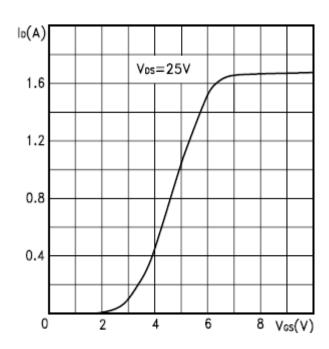
Parameter	Symbol	Typical	Unit	
Drain-Source Voltage		VDSS	60	V
Gate –Source Voltage - Continuous		VGSS	±20	V
Gate –Source Voltage - Non Repetitive (tp	VGSS	±40	V	
Continuous Drain Current(T _J =150°C)	ID	0.35	A	
Pulsed Drain Current (*)	Ірм	1.0	A	
Power Dissipation	Ta=25°C	PD	0.15	W
Operating Junction Temperature		Тл	-55 ~ 150	°C
Storage Temperature Range		Tstg	-55 ~ 150	°C
Thermal Resistance-Junction to Ambient		RθJA	830	°C/W

^(*) Pulse width limited by safe operating area

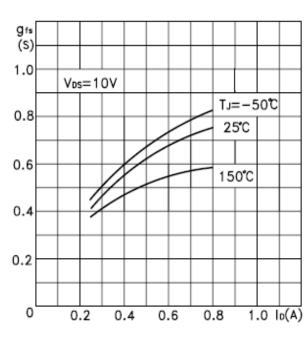
ELECTRICAL CHARACTERISTICS (Ta=25°C Unless otherwise noted)								
Parameter	Symbol	Conditions	Min.	Тур	Max.	Unit		
Static								
Drain-Source Breakdown Voltage	V(BR)DSS	Vgs=0V,ID=250uA	60			V		
Gate Threshold Voltage	VGS(th)	VDS=VGS,ID=250uA	1.0	1.7				
Gate Leakage Current	Igss	VDS=0V,VGS=±20V			±100	nA		
Zero Gate Voltage Drain Current		VDS=48V,VGS=0V			1	uA		
	Idss	Vds=48V,Vgs=0V Tj=55°C			10			
Drain-Source On-Resistance	RDS(on)	Vgs=10V,Id=0.50A			4.0	Ω		
	` ′	VGS= 5V,ID=0.30A			5.0			
Source-drain Current	ISD				0.12	A		
Source-drain Current (pulsed)	ISDM (2)	10111 071		0.6	0.85	A		
Forward Transconductance	Gfs(1)	$V_{DS} = 10 \text{ V}, I_{D} = 0.5 \text{ A}$		0.6		S		
Diode Forward Voltage	VsD(1)	$V_{GS} = 0 V, I_{S} = 0.12A$		0.85	1.5	V		
Dynamic								
Total Gate Charge	Qg	Vdd=30V, Id=1A, Vgs=5V		1.4	2.0	nC		
Gate-Source Charge	Qgs			0.8				
Gate-Drain Charge	Qgd	V 0.5-5 V		0.5				
Input Capacitance	Ciss	Vds=25V, f=1MHz, Vgs=0		43	60	pF		
Output Capacitance	Coss			20	30			
Reverse Transfer Capacitance	Crss			6	10			
Turn-On Time	td(on)			5	20	- G		
	tr	VDD=30V, ID=0.5A		15				
Turn-Off Time	td(off)	$RG=4.7\Omega$, $VGS=4.5V$		7	20	nS		
	tf			8		1		

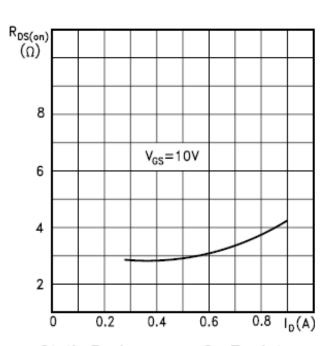

⁽¹⁾ Pulsed: Pulse duration = $300 \mu s$, duty cycle 1.5 %.

⁽²⁾ Pulse width limited by safe operating area.



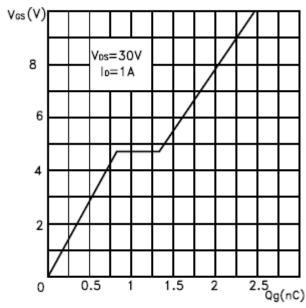
N-Channel Enhancement Mode MOSFET


TYPICAL CHARACTERISTICS

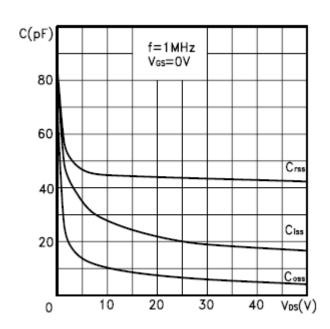

Output Characteristics

Transfer Characteristics

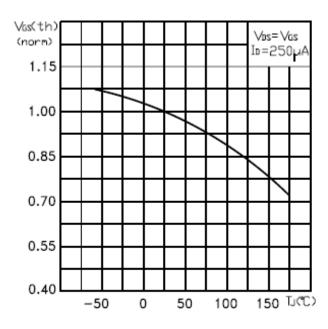
Transconductance



Static Drain-source On Resistance

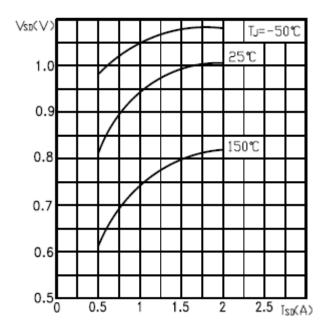


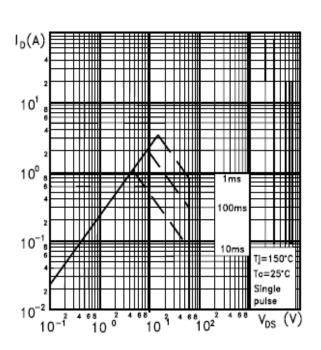
N-Channel Enhancement Mode MOSFET

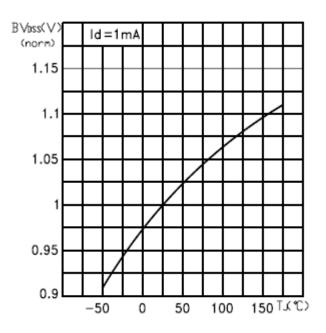

TYPICAL CHARACTERISTICS

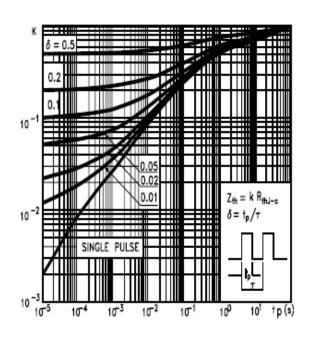
Gate Charge vs Gate-source Voltage

Capacitance Variations

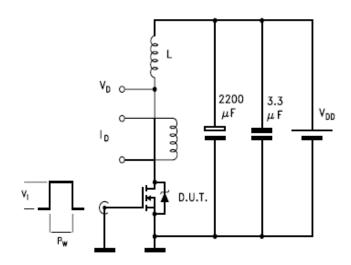

Normalized Gate Threshold Voltage vs Temperature


Normalized On Resistance vs Temperature


TYPICAL CHARACTERISTICS

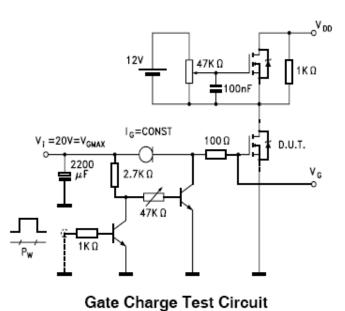

Source-Drain Forward

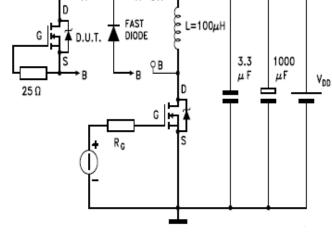
Safe Operating Area



Normalized BVDSS vs Temperature

Thermal Impedance


TYPICAL TESTING CIRCUIT



R_L 2200 3.3 μF V_{DD} V_{DD} P_W D.U.T.

Unclamped Inductive Load Test

Switching Times Test Circuit

Test Circuit For Inductive Load Switching and Diode Recovery Times

Information provided is alleged to be exact and consistent. SYNC Power Corporation presumes no responsibility for the penalties of use of such information or for any violation of patents or other rights of third parties which may result from its use. No license is granted by allegation or otherwise under any patent or patent rights of SYNC Power Corporation. Conditions mentioned in this publication are subject to change without notice. This publication surpasses and replaces all information previously supplied. SYNC Power Corporation products are not authorized for use as critical components in life support devices or systems without express written approval of SYNC Power Corporation.

© The SYNC Power logo is a registered trademark of SYNC Power Corporation
© 2020 SYNC Power Corporation – Printed in Taiwan – All Rights Reserved
SYNC Power Corporation
7F-2, No.3-1, Park Street
NanKang District (NKSP), Taipei, Taiwan, 115, R.O.C
Phone: 886-2-2655-8178
Fax: 886-2-2655-8468

Fax: 886-2-2655-8468 © http://www.syncpower.com